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Abstract 14 

The quantification of behaviors of interest from video data is commonly used to 15 
study brain function, the effects of pharmacological interventions, and genetic 16 
alterations. Existing approaches lack the capability to analyze the behavior of 17 
groups of animals in complex environments. We present a novel deep learning 18 
architecture for classifying individual and social animal behavior, even in 19 
complex environments directly from raw video frames, while requiring no 20 
intervention after initial human supervision. Our behavioral classifier is 21 
embedded in a pipeline (SIPEC) that performs segmentation, identification, 22 
pose-estimation, and classification of complex behavior, outperforming the state 23 
of the art. SIPEC successfully recognizes multiple behaviors of freely moving 24 
individual mice as well as socially interacting non-human primates in 3D, using 25 
data only from simple mono-vision cameras in home-cage setups. 26 

Introduction 27 

While the analysis of animal behavior is crucial for systems neuroscience1 and preclinical 28 
assessment of therapies, it remains a highly laborious and error-prone process. Over the last 29 
few years, there has been a surge in machine learning tools for behavioral analysis, including 30 
segmentation, identification, and pose estimation2–11. Although this has been an impressive feat 31 
for the field, a key element, the direct recognition of behavior itself, has been rarely addressed. 32 
Unsupervised analysis of behavior12–17 can be a powerful tool to capture the diversity of the 33 
underlying behavioral patterns, but the results of these methods do not align with human 34 
annotations and therefore require subsequent inspection15. There have been advances also in 35 
the supervised analysis of mouse behavior, using classifiers on top of pose-estimation generated 36 
features18–21 or manually defined features such as ellipses22–25. Sturman et. al.20 demonstrated 37 
that the classification of mouse behaviors using features generated from pose-estimation 38 
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algorithms can outperform the behavioral classification performance of commercial systems. 39 
Yet, such pose-estimation-based behavior classification remains a labor-intensive and error-40 
prone process as we show below. Moreover, pose estimation in primates is difficult to achieve 41 
with current methods26. 42 
 43 
Here, we demonstrate a complementary approach for researchers who automatically seek to 44 
identify behaviors of interest. Our approach relies on the initial annotation of exemplar 45 
behaviors, i.e. snippets of video footage. These video snippets are subsequently used to train a 46 
Deep Neural Network (DNN) to subsequently recognize such particular behaviors in arbitrarily 47 
long videos and complex environments. To achieve this, we designed a novel DNN 48 
architecture, called SIPEC:BehaveNet, which uses raw videoframes as input and significantly 49 
outperforms a pose-estimation-based approach tested on a well-annotated mouse dataset and 50 
reaches human-level performances for counting grouped behavioral events. In addition to this 51 
behavioral classification network, we developed the first all-inclusive pipeline, called SIPEC, 52 
with modules for segmentation (SIPEC:SegNet), identification (SIPEC:IdNet), behavioral 53 
classification (SIPEC:BehaveNet), and pose estimation (SIPEC:PoseNet) of multiple and 54 
interacting animals in complex environments. This pipeline utilizes four DNNs operating 55 
directly on videos, developed and optimized for analyzing animal behavior and providing state-56 
of-the-art performance. We use this pipeline to classify, for the first time, social interactions in 57 
home-caged primates from raw video frames and without needing to use any pose estimation.  58 
 59 
SIPEC:SegNet is a Mask R-CNN architecture27, optimized to robustly segment animals despite 60 
occlusions, multiple scales, and rapid movement, and enables tracking of animal identities 61 
within a session. SIPEC:IdNet has a DenseNet28 backbone, that yields visual features, that are 62 
integrated over time through a gated-recurrent-unit network (GRU)29,30 to re-identify animals 63 
when temporal-continuity-based tracking does not work, for example when animals enter or 64 
exit a scene. This enables SIPEC to identify primates across weeks and to outperform the 65 
identification module of idtracker.ai4 both within-session and across sessions (see also 66 
Discussion) as well as primnet31. SIPEC:PoseNet performs top-down multi-animal pose 67 
estimation which we compared to DeepLabCut (DLC)2. SIPEC:BehaveNet uses an Xception32 68 
network in combination with a temporal convolution network (TCN)33,34 to classify behavioral 69 
events directly from raw pixels. To rapidly train our modules, we use image augmentation35 as 70 
well as transfer-learning36, optimized specifically for each task. SIPEC enables researchers to 71 
identify behaviors of multiple animals in complex and changing environments over multiple 72 
days or weeks in 3D space, even from a single camera with relatively little labeling, in contrast 73 
to other approaches that use heavily equipped environments and large amounts of labelled data8. 74 
 75 
To accelerate the reusability of SIPEC, we share the network weights among all four modules 76 
for mice and primates, which can be directly used for analyzing new animals in similar 77 
environments without further training or serve as pre-trained networks to accelerate training of 78 
networks in different environments.  79 
 80 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 11, 2022. ; https://doi.org/10.1101/2020.10.26.355115doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.26.355115
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

Results 81 

Our algorithm performs segmentation (SIPEC:SegNet) followed by identification 82 
(SIPEC:IdNet), behavioral classification (SIPEC:BehaveNet) and finally pose estimation 83 
(SIPEC:PoseNet) from video frames (Fig. 1). These four artificial neural networks, trained for 84 
different purposes, can also be used individually or combined in different ways (Fig. 1a). To 85 
illustrate the utility of this feature, Fig. 1b shows the output of pipelining SIPEC:SegNet and 86 
SIPEC:IdNet to track the identity and location of 4 primates housed together (Fig. 1b, Supp. 87 
Video 1). Fig. 1c shows the output of pipelining SIPEC:SegNet and SIPEC:PoseNet to do 88 
multi-animal pose estimation in a group of 4 mice.  89 

