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Abstract5

Esophageal adenocarcinoma (EAC) is a rare but lethal cancer with rising incidence in several global hotspots6

including the United States. The five-year survival rate for patients diagnosed with advanced disease can be as low7

as 5% in EAC, making early detection and preventive intervention crucial. The current standard of care for EAC8

targets patients with Barrett’s esophagus (BE), the main precursor to EAC and a relatively common condition in9

adults with chronic acid reflux disease. Preventive care for EAC requires repeated surveillance endoscopies of BE10

patients with biopsy sampling, and can be intrusive, error-prone, and costly. The integration of minimally-invasive11

subsurface tissue imaging in the current standard of care can reduce the need for exhaustive tissue sampling and12

improve the quality of life in BE patients. Effective adoption of subsurface imaging in EAC care can be facilitated13

by computer-aided detection (CAD) systems based on deep learning. Despite their recent successes in lung and14

breast cancer imaging, the development of deep neural networks for rare conditions like EAC remains challenging15

due to data scarcity, heavy bias in existing datasets toward non-cases, and uncertainty in image labels. Here we16

explore the use of synthetic datasets–specifically data derived from simulations of optical back-scattering during17

imaging– in the development of CAD systems based on deep learning. As a proof of concept, we studied the18

binary classification of esophageal OCT into normal squamous and glandular mucosae, typical of BE. We found that19

deep convolutional networks trained on synthetic data had improved performance over models trained on clinical20

datasets with uncertain labels. Model performance also improved with dataset size during training on synthetic data.21

Our findings demonstrate the utility of transfer from simulations to real data in the context of medical imaging,22

especially in the severely data-poor regime and when significant uncertainty in labels are present, and motivate23

further development of transfer learning from simulations to aid the development of CAD for rare malignancies.24

Index Terms25

computer-aided detection; cancer imaging; transfer learning; simulation; deep learning.26

I. INTRODUCTION27

Esophageal adenocarcinoma (EAC), a cancer of the distal esophagus, is a public health concern in several countries28

including the United States due to its quickly rising incidence and poor prognosis. The current 5-year survival29

rate for EAC is ∼20% in the US and drops to <5% for patients diagnosed with late-stage disease, calling to30

attention the need for improved preventive screening of at-risk patients [1]. Population surveillance for EAC targets31

Barrett’s esophagus (BE), or pre-malignant intestinal metaplasia of the distal esophageal mucosa. BE affects an32

estimated 2-5% of the US adult population [2], a small fraction of whom develop cancer. Preventive screening for33

EAC is achieved by repeated surveillance endoscopies that rely on a combination of visual examination, mucosal34

biopsies, and endomicroscopy [1], [3]. Despite efforts to optimize EAC surveillance for early detection, malignant35

progressions in BE (i.e. dysplasia) remain difficult to detect with existing practices, and a balance between diagnostic36

yield, cost-effectiveness, and intrusiveness of screening is yet to be reached. Advanced imaging modalities like37

optical coherence tomography (OCT) are emerging technologies that may improve the accuracy and reduce the38

intrusiveness of the standard of care in endoscopic EAC surveillance [4], [5]. Subsurface tissue imaging with OCT39

provides rich depth-resolved structural information on the entire distal esophagus. However, the difficulty associated40
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with interpreting this data under time constraints is a barrier to its effective integration with existing procedures,41

especially by non-expert endoscopists outside specialized care centers.42

Deep learning (DL) for computer-aided detection (CAD) has recently led to breakthroughs for similar surveillance43

targets in screening mammography for breast cancer [6], low-dose chest CT for lung cancer [7], and OCT-based44

diagnostics in ophthalmology [8], [9], often achieving similar performance to human raters [10]. Artificial intelligence45

(AI) systems for CAD can improve cancer diagnostics by increasing the accuracy of image-based early detection,46

reducing the required human workload in surveillance programs, and minimizing the morbidity of preventive47

interventions [6]. Advances in early detection can directly impact patient outcomes and improve the effectiveness48

and cost-effectiveness of population surveillance. The potential benefits are similarly multi-fold to the standard49

of care for BE, where the likelihood of missed malignancies, over-screening, and propensity for risk-averse but50

aggressive interventions like complete eradication of the affected esophageal mucosa are currently problematic.51