Segmentation module SIPEC:SegNet. SIPEC:SegNet (see Methods, Supp. Fig. 12) is based 90 
on the Mask-RCNN architecture27, which we optimized for analyzing multiple animals and 91 
integrated into SIPEC. We further applied transfer learning36 onto the weights of the Mask-92 
RCNN ResNet-backbone37 pre-trained on the Microsoft Common Objects in Context (COCO 93 
dataset)38 (see Methods for SIPEC:SegNet architecture and training). Moreover, we applied 94 
image augmentation35 to increase network robustness against invariances, e.g. rotational 95 
invariance and therefore increase generalizability. 96 
 97 
Segmentation performance on individual mice and groups of 4. We first examined the 98 
performance of SIPEC:SegNet on top-view video recordings of individual mice, behaving in 99 
an open-field test (OFT). While segmenting black mice on a blank background could be 100 
achieved by thresholding alone, we still included this task for completeness. 8 mice were freely 101 
behaving for 10 minutes in the TSE Multi Conditioning System's OFT arena, previously 102 
described in Sturman et al.20. We labeled the outlines of mice in a total of 23 frames using the 103 
VGG image annotator39 from videos of randomly selected mice. To evaluate the performance, 104 
we used 5-fold cross-validation (CV). We assessed the segmentation performance on images 105 
of individual mice, where SIPEC:SegNet achieved a mean-Average Precision (mAP) of 1.0 ± 106 
0 (mean ± s.e.m., see Methods for metric details). We performed a videoframe ablation study 107 
to determine how many labeled frames (outline of the animal, see Supp. Fig. 1) are needed for 108 
SIPEC:SegNet to reach peak performance (Supp. Fig. 2). While randomly selecting an 109 
increasing amount of training frames, we measured performance using CV. For single-mouse 110 
videos, we find that our model achieves 95% of mean peak performance (mAP of 0.95 ± 0.05) 111 
using as few as a total of 3 labeled frames for training. To the existing 23 labeled single-mouse 112 
frames, we added 57 labeled 4-plex frames, adding to a total of 80 labeled frames. Evaluated 113 
on a 5-fold CV, SIPEC:SegNet achieves an mAP of 0.97 ± 0.03 (Fig. 2b). For segmentation in 114 
groups of 4 mice, we performed an ablation study as well and found that SIPEC:SegNet 115 
achieves better than 95% of the mean peak performance (mAP of 0.94 ± 0.05) using as few as 116 
only 16 labeled frames. To assess the overlap between prediction and ground truth, we report 117 
IoU and dice coefficient metrics as well (Fig. 2b). 118 
 119 
Segmentation performance of groups of primates. To test SIPEC:SegNet for detecting instances 120 
of primates within a group, we annotated 191 frames from videos on different days (Day 1, Day 121 
9, Day 16, Day 18). As exemplified in Fig. 2a, the network handles even difficult scenarios 122 
very well: representative illustrations include ground-truth as well as predictions of moments 123 
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in which multiple primates are moving rapidly while strongly occluded at varying distances 124 
from the camera. SIPEC:SegNet achieved a mAP of 0.91 ± 0.03 (mean ± s.e.m.) using 5-fold 125 
CV. When we performed the previously described ablation study, SIPEC:SegNet achieved 95% 126 
of mean peak performance (mAP of 0.87 ± 0.03) with only 30 labeled frames (Fig. 2b). To 127 
assess the overlap between prediction and ground truth, we report IoU and dice coefficient 128 
metrics as well (Fig. 2c). 129 

Pose estimation module SIPEC:PoseNet. We also added a pose estimation network, built on 130 
an encoder-decoder architecture40 with an EfficientNet41 backbone, to SIPEC for performing 131 
pose estimation (SIPEC:PoseNet) (see Methods, Supp. Fig. 11). SIPEC:PoseNet can be used to 132 
perform pose estimation on N animals (with N the total number of animals or less), yielding K 133 
different coordinates for previously defined landmarks on each animal's body. The main 134 
advantage of SIPEC:PoseNet in comparison to previous approaches is that it receives its inputs 135 
from SIPEC:SegNet (top-down pose estimation): While bottom-up approaches such as DLC2 136 
require grouping of pose estimates to individuals, our top-down approach makes the assignment 137 
of pose estimates to individual animals trivial, as inference is performed on the masked image 138 
of an individual animal and pose estimates within that mask are assigned to that particular 139 
individual (Fig. 1c). We labeled frames with 13 standardized body parts of individual mice in 140 
an OFT similarly to Sturman et. al.20 to train and test the performance of SIPEC:PoseNet against 141 
that of DLC2. SIPEC:PoseNet achieves a Root-Mean-Squared-Error (RMSE) (see Methods) of 142 
2.9 pixels in mice (Fig. 2d) for a total of 96 labeled training frames, while DLC2 achieves a 3.9  143 
pixel RMSE2. Previously published pose estimation methods for single animals can easily be 144 
substituted into our pipeline to perform multi-animal pose estimation in conjunction with 145 
SIPEC:SegNet. 146 
 147 
Identification module SIPEC:IdNet. The identification network (SIPEC:IdNet) (see 148 
Methods, Supp. Fig. 10) allows the determination of the identity of individual animals. Given 149 
SIPEC:IdNet receives input as a series (T time points) of cropped images of N (with N the total 150 
number of animals or less) individuals from SIPEC:SegNet, the output of SIPEC:IdNet are N 151 
identities. The input images from SIPEC:SegNet are scaled to the same average size (see 152 
Methods) before being fed into SIPEC:IdNet. We designed a feedforward classification neural 153 
network, which utilizes a DenseNet28-backbone pre-trained on ImageNet42. This network serves 154 
as a feature-recognition network on single frames. We then utilize past and future frames by 155 
dilating the mask around the animal with each timestep. The outputs of the feature-recognition 156 
network on these frames are then integrated over T timesteps using a GRU (see Methods for 157 
architecture and training details). SIPEC:IdNet can integrate information from none to many 158 
temporally-neighboring frames based on a particular application's accuracy and speed 159 
requirements. We used spatial area dropout augmentations to increase robustness against 160 
occlusions43. We developed an annotation tool for a human to assign identities of individual 161 
animals, in a multi-animal context, to segmentation masks in videoframes, which capture 162 
primates from different perspectives (Supp. Fig. 3). This tool was used for annotating 163 
identification data in the following sections. Below we compared SIPEC:IdNet's performance 164 
to that of the current state-of-the-art i.e. the identification module of idTracker.ai4 and the 165 
primnet31 network for primate re-identification. primnet31 relies on faces of individuals being 166 
clearly visible for re-identification, which in our case is not possibe for most of the video 167 
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frames. idTracker.ai4 is a self-supervised algorithm for tracking the identity of individual 168 
animals within a single session. Particularly in complex or enriched home-cage environments, 169 
where animals are frequently obstructed as they move underneath/behind objects or enter/exit 170 
the scene and background or lighting conditions change constantly, temporally based tracking 171 
and identification as idtracker.ai performs it becomes impossible. We evaluated the 172 
identification performance of SIPEC:IdNet across sessions with the identification module of 173 
idTracker.ai, providing each network with identical training and testing data. While idtracker.ai 174 
behaves self-supervised, the identification module it uses to distinguish animals is trained with 175 
the labels generated by idTracker.ai's cascade algorithm in a supervised fashion. Apart from re-176 
identifying animals across sessions using SIPEC:IdNet, SIPEC:SegNet segmentation masks 177 
can be used via greedy-mask matching (see Methods) to track the identities of animals 178 
temporally as well (Supp. Videos 2-4) or to smooth the outputs of SIPEC:IdNet as a secondary 179 
step, that can boost performance for continuous video sequences, but this advantage was not 180 
used in the following evaluations for mice and primates. 181 
 182 

Identification of mice in an open-field test. We first evaluated the performance of SIPEC:IdNet 183 
in identifying 8 individual mice. We acquired 10-minute-long videos of these mice behaving 184 
in the previously mentioned OFT (see Methods for details). While for the human observer, 185 
these mice are difficult to distinguish (Supp. Fig. 4), our network copes rather well. We used 186 
5-fold CV to evaluate the performance, i.e. splitting the 10-minute videos into 2-minute long 187 
ones, while using one fold for testing and the rest to train the network Since this data is 188 
balanced, we use the accuracy metric for evaluation. We find that SIPEC:IdNet achieves 99 ± 189 
0.5 % (mean and s.e.m.) accuracy, while the current state of the art idTracker.ai4 only achieves 190 
87 ± 0.2 % accuracy (Fig. 2e). The ablation study shows that only 650 labeled frames (frame 191 
and identity of the animal) are sufficient for the SIPEC:IdNet to achieve 95% of its mean peak 192 
performance (Fig. 2f). We tested how this performance translates to identifying the same 193 
animals during the subsequent days (Supp. Fig. 5). We find that identification performance is 194 
similarly high on the second day 86 ± 2 %, using the network trained on day 1. Subsequently, 195 
we tested identification robustness with respect to the interventions on day 3. Following a 196 
forced swim test, the identification performance of SIPEC:IdNet, trained on data of day 1, 197 
dropped dramatically to 4 ± 2 %. This indicates that features utilized by the network to identify 198 
the mice are not robust to this type of intervention, i.e. their behavior and outlook is altered by 199 
the stress and residual water on the fur significantly. 200 
 201 
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Identification of individual primates in a group. To evaluate SIPEC: IdNet's performance on 202 
identifying individual primates within a group, we used the SIPEC:SegNet-processed videos 203 
of the 4 macaques (see Section "Segmentation performance of groups of primates"). We 204 
annotated frames from 7 videos taken on different days, with each frame containing multiple 205 
individuals, yielding approximately 2200 labels for cutouts of individual primates. We used 206 
leave-one-out CV with respect to the videos in order to test SIPEC:IdNet generalization across 207 
days. Across sessions SIPEC:IdNet reaches an accuracy of 78 ± 3 % (mean ± s.e.m.) while 208 
idTracker.ai4 achieves only 33 ± 3 % and primnet31 34 ± 3 %  (Fig. 2e), where the human expert 209 
(i.e. ground truth) had the advantage of seeing all the video frames and the entire cage (i.e. the 210 
rest of the primates). We did a separate evaluation of the identification performance on "typical 211 
frames" i.e., the human expert can correctly identify the primates using single frames. In this 212 
case, SIPEC:IdNet achieved a performance of 86 ± 3  (Supp. Fig. 6). The identification labels 213 
can then be further enhanced by greedy mask-match-based tracking (see Methods for details). 214 
Supp. Video 1 illustrates the resulting performance on a representative video snippet. We 215 
perform here an ablation study as well, which yields 95% of mean peak performance at 1504 216 
annotated training samples (Fig. 2g). 217 
 218 
Behavioral classification module SIPEC:BehaveNet. SIPEC:BehaveNet (see Methods, 219 
Supp. Fig. 13) offers researchers a powerful means to recognize specific animal behaviors 220 
directly from raw pixels using a single neuronal net framework. SIPEC:BehaveNet uses video 221 
frames of N individuals over T time steps to classify the animals' actions. The video frames of 222 
the N individuals are generated by SIPEC:SegNet. If only a single animal is present in the 223 
video, SIPEC:BehaveNet can be used directly without SIPEC:SegNet. We use a recognition 224 
network to extract features from single frames analysis, based on the Xception32 network 225 
architecture. We initialize parts of the network with ImageNet4 weights.  These features are 226 
then integrated over time by a TCN33,34 to classify the animal's behavior in each frame (see 227 
Methods for architecture and training details).  228 
 229 
SIPEC behavior recognition outperforms DLC-based approach. We compare our raw-pixel-230 
based approach to Sturman et al.20, who recently demonstrated that they can classify behavior 231 
based on DLC2  generated features. On top of a higher classification performance with fewer 232 
labels, SIPEC:BehaveNet does not require annotation and training for pose estimation if the 233 
researcher is interested in behavioral classification alone. The increased performance with 234 
fewer labels comes at the cost of a higher computational demand since we increased the 235 
dimensionality of the input data by several orders of magnitude (12 pose estimates vs. 16384 236 
pixels). We used the data and labels from Sturman et al.20 on 20 freely behaving mice in an 237 
OFT to test our performance. The behavior of these mice was independently annotated by 3 238 
different researchers on a frame-by-frame basis using the VGG video annotation tool39. 239 
Annotations included the following behaviors: supported rears, unsupported rears, grooming 240 
and none (unlabeled/default class). While Sturman et al.20 evaluated the performance of their 241 
behavioral event detection by averaging across chunks of time, evaluating the frame-by-frame 242 
performance is more suitable for testing the actual network performance since it was trained 243 
the same way. Doing such frame-by-frame analysis shows that SIPEC:BehaveNet has fewer 244 
false positives as well as false negatives with respect to the DLC-based approach of Sturman 245 
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et al. 20. We illustrate a representative example of the performance of both approaches for each 246 
of the behaviors with their respective ground truths (Fig. 3a). We further resolved spatially the 247 
events that were misclassified by Sturman et al., that were correctly classified by 248 
SIPEC:BehaveNet and vice versa (Fig. 3b). We calculated the percentage of mismatches, that 249 
occurred in the center or the surrounding area. For grooming events mismatches of Sturman et 250 
al.20 and SIPEC:BehaveNet occurs similarly often in the center 41 ± 12 % (mean and s.e.m.) 251 
and 42 ± 12 % respectively. For supported and unsupported rearing events Sturman et al.20 has 252 
more mismatches occurring in the center compared to SIPEC:BehaveNet (supported rears: 40 253 
± 4 % and 37 ± 6 %, unsupported rears: 12 ± 2 % and 7 ± 2 %). This indicates that the 254 
misclassifications of the pose estimation-based approach are more biased towards the center 255 
than the ones of SIPEC:BehavNet. To quantify the behavioral classification over the whole 256 
time course of all videos of 20 mice, we used leave-one-out CV (Fig. 3c). We used macro-257 
averaged F1-score as a common metric to evaluate a multi-class classification task and Pearson 258 
correlation (see Methods for metrics) to indicate the linear relationship between the ground 259 
truth and the estimate over time. For the unsupported rears/grooming/supported rears behaviors 260 
SIPEC:BehaveNet achieves F1-Scores of 0.6 ± 0.16/0.49 ± 0.21/0.84 ± 0.04 (values reported 261 
as mean ± s.e.m.) respectively, while the performance of the manually intensive Sturman et 262 
al.20’s approach reaches only 0.49 ± 0.11/0.37 ± 0.2/0.84 ± 0.03, leading to a significantly higher 263 
performance of SIPEC:BehaveNet for the unsupported rearing (F1: p=1.689x10-7, Wilcoxon 264 
paired-test was used as recommended44) as well as the grooming (F1: p=6.226x10-4) behaviors. 265 
While we see a higher precision only in the classification of supported rears in the DLC-based 266 
approach, SIPEC:BehaveNet has an improved recall for the supported rears as well as improved 267 
precision and recall for the other behaviors (Supp. Fig. 7a). As expected, more stereotyped 268 
behaviors with many labels like supported rears yield higher F1. In comparison, less 269 
stereotypical behaviors like grooming with fewer labels have lower F1 for SIPEC:BehaveNet 270 
and the DLC-based approach. Additionally, we computed the mentioned metrics on a dataset 271 
with shuffled labels to indicate chance performance for each metric as well as computed each 272 
metric when tested across human annotators to indicate an upper limit for frame-by-frame 273 
behavioral classification performance (Supp. Fig. 7b). While the overall human-to-human F1 274 
is 0.79 ± 0.07 (mean ± s.e.m.), SIPEC:BehaveNet classifies with an F1 of 0.71 ± 0.07. We then 275 
grouped behaviors by integrating the classification over multiple frames as described in 276 
Sturman et al.20. This analysis results in a behavior count per video. For these per video 277 
behavior counts, we found no significant difference between human annotators, 278 
SIPEC:BehaviorNet and Sturman et al.20 (Tukey's multiple comparison test, Supp. Fig. 15). 279 
Such classification and counting of specific behaviors per video are commonly used to compare 280 
the number of occurrences of behaviors across experimental groups. Using such analysis, 281 
Sturman et al.20 demonstrate how video-based analysis outperforms commonly used 282 
commercial systems. Moreover, we also tested combining the outputs of pose estimation-based 283 
classification together with the raw-pixel model (Combined Model in Methods, Supp. Fig. 7). 284 
Lastly, we performed a frame ablation study and showed that SIPEC:BehaveNet needs only 285 
114 minutes, less than 2 hours, of labeled data to reach peak performance in behavior 286 
classification (Fig. 3d). 287 
 288 
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Socially interacting primate behavior classification. We used the combined outputs of 289 
SIPEC:SegNet and SIPEC:IdNet, smoothed by greedy match-based tracking,  to generate 290 
videos of individual primates over time (see Methods for details). To detect social events, we 291 
used SIPEC:SegNet to generate additional video events covering "pairs" of primates. An 292 
interaction event was detected whenever the masks of individual primates came sufficiently 293 
close (see Methods). We were able to rapidly annotate these videos again using the VGG video 294 
annotation tool39 (overall 80 minutes of video are annotated from 3 videos, including the 295 
individual behaviors of object interaction, searching, social grooming and none (background 296 
class)). We then trained SIPEC:BehaveNet to classify individuals' frames and merged frames 297 
of pairs of primates socially interacting over time. We used grouped 5-fold stratified CV over 298 
all annotated video frames, with labeled videos being the groups. Overall SIPEC:BehaveNet 299 
achieved a macro-F1 of 0.72 ± 0.07 (mean ± s.e.m.) across all behaviors (Fig. 4a). This 300 
performance is similar to the earlier mentioned mouse behavioral classification performance. 301 
The increased variance compared to the classification of mouse behavior is expected as imaging 302 
conditions, as previously mentioned, are much more challenging and primate behaviors are 303 
much less stereotyped compared to mouse behaviors. This can be likely compensated with more 304 
training data. 305 
 306 
Tracking position of primates in 3D without stereo-vision. By performing SIPEC:SegNet 307 
and SIPEC:IdNet inference on a full one-hour video, we built a density map of positions of 308 
individuals within the husbandry (Fig. 1a). Without stereo-vision, one cannot optically acquire 309 
depth information. Instead, we used the output masks of SIPEC:SegNet and annotated the 310 
positions of the primates in 300 frames using a 3D model (Supp. Fig. 8). Subsequently, we 311 
generated 6 features using Isomap45 and trained a multivariate linear regression model to predict 312 
the 3D positions of the primates (Fig. 4b). Using 10-fold CV, our predicted positions using only 313 
single camera have an overall RMSE of only 0.43 ± 0.01 m (mean ± s.e.m.), that is of 0.27 ± 314 
0.01 m in x-direction or 6% error w.r.t the room dimension in x-direction; 0.26 ± 0.01 m / 7% 315 
and 0.21 ± 0.01 m / 7% for the y and z coordinates respectively. If an annotation is impossible, 316 
quasi depth estimates can be calculated through the mask size alone and correlate highly with 317 
the actual depth (Supp. Fig. 14). 318 