Similar to many other examples in medical imaging, the application of DL to OCT imaging of the esophagus for52

cancer surveillance is limited by data scarcity–that is, the difficulty of curating sizable datasets with reliable and53

balanced labels [11].54

Transfer learning (i.e. the use of pre-trained model architectures to develop image classifiers [12]), has recently been55

adopted to overcome data scarcity limitations in medical imaging for applications in radiology [13], ophthalmology56

[14], and brain imaging [15], [16]. The accessibility of computer vision benchmarking datasets such as ImageNet57

have made them a popular choice for pre-training, but it is not clear if transfer from natural to medical datasets58

is optimal in deep convolutional architectures [17]. Medical imaging datasets are generated by measurements for59

specific materials over precisely-selected bands of the electromagnetic spectrum and under controlled experimental60

conditions. Benchmarking datasets instead tend to span many scales, materials, light sources, and devices, and61

cluster around the visible spectrum. Another point of divergence is the existence of thousands versus a handful of62

labels in the classification problems defined for the two types of data.63

Here, we make an argument in favor of fine-tuning DL models on synthetic datasets derived from simulations of64

the imaging process. Such a dataset can be constructed based on knowledge of tissue composition and structure65

in cases and controls, subsurface light scattering, and the process of signal construction in an imaging method of66

interest. We explore this idea using an esophagus OCT dataset collected at the Columbia University Irving Medical67

Center between 2014 to 2018. We focus on BE as the first structural transition along the EAC pathway, where the68

stratified epithelium of the healthy esophagus is replaced with a glandular epithelium that mimics the gastric and69

intestinal morphologies. Microscopic examination of this lesion reveals a complete restructuring of the affected70

tissue into a glandular mucosa, resulting in a loss of clear lamination between the epithelium and the stroma, which71

is reflected in the OCT signal [5].72

We frame our analysis as binary classification of OCT images into metaplastic and normal segments using instances73

of the ResNet-18 architecture starting with ImageNet weights. Model performance was evaluated after fine-tuning on74

(i) synthetic data and (ii) clinical data with noisy annotations inferred from electronic health records (no retrospective75

expert annotations). Both models were evaluated using an external validation set with retrospective expert annotations.76

Fine-tuning on the synthetic dataset led to significant improvement in performance above chance. In comparison,77

fine-tuning on the clinical dataset with noisy annotations led to marginal improvement over chance. We discuss these78

results in the context of automatic segmentation of esophagus OCT into normal and metaplastic regions. Finally, the79

prospects for improving the proposed pipeline by increasing the fidelity of physics-based data synthesis are briefly80

discussed as a template for future work. We argue that transfer learning from simulations enables the integration of81

knowledge of disease from disparate sources, modalities, and scales, and improve model development for CAD in82

data-poor settings.83

II. METHODS84

A. Clinical dataset85

1) Patients: We identified a retrospective cross-sectional cohort of patients with both (i) confirmed diagnosis of BE,86

and (ii) at least one upper endoscopy encounter with OCT imaging at the Columbia University Irving Medical87
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Center (CUIMC). For each patient we retrieved volumetric OCT scans of the distal esophagus and the associated88

hospital electronic health records (EHR), including diagnoses and treatment histories, gastrointestinal endoscopy89

reports, and the pathology reports describing biospecimens that were collected and analyzed during the course90

of surveillance and treatment. We carried out all data curation and management according to the rules set by a91

CUIMC Institutional Review Board to ensure the privacy of human subjects and fair use of data.92

93

2) OCT scans: We obtained 3D OCT scans and associated DICOM metadata for each encounter directly from a94

swept-source instrument (NvisionVLE® Imaging System, NinePoint Medical, Bedford, MA) in collaboration with95

the Division of Digestive and Liver Diseases at CUIMC. We identified three types of scans: full scans, which96

covered the entire tissue segment without manual guidance, and manual scans, which covered areas of interest to97

the endoscopist, and preparatory ‘scout’ scans. Each volumetric scan typically resolved part of the stomach or a98

hiatial hernia below the GE junction, to an extent that varied case by case. Full scans contained 1200 cross-sectional99

B-scans (hereafter ‘frames’), and the stack height varied for manual scans. Each frame was a 2048 × 4096 image100

recorded in 8-bit grayscale. We analyzed the resulting dataset on the basis of subdivisions of frames as described101

below. The instrument employed balloon catheters to dilate and immobilize the esophageal wall during image102

acquisition. The balloon diameters and operative pressures showed variation over the period of data acquisition (Fig.103