Discussion 319 

We have presented SIPEC, a novel pipeline, using specialized deep neural networks to perform 320 
segmentation, identification, behavioral classification, and pose estimation on individual and 321 
interacting animals. With SIPEC we address multiple key challenges in the domain of 322 
behavioral analysis. Our SIPEC:SegNet enables the segmentation of animals with only 3-30 323 
labels (Fig. 2a,b,c). In combination with greedy-mask matching, SIPEC:SegNet can be used to 324 
track animals' identities within one session similar to idtracker.ai, but even in complex 325 
environments with changing lighting conditions, where idtracker.ai fails (Supp. Video 1). 326 

Subsequently, SIPEC:BehaveNet enables animal behavior recognition directly from raw video 327 
data. Raw-video classification has the advantage of not requiring pre-processing adjustments 328 
or feature engineering to specific video conditions. Moreover, we show that learning task-329 
relevant features directly from the raw video can lead to better results than pose-estimation-330 
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based approaches which train a classifier on top of the detected landmarks. In particular, we 331 
demonstrate that our network outperforms a state-of-the-art pose estimation approach13 on a 332 
well-annotated mouse behavioral dataset (Fig. 3) and reaches human-level performance for 333 
counting behavioral events (Supp. Fig. 15). Thus, pose-estimation can be skipped if researchers 334 
are solely interested in classifying behavior. We note that our raw-pixel approach increases the 335 
input-dimensionality of the behavior classification network and therefore uses more 336 
computational resources and is slower than pose-estimation-based approaches.  337 

SIPEC:IdNet identifies primates in complex environments across days with high accuracy. 338 
SIPEC:SegNet enhances SIPEC:IdNet’s high identification performance through mask-339 
matching-based tracking and integration of identities through time. We demonstrate that 340 
identification accuracy is significantly higher than that of the identification module of state-of-341 
art idtracker.ai and primnet31 (Fig. 2e). We note, however, that identification using deep nets is 342 
not robust to interventions that affect mice's appearance strongly immediately after the 343 
intervention (such as forced swim test, Supp. Fig. 5). However, even without any interventions, 344 
expert human observers have difficulty identifying mice of such similar size and color. The 345 
effects of different interventions on the recognition performances of deep net architectures 346 
should be studied in the future. Finally, SIPEC:PosNet enables top-down pose estimation of 347 
multiple animals in complex environments, making it easy to assign pose estimates to 348 
individual animals with higher performance than DLC (Fig. 2d). 349 

All approaches are optimized through augmentation and transfer learning, significantly 350 
speeding up learning and reducing labeling compared to the other approaches we tested on the 351 
mouse and non-human primate datasets. We also performed ablation studies for each of the 352 
networks to estimate the number of labels necessary for successful training. The number of 353 
labels necessary can change depending on the dataset, for example, if the background, etc. are 354 
more complex each network could require more annotated frames to be trained successfully. 355 
To perform well under the complex video conditions for non-human primates, SIPEC:SegNet 356 
needs about 30 labels, SIPEC:IdNet about 1500 labels and SIPEC:BehaveNet less than 2 hours 357 
of annotated video (Fig. 2c,g; Fig. 4a). 358 

SIPEC can be used to study the behavior of primates and their social interactions over longer 359 
periods in a naturalistic environment, as we demonstrated for social grooming (Fig. 4a). In 360 
addition, after initial training of SIPEC modules, they can automatically output a behavioral 361 
profile for each individual in a group, over days or weeks and therefore also be used to quantify 362 
the changes in behaviors of individuals in social contexts over time. Since SIPEC is fully 363 
supervised, it may be difficult to scale it to large colonies with hundreds of animals, such as 364 
bees and ants. However, SIPEC is well suited for most other animal species beyond insects.  365 

Finally, we show how SIPEC enables 3D localization and tracking from a single-camera view, 366 
yielding an off-the-shelf solution for home-cage monitoring of primates, without the need for 367 
setting stereo-vision setups (Fig. 4b). Estimating the 3D position requires the experimenter to 368 
create a 3D model and annotate 3D data. However, we show a quasi-3D estimate can be 369 
generated directly from the mask size, without manual annotation, that correlates highly with 370 
the actual position of the animal (Supp. Fig. 14). 371 
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Behaviors which were not recognized and annotated by the researcher and therefore not learned 372 
by the neural network could be picked up using complementary unsupervised approaches12,13. 373 
The features-vectors, embedding individual behaviors, created by SIPEC:BehaveNet can be 374 
used as input to unsupervised approaches, which can help align the outputs of unsupervised 375 
approaches with human annotation. Moreover, the output of other modules (SIPEC:SegNet, 376 
SIPEC:IdNet and SIPEC:PoseNet) can also be used after such unsupervised approaches to 377 
analyse individual animals. 378 