3, Supplementary Information). In each frame, the balloon cross-section was discernible as a line of bright pixel104

intensity marking the boundary between the tissue surface and the esophageal lumen. The balloon catheter also105

provided a (longitudinal) registration watermark that served as the reference for the measurement of circumferential106

positions. We normalized all 2048 × 4096 frames prior to the analysis to flatten the epithelial surface and remove107

the (dark) lumen using the balloon cross-section pixel intensity as the threshold.108

109

3) Annotations derived from EHR: We thoroughly examined the pathology reports with readings describing110

biospecimens to deduce a set of corresponding labels and sampling locations for each tissue sample. To generate111

the final labels, we successively reduced an exhaustive dictionary of terms that had been used in the reports to112

describe the biospecimens (Table II, Supplementary Information). This process resulted in four primary clinical113

phenotypes of interest: NORMAL indicated an absence of evidence supporting a diagnosis of intestinal metaplasia,114

dysplasia, or cancer (i.e. the stratified epithelium was preserved). METAPLASIA indicated endoscopic and pathology115

findings supporting a diagnosis of Barrett’s metaplasia. DYSPLASIA indicated pathology findings indicating disease116

progression in the form of glandular dysplasia. CANCER indicated observations of malignant neoplasia of any117

clinical stage, including intramucosal carcinomas, cancers with submucosal invasion, etc. Additionally, we marked118

stomach tissue samples under STOMACH and all other under OTHER. Tissue sampling locations had been reported119

in GI endoscopy reports as pairs of longitudinal (‘distance to incisors’) and angular (‘clock’) positions. We asked120

two raters to independently match the pathology readings with ROIs in the scans by first matching the entries in121

pathology reports with the pair of longitudinal and angular values provided in the GI endoscopy reports, and then122

converting the recordings to approximate regions of interest (ROIs) in the scan’s coordinate system. For a subset of123

patients, a laser marking device had been used to mark the precise location of the tissue sample, enabling improved124

matching of records with ROIs.125

126

4) External validation set: We evaluated the performance of image classifiers using an independently annotated set127

of frames that was prepared retrospectively in collaboration with an expert gastroenterologist and frequent user of128

the OCT instrument (CJL). To generate this set, we asked the rater to assign annotations and a confidence score129

between 50-100% to the regions within a set of pre-selected frames that were suspected for METAPLASIA (cases)130

or NORMAL (controls). We then subdivided this set of annotated frames into patches of 128×256 pixels and used131

them as the primary benchmark for model performance evaluation.132

B. Image classification with deep convolutional networks133

We performed image classification experiments on 128×256 8-bit grayscale patches using instances of the ResNet-18134

architecture starting with ImageNet weights [18]. We evaluated all model instances after 40 epochs of training with135

a learning rate of 3 ×10−6, learning rate decay over 7 epochs of 0.5, and batch size of 600, and repeated each run136

with 100 model instances that were identical except in the last fully connected layer, which we initiazed randomly137
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for each run. In our main analysis, we compared model performance after training on two independent datasets: (i)138

subsets of the clinical dataset with annotations deduced from pathology reports, and (ii) a synthetic dataset derived139

from simulations, both prepared using a 70/30 training/testing split. We measured model performance using the area140

under the curve of the receiver operating characteristic curve (ROC AUC). In this study, we report the results of141

binary supervised classification of patches into METAPLASIA (cases) or NORMAL (controls).142

C. Synthetic data143

Fig. 1. Overview of the model development pipeline: Instances of ResNet-18 with ImageNet weights are trained on synthetic data derived
from simulations of light scattering in model tissue geometries. The resulting model is used to classify clinical OCT data into patches
indicating either a normal squamous epithelium (NORMAL) or Barrett’s esophagus (METAPLASIA).