Data Availability 379 

Mouse data from Sturman et al.20 is available under https://zenodo.org/record/3608658. Primate 380 
data is available upon reasonable request from authors. Exemplary data for training is available 381 
through our github repository. 382 
 383 
Code Availability 384 
We provide the code for SIPEC at https://github.com/SIPEC-Animal-Data-Analysis/SIPEC 385 
(https://doi.org/10.5281/zenodo.5927367) and the GUI for the identification of animals 386 
https://github.com/SIPEC-Animal-Data-Analysis/idtracking_gui. 387 
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 408 

Fig. 1 | Overview of the SIPEC workflow and modules. a) From a given video, instances of 409 
animals are segmented with the segmentation network (SIPEC:SegNet), indicated by masked 410 
outline as well as bounding boxes. Subsequently, individuals are identified using the 411 
identification network (SIPEC:IdNet). For each individual, the pose and behavior can be 412 
estimated/classified using the pose estimation network (SIPEC:PoseNet) and the behavioral 413 
identification network (SIPEC:BehaveNet), respectively. b) Outcome of SIPEC:SegNet, and 414 
SIPEC:IdNet modules are overlaid on a representative videoframe. Time-lapsed positions of 415 
individual primates (center of mass) are plotted as circles with respective colors. c) Outputs of 416 
SIPEC:SegNet (boxes) and SIPEC:PoseNet (colored dots) on a representative videoframe of 417 
mouse open-field data.418 
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419 
Fig. 2 | Performance of the segmentation (SIPEC:SegNet), pose estimation 420 
(SIPEC:PoseNet), and identification (SIPEC:IdNet) modules under demanding video 421 
conditions and using few labels. a) Qualitative comparison of ground truth (top row) versus 422 
predicted segmentation masks (bottom row) under challenging conditions; multiple animals, at 423 
varying distances from the camera, under strong visual occlusions, and in rapid motions. b) For 424 
mice, SIPEC:SegNet performance in mAP (mean average precision), dice (dice coefficient), 425 
and IoU (intersection over union) as a function of the number of labels. The lines indicate the 426 
means for 5-fold CV while circles, squares, triangles indicate the mAP, dice, and IoU, 427 
respectively, for individual folds. c) For primates, SIPEC:SegNet performance in mAP, dice, 428 
and IoU as a function of the number of labels. The lines indicate the means for 5-fold CV while 429 
circles, squares, triangles indicate the mAP, dice, and IoU, respectively, for individual folds. d) 430 
The performance of SIPEC:PoseNet in comparison to DeepLabCut measured as RMSE in 431 
pixels on single mouse pose estimation data. e). Comparison of identification accuracy for 432 
SIPEC:IdNet module, idtracker.ai4, primnet31 and randomly shuffled labels (chance 433 
performance). 8 videos from 8 individual mice and 7 videos across 4 different days from 4 434 
group-housed primates are used. f) For mice, the accuracy of SIPEC:IdNet  as a function of the 435 
number of training labels used. The black lines indicate the mean for 5-fold CV with individual 436 
folds displayed. g) For primates, the accuracy of SIPEC:IdNet as a function of the number of 437 
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training labels used. The black lines indicate the mean for 5-fold CV with individual folds 438 
displayed. All data is represented by mean, showing all points. 439 

440 
Fig. 3 | SIPEC:BehaveNet outperforms pose-estimation (DeepLabCut) based approach 441 
(Sturman et al.20). a) Comparison of behavioral classification by human annotator (ground 442 
truth), SIPEC:BehaveNet, and Sturman et al.20 b) Errors in the classification of mouse behavior 443 
in the open arena for SIPEC:BehaveNet versus Sturman et al. Each colored dot represents a 444 
behavioral event that is incorrectly classified by that method (while correctly classified by the 445 
other) with respect to the ground truth. none-classified (background class) positions of mice are 446 
indicated as grey dots. c) Frame-by-frame classification performance per video (n=20 mice) 447 
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compared to ground truth. d) SIPEC:BehaveNet classification performance as a function of 448 
labeled minutes. All data is represented by a Tukey box-and-whisker plot, showing all points. 449 
Wilcoxon paired test:* p <= 0.05; *** p <= 0.001; **** p <= 0.0001. 450 
 451 
 452 

Fig. 4 | SIPEC can recognize social interactions of multiple primates and infer their 3D 453 
positions using a single camera. a) Performance of SIPEC:BehaveNet for individual and 454 
social behaviors with respect to ground truth evaluated using grouped 5-fold CV. Behaviors 455 
include searching, object interaction and social grooming; while the performance is measured 456 
using F1. F1 on shuffled labels is included for comparison. All data is represented by a 457 
minimum-to-maximum box-and-whisker plot, showing all points. b) Evaluation of 3D position 458 
estimates of primates in home-cage. Black spots mark annotated positions (n=300) while 459 
predicted positions are marked as red-hued spots at the end of the solid arrows (color-coded 460 
using a red gradient with brighter red indicating higher RMSE of predicted to true position). 461 

462 
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Methods 463 

Animals. C57BL/6J (C57BL/6JRj) mice (male, 2.5 months of age) were obtained from Janvier 464 
(France). Mice were maintained in a temperature- and humidity-controlled facility on a 12-h 465 
reversed light-dark cycle (lights on at 08:15 am) with food and water ad libitum. Mice were 466 
housed in groups of 5 per cage and used for experiments when 2.5–4 months old. For each 467 
experiment, mice of the same age were used in all experimental groups to rule out confounding 468 
effects of age. All tests were conducted during the animals' active (dark) phase from 12–5 pm. 469 
Mice were single housed 24 h before behavioral testing in order to standardize their 470 
environment and avoid disturbing cage mates during testing. The animal procedures of these 471 
studies were approved by the local veterinary authorities of the Canton Zurich, Switzerland, 472 
and carried out in accordance with the guidelines published in the European Communities 473 
Council Directive of November 24, 1986 (86/609/EEC).  474 

Acquisition of mouse data. For mouse behavioral data and annotation, we refer to Sturman et 475 
al.20. For each day, we randomized the recording chamber of mice used. On days 1-2, we 476 
recorded animals 1-8 individually. On day 3, for measuring the effect of interventions on 477 
performance, mice were forced-swim-tested in water for 5 minutes immediately before the 478 
recording sessions. 479 

Acquisition of primate data. 4 male rhesus macaques were recorded with a 1080p camera 480 
within their home-cage. The large indoor room was about 15m2. Videos were acquired using a 481 
Bosch Autodome IP starlight 7000 HD camera with 1080p resolution at 50 Hz. 482 

Annotation of segmentation data. To generate training data for segmentation training, we 483 
randomly extracted frames of mouse and primate videos using a standard video player. Next, 484 
we used the VIA video annotator39 to draw outlines around the animals. 485 

Generation and annotation of primate behavioral videos. For creating the dataset, 3 primate 486 
videos of 20-30 minutes were annotated using the VIA video annotator39. These videos were 487 
generated by previous outputs of SIPEC:SegNet and SIPEC:IdNet. Frames of primates, 488 
identified as the same over consecutive frames, were stitched together to create individualized 489 
videos. To generate videos of social interactions, we dilated the frames of each primate in each 490 
frame and checked if their overlap crossed a threshold, in which case we recalculated the COM 491 
of those two masks and center-cropped the frames around them. Labeled behaviors included 492 
'searching', 'object interacting', 'social grooming' and 'none' (background class). 493 

Tracking by segmentation and greedy mask-matching. Based on the outputs of the 494 
segmentation masks, we implemented greedy-match-based tracking. For a given frame the 495 
bounding box of a given animal is assigned to the bounding box previous frames with the 496 
largest spatial overlap, with a decaying factor for temporally distant frames. The resulting 497 
overlap can be used as a confidence of SIPEC:SegNet based tracking of the individual. This 498 
confidence can be used as a weight when using the resulting track identities to optionally 499 
smooth the labels that SIPEC:IdNet. 500 
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Identification labeling with the SIPEC toolbox. As part of SIPEC we release a GUI that 501 
allows to label for identification when multiple animals are present (Supp. Fig. 3). To use the 502 
GUI, SIPEC:SegNet has to be trained and inference has to be performed on videos to be identity 503 
labeled. SIPEC:SegNet results can then be loaded from the GUI and overlaid with the original 504 
videos. Each box then marks an instance of the species that is to be labeled in green. For each 505 
animal, a number on the keyboard can be defined, which corresponds to the permanent ID of 506 
the animal. This keyboard number is then pressed, and the mask-focus jumps to the next mask 507 
until all masks in that frame are annotated. Subsequently, the GUI jumps to the next frame in 508 
either regular intervals or randomly throughout the video, as predefined by the user. Once a 509 
predefined number of masks is reached, results are saved, and the GUI is closed. 510 

SIPEC top-down workflow. For a given image, if we assume that N individuals (with N the 511 
total number of animals or less) are in the field of view (FOV), the output of SIPEC:SegNet is 512 
N segmentations or masks of the image. This step is mandatory if the analysis is for multiple 513 
animals in a group since subsequent pipeline parts are applied to the individual animals. Based 514 
on the masks, the individual animals' center of masses (COMs) are calculated as a proxy for 515 
the animals' 2D spatial positions. Next, we crop the original image around the COMs of each 516 
animal, thus reducing the original frame to N COMs and N square-masked cutouts of the 517 
individuals. This output can then be passed onto other modules. 518 

SIPEC:SegNet network architecture and training. SIPEC:SegNet was designed by 519 
optimizing the Mask R-CNN architecture. We utilized a ResNet101 and feature pyramid 520 
network (FPN)46 as the basis of a convolutional backbone architecture. These features were fed 521 
to the region proposal network (RPN), which applies convolutions onto these feature maps and 522 
proposes regions of interest (ROIs). Subsequently, these are passed to a ROIAlign layer, which 523 
performs feature pooling, while preserving the pixel-correspondence in the original image. Per 524 
level of this pyramidal ROIAlign layer, we assign an ROI feature map from the different layers 525 
of the FPN feature maps. Multiple outputs are generated from the FPN, one of which is 526 
classifying if an animal is identified. The regressor head of the FPN returns bounding-box 527 
regression offsets per ROI. Another fully convolutional layer, followed by a per-pixel sigmoid 528 
activation, performs the mask prediction, returning a binary mask for each animal ROI. The 529 
network is trained using stochastic gradient descent, minimizing a multi-task loss for each ROI: 530 

L   𝐿 𝐿 𝐿  531 

where 𝐿  is the average binary cross-entropy between predicted and ground truth 532 
segmentation mask, applied to each ROI. 𝐿  is a regression loss function applied to the 533 

coordinates of the bounding boxes, modified to be outlier robust as in the original Fast R-CNN 534 
paper47. 𝐿  is calculated for each of the proposed ROIs (or anchors) as a logarithmic loss of 535 
non-animal vs animal. The learning rate was adapted by an animal specific schedule and 536 
training was done iteratively, by first training the output layers for some epochs and then 537 
incrementally including previous blocks in the training process. SIPEC:SegNet outputs 538 
segmentation masks and bounding boxes to create cutouts or masked cutouts of individual 539 
animals to be used by one of the downstream modules. 540 
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SIPEC:IdNet network architecture and training. SIPEC:IdNet was based on the DenseNet 541 
architecture28 for frame-by-frame identification. It consists of 4 dense blocks, which consist of 542 
multiple sequences of a batch normalization layer, a ReLU activation, and a convolution. The 543 
resulting feature maps are concatenated to the outputs of the following sequences of layers 544 
(skip-connections). The resulting blocks are connected through transitions, that are 545 
convolutional followed by pooling layers. After the last dense block, we connect an average 546 
pooling layer to a Dropout48 layer with a dropout rate of 0.5 followed by the softmax 547 
classification layer. For the recurrent SIPEC:IdNet, we remove the softmax layer and feed the 548 
output of the average pooling layers for each time point into a batch normalization layer49 549 
followed by 3 layers of bidirectional gated recurrent units29,30 with leaky ReLU activation50,51 550 
(alpha=0.3) followed by a Dropout48 layer with rate 0.2 followed by the softmax layer. The 551 
input for SIPEC:IdNet is the output cutouts of individuals, generated by SIPEC:SegNet (for the 552 
single-animal case background-subtracted thresholding and centered-cropping would also 553 
work). For the recurrent case, the masks of past or future frames are dilated with a frames per 554 
second (FPS) dependent factor that increases with distance in time in order to increase the field 555 
of view. We first pre-trained the not-recurrent version of SIPEC:IdNet using Adam52 with an 556 
lr=0.00025, a batch size of 16 and using a weighted cross-entropy loss. We used a learning rate 557 
scheduler in the following form: 558 

𝐿  (2) 559 

where E stands for epoch, using a k=1.5. Subsequently, we removed the softmax layer and 560 
fixed the network's weights. We then trained the recurrent SIPEC:IdNet again using Adam52 561 
and an lr=0.00005, k=1.25 and a batch size of 6.  562 

SIPEC:BehaveNet network architecture and training. SIPEC:BehaveNet was constructed 563 
as a raw-pixel action recognition network. It consists of a feature recognition network that 564 
operates on a single frame basis and a network, which integrates these features over time. The 565 
feature recognition network (FRN) is based on the Xception32 architecture, consisting of an 566 
entry, middle, and exit flow. The entry flow initially processes the input with convolution and 567 
ReLU blocks. Subsequently, we pass the feature maps through 3 blocks of separable 568 
convolution layers, followed by ReLU, separable convolution, and a max-pooling layer. The 569 
outputs of these 3 blocks are convolved and concatenated and passed to the middle flow.  The 570 
middle flow consists of 8 blocks of ReLU layers followed by a separable convolution layer. 571 
The Exit receives the feature maps from the middle flow and passes it one more entry-flow-572 
like block, followed by separable convolution and ReLU units. Finally, these features are 573 
integrated by a global average pooling layer , followed by a dense layer and passed through the 574 
softmax activation. This FRN was first pre-trained on a frame-by-frame basis using an 575 
lr=0.00035, gradient clipping norm of 0.5, and batch size=36 using the Adam52 optimizer. We 576 
reduced the original Xception architecture by the first 17 layers for mouse data to speed up the 577 
computation and reduce overfitting. After training the FRN, the outputting dense and softmax 578 
layers were removed, and all weights were fixed for further training. The FRN-features were 579 
integrated over time by a non-cause Temporal Convolution Network33. It is non-causal because, 580 
for classification of behavior at time point t, it combines features from [t-n,t+n] with n being 581 
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the number of timesteps, therefore looking backward in time and forward. In this study, we 582 
used an n of 10. The FRN features are transformed by multiple TCN blocks of the following 583 
form: 1D-Convolution followed by batch normalization, a ReLU activation and spatial dropout. 584 
The optimization was performed using Adam52 as well with a learning rate of 0.0001 and a 585 
gradient clipping norm of 0.5, trained with a batch size of 16. 586 

Loss adaptation. To overcome the problem of strong data imbalance (most frames are 587 
annotated as 'none', i.e. no labeled behavior), we used a multi-class adaptation technique Focal 588 
loss53, commonly used for object detection, and adapt it for action recognition, to discount the 589 
contribution of the background class to the overall loss: 590 

𝐿 𝛼 1 𝑝 log 𝑝  591 

We used a gamma = 3.0 and an alpha = 0.5. For evaluation, we used the commonly used F1 592 
metric to assess multi-class classification performance while using Pearson Correlation to 593 
assess temporal correlation. 594 

SIPEC:PoseNet network architecture and training. Combined with SIPEC:SegNet we can 595 
perform top-down pose estimation with SIPEC:PoseNet. That means, instead of the pose 596 
estimation network outputting multiple possible outputs for one landmark, corresponding to 597 
different animals, we can first segment different animals and then run SIPEC:PoseNet per 598 
animal on its cropped frame. In principle, every architecture can now be run on the cropped 599 
animal frame, including DLC2. The SIPEC:PoseNet architecture is based on an encoder-600 
decoder design40. In particular, we used EfficientNet41 as a feature detection network for a 601 
single frame. Subsequently, these feature maps are deconvolved into heatmaps that regress 602 
towards the target location of that landmark. Each deconvolutional layer is followed by a batch 603 
normalization layer and a ReLU activation function layer. For processing target images for 604 
pose-regression, we convolved pose landmark locations in the image with a 2D Gaussian 605 
kernel. Since there were many frames with an incomplete number of labels, we defined a 606 
custom cross-entropy-based loss function, which was 0 for non-existing labels. 607 

𝐿
𝐶𝑟𝑜𝑠𝑠𝐸𝑛𝑡𝑟𝑜𝑝𝑦

0, 𝑖𝑓 𝑙𝑎𝑏𝑒𝑙𝑠 𝑑𝑜𝑒𝑠 𝑛𝑜𝑡 𝑒𝑥𝑖𝑠𝑡 608 

Combined Model. To test performance effects of doing a pose-estimation-based classification 609 
in conjunction with SIPEC:BehaveNet, we pre-trained SIPEC:PoseNet (with classification 610 
layer on top) as well as SIPEC:BehavNet individually. Subsequently removed the output layers 611 
and fixed the weights of the individual networks and trained a joint output model, which 612 
combined inputs of each stream followed by a batch normalization layer, a dense layer (64 613 
units), and a ReLU activation layer. The resulting units were concatenated into a joint tensor 614 
followed by a batch normalization layer, a dense layer (32 units), and a ReLU activation layer. 615 
This layer was followed by a dense layer with 4 units for the 4 behavioral classes and softmax 616 
activation function. This combined model was trained using Adam52 with a lr=0.00075. We 617 
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further offer to use optical flow as an additional input, which has been shown to enhance action 618 
recognition performance54. 619 

Implementation and Hardware. For all neural network implementations, we used 620 
Tensorflow55 and Keras56. Computations were done on either NVIDIA RTX 2080 Ti or V100 621 
GPUs.  622 

3D location labeling. To annotate the 3D location of a primate, we firstly create a precise 623 
model of the physical room (Supp. Fig. 8) using Blender. For a given mask-cutout of a primate, 624 
we place an artificial primate at an approximate location in the 3D model. We can then directly 625 
read out the 3D position of the primate. 300 samples are annotated, covering the most frequent 626 
parts of the primate positions. 627 

3D location estimation. To regress the animal positions in 3D, we trained a manifold 628 
embedding using Isomap45 using the mask size (normalized sum of positively classified pixels), 629 
the x and y pixel positions and their pairwise multiplications as features. We used the resulting 630 
6 Isomap features, together with the inverse square root of the mask size, mask size and x-y-631 
position in pixel space to train an ordinary least squares regression model to predict the 3D 632 
position of the animal. 633 

Metrics used. Abbreviations used: Pearson – Pearson Correlation, RMSE – Root mean squared 634 
error, IoU – intersection over union, mAP – mean average precision, dice – dice coefficient. 635 

𝑃𝑒𝑎𝑟𝑠𝑜𝑛
∑ 𝑥   �̅� 𝑦   𝑦

∑ 𝑥   �̅� ∑ 𝑦   𝑦
 636 

𝑅𝑀𝑆𝐸  
∑ 𝑦 𝑦

𝑁
 637 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛  
𝑇𝑃

𝑇𝑃  𝐹𝑃
 638 

𝑟𝑒𝑐𝑎𝑙𝑙  
𝑇𝑃

𝑇𝑃  𝐹𝑁
 639 

Where TP denotes True Positives, FP False Positives, TN True Negatives, and FN False 640 
Negatives. 641 

 642 

𝐹1  2
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛  𝑟𝑒𝑐𝑎𝑙𝑙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛  𝑟𝑒𝑐𝑎𝑙𝑙
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𝐼𝑜𝑈 𝑀 ,𝑀
𝑀 ⋂𝑀
𝑀 ⋃𝑀

 644 

Where 𝑀  denotes the ground truth mask and 𝑀  the predicted one.  We now calculate the 645 
mAP for detections with an IoU > 0.5 as follows: 646 

𝑚𝐴𝑃   𝒓𝒏 𝟏 𝒓𝒏  𝝆𝒊𝒏𝒕𝒆𝒓𝒑 𝒓𝒏 𝟏  647 

With 648 

𝜌 𝑟 𝑚𝑎𝑥
̃ : ̃

𝜌 �̃�  649 

Where 𝜌 𝑟  denotes precision measure at a given recall value. 650 

𝑑𝑖𝑐𝑒  
2 ∗ 𝑀 ⋂𝑀
|𝑀 | |𝑀 |

 651 
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Supplementary 762 

 763 

 764 
Supplementary Fig. 1 | Segmentation annotation illustration. An exemplary frame of mice 765 
in OFT with manually annotated outlines. 766 
 767 

 768 
Supplementary Fig. 2 | Mouse single segmentation. For mice, SIPEC:SegNet performance 769 
in mAP, dice and IoU for single mouse as a function of the number of labels. The lines indicate 770 
the means for 5-fold CV while circles, squares, triangles indicate the mAP, dice, and IoU, 771 
respectively, for individual folds. All data is represented by mean, showing all points. 772 
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 780 
Supplementary Fig. 3 | Identification Graphical User Interface. Mask-box results from 781 
SIPEC:SegNet is overlaid over frames in blue and can be labeled one by one. The current box 782 
to be labeled is in green. A simple keyboard input scheme is provided within the GUI. Names 783 
of individuals and the number of masks to be labeled can be set by the user. 784 
 785 
 786 

 787 
Supplementary Fig. 4 | Example frames of the 8 distinct mice. 788 
 789 
 790 
 791 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 11, 2022. ; https://doi.org/10.1101/2020.10.26.355115doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.26.355115
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 792 
 793 

 794 
Supplementary Fig. 5 | Identification performance of mice across days and interventions. 795 
Identification accuracy across days for models trained on day 1. While the performance for the 796 
day the model is trained on is very high it drops when tested on day 2, but is still significantly 797 
above chance level. When tested on day 3, after a forced swim test intervention, the 798 
performance drops significantly. All data is represented by mean, showing all points. 799 
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 802 
Supplementary Fig. 6 | Identification of typical vs difficult frames. a) Very difficult 803 
exemplary frames, which are also beyond human single-frame recognition, are excluded for the 804 
‘typical’ frame evaluation. b) Exemplary frames used for the ‘typical’ frame analysis. c) 805 
Identification performance is significantly higher on ‘typical’ frames than on all frames. All 806 
data is represented by mean, showing all points. 807 
 808 

 809 
 810 
 811 
 812 

 813 
 814 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 11, 2022. ; https://doi.org/10.1101/2020.10.26.355115doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.26.355115
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 815 
Supplementary Fig. 7 | Additional behavioral evaluation. a) Overall increased F1 score is 816 
caused by an increased recall in case of grooming events and precision for unsupported rearing 817 
events. b) Comparison of F1 values as well as Pearson Correlation of SIPEC:BehaveNet to 818 
human-to-human performance as well as combined model. Using pose estimates in conjunction 819 
with raw-pixel classification increases precision in comparison with solely raw-pixel 820 
classification while suffering from a decrease in recall. All data is represented by a Tukey box-821 
and-whisker plot, showing all points. 822 
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 827 
 828 
Supplementary Fig. 8 | 3D model used for annotation of primate 3D-location data. 829 
 830 

 831 
Supplementary Fig. 9 | Comparison tracking and identification. a) Tracking describes the 832 
process of following each individual animal in a group of animals within one session in a given 833 
field of view. b) Identification describes the ability to identify an individual from a single 834 
frame or a few consecutive frames across multiple sessions that could be apart hours, days, or 835 
months. This entails difficulties such as varying lighting conditions, occlusions, changes in the 836 
appearance of animals over time. 837 
 838 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 11, 2022. ; https://doi.org/10.1101/2020.10.26.355115doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.26.355115
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 839 
Supplementary Fig. 10 | SIPEC IdNet Architecture. 840 
 841 
 842 
 843 
 844 
 845 
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 846 
Supplementary Fig. 11 | SIPEC PoseNet Architecture. 847 
 848 

 849 
Supplementary Fig. 12 | SIPEC SegNet Architecture. 850 
 851 
 852 
 853 
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 854 
Supplementary Fig. 13 | SIPEC BehaviorNet Architecture. 855 
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 856 
Supplementary Fig. 14 | 3D depth estimates based on mask size. The inverse of the square 857 
root of the mask size (based on SIPEC:SegNet output) highly correlates with the depth of the 858 
individual in 3D space. 859 
 860 
 861 

 862 
Supplementary Fig. 15 | Comparison of counts of behaviors between SIPEC:BehaviorNet, 863 
pose estimation based approach and human raters. Unsupported and supported rears and 864 
grooming events were counted per video for n=20 different mice videos. Behaviors were 865 
integrated over multiple frames, as described in Sturman et al.14. Behavioral counts of 3 866 
different human expert annotators were averaged (in legend as ‘human ground truth’). No 867 
significant differences were found for comparing the number of behaviors between 868 
SIPEC:BehaviorNet and human annotators or Sturman et al.14 and human annotators (Tukey’s 869 
multiple comparison test). All data is represented by mean, showing all points. 870 
 871 
 872 
Species Network Training 

(seconds/epoch
) 

Epoch
s 

Total 
trainin
g (min) 

Inference 
(seconds/frame
) 

Primate SegNet 133 100 222 0.4 
Primate IdNet(single frame) 134 10 22 0.35 
Primate IdNet(recurrent) 60 20 20 0.6 
Primate PoseNet 34 900 510 0.07 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 11, 2022. ; https://doi.org/10.1101/2020.10.26.355115doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.26.355115
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

Primate BehaveNet(single 
frame) 

15 50 5 0.08 

Primate BehaveNet(recurren
t) 

190 10 31 0.6 

Mouse SegNet 40 100 67 0.14 
Mouse(@100
0 frames) 

IdNet(single frame) 432 10 72 0.1 

Mouse(@100
0 frames) 

IdNet(recurrent) 502 10 83 0.19 

Mouse PoseNet 20 2450 817 0.03 
Mouse BehaveNet(single 

frame) 
547 10 91 0.05 

Mouse BehaveNet(recurren
t) 

1163 10 194 0.2 

Supplementary Tab. 1 | Training and inference times 873 
All measures are done with an NVIDIA RTX 2080 Ti and represent average values. 874 
 875 
 876 
Supplementary Video 1 | Illustration of SIPEC:SegNet and SIPEC:IdNet in primate 877 
homecage environment. 878 
Short exemplary video of behaving primates in their homecage environment. SIPEC:SegNet is 879 
used to mask different primates and SIPEC:IdNetis used to identify them. During obstructions, 880 
the identity of a primate can alter but SIPEC:IdNet quickly recovers the correct identity over 881 
the next frames, as it becomes more visible and therefore better identifiable. 882 
 883 
Supplementary Video 2 | Comparison of SIPEC and idtracker.ai for mice. 884 
Comparison for tracking 4 mice by idtracker.ai (Left) and by SIPEC(Right). We used publicly 885 
available data from idtracker.ai (https://drive.google.com/drive/folders/1Vua7zd6VuH6jc-886 
NAd1U5iey4wU5bNrm4) as well as idtracker.ai’s publicly available inference results 887 
(https://www.youtube.com/watch?v=ANsThSPgBFM) for a tracking comparison. Left video: 888 
The tracking of idtracker.ai exhibits prolonged label switching errors where the label of two or 889 
more animals gets swapped for some time. Right Video: Tracking is performed by 890 
SIPEC:SegNet in conjunction with greedy-mask matching to track the identities of animals. In 891 
this example video, SIPEC is more robust to these kinds of errors than idtracker.ai. (see also 892 
Supp. Video 4). 893 
 894 
Supplementary Video 3 | Tracking of 4 mice by SIPEC in an open-field test. 895 
The masks generated by SIPEC:SegNet in conjunction with greedy-mask matching are used to 896 
robustly track identities of four mice in an open-field test (see Methods).  897 
 898 
Supplementary Video 4 | SIPEC tracking over 52-minute video. 899 
We used publicly available data from idtracker.ai 900 
(https://drive.google.com/drive/folders/1Vua7zd6VuH6jc-NAd1U5iey4wU5bNrm4) and 901 
tracked 4 mice. The masks generated by SIPEC:SegNet in conjunction with greedy-mask 902 
matching are used to robustly track identities of four mice in an open-field test (see Methods). 903 
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