Subsurface imaging for EAC surveillance targets the esophageal mucosa (EM). The EM is a multilayered structure144

consisting of a stratified epithelium, stroma, and a muscularis layer. A clear stratification between the epithelium and145

stroma is present in NORMAL and partially lost in METAPLASIA. In the following, we outline a set of simulation146

experiments conducted to approximate patches of NORMAL and METAPLASIA in our dataset on basis of this147

structural difference using simple multilayered representations of the EM. Clinical OCT frames are constructed out148

of groups of adjacent axial optical reflectivity profiles (A-lines). Each OCT frame encodes structural information149

as variations in optical reflectivity in the axial and transverse directions. Simulation of OCT data can therefore150

be broadly considered as the problem of computing a series of A-lines for given spatial distributions of tissue151

constituents. Simulation of OCT A-lines is the focus of computational optical imaging (COI), a research program152

dedicated to the simulation of light scattering in biological tissue and signal localization in imaging instruments153

based on first principles or approximate sampling methods as described in the following (e.g. [19], [20]).154

155
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1) OCT data structure and artifacts: Each OCT scan of the lower esophagus is an nr × nθ × nz matrix156

R = Rijk of voxel intensities that discretizes the annulus bound by r0 ≤ r ≤ r0 + nr∆`r and 0 ≤ z ≤ nz∆`z157

with voxel resolutions ∆`voxel = (∆`r,∆`θ,∆`z), where r0 is the radius of the inflated balloon catheter. A158

volumetric scan is interpreted as a stack of nz frames (or B-scans) Rk = Rij,k, which are in turn composites159

of nθ axial reflectivity profiles (A-lines) Rkj = Rkj,i. The instrument records R one A-line at a time during160

a helical pull-back of the endoscopic probe with two degrees of freedom that control the longitudinal (∆`z)161

and transverse (∆`θ) voxel resolutions, and the coherent length of the light source sets the axial resolution162

(∆`r). We assume that nr, nθ, and nz are constant across experiments. Ideally, the instrument’s light source163

and fiber optic probe coincide with the centroid of the catheter’s cross-section during image acquisition, but a164

persistent offset is often present in practice, which may affect the total imaging depth. Each frame is susceptible to165

motion artifacts due to in-plane displacements of the endoscopic probe at fixed z. The final image also carries166

shot noise that is introduced as the signal is transmitted through the fiber optic probe and the optical detector’s circuitry.167

168

2) Simulated optical back-scattering: To estimate the A-lines, we adopted a mesh-based Monte Carlo (MC)169

algorithm to simulate subsurface scattering in model tissue geometries with predefined optical properties [21]–[23].170

The MC method provides an estimate of the spatial distribution of the energy of back-scattered radiation via171

sampling a set of possible trajectories of individual ‘photon packets’ as they interact with mesh elements. Photons are172

launched from a source and collected by a probe that employs a threshold on the incidence angle of back-scattered173

packets. Each recorded packet is specified by an optical depth `n (eqv. to one half the optical path length) and a174

dimensionless measure of energy, wn (weight). Packet trajectories are determined by three types of mesh-photon175

interactions: (i) specular (Fresnel) reflection at the mesh surface, (ii) partial loss of energy proportional to a176

local adsorption coefficient, µa, and (iii) scattering. The former is calculated from the differences in the real part177

of the refractive index n [20]. The latter is specified by the scattering coefficient, µs, and a scattering phase178

function, p(s′ → s) = p(θ, ϕ), i.e. the probability density of scattering into a direction s given current direction s′,179

parametrized over the polar and azimuthal scattering angles θ and ϕ at the site of scatter. In biomedical optics, the180

dependence of p(θ, ϕ) on ϕ and θ are typically approximated by the continuous uniform and the Henyey-Greenstein181

(HG) probability density functions, respectively [24]. The HG function is adjusted by a single variable, −1 ≤ g ≤ 1,182

i.e. the local anisotropy, where -1 and +1 specify dominant backscattering and forward scattering, respectively.183

184

3) Signal localization: Part of the back-scattered radiation that is incident on the instrument’s fiber optic probe is185

collected and converted into an electric current by an optical detector, from which A-lines are derived. Considering186

transport in a coordinate system where tissue depth is parameterized by r, this process can be simulated using an187

indicator function I(r, n) that enforces the probe’s radial and angular thresholds on the n-th back-reflected packet,188

and discretizes the axial span with a resolution set by the coherence length `c of the light source [22]:189

I(r, n) =

{
`, `c < ‖∆sn − 2rmax‖, dn < dmax, θz,n < θmax, ‖∆sn − 2r‖ < `c

0, otherwise,
(1)

where dmax and θmax are the positional and angular thresholds of the probe. In Eq-1, dn is measures the distance190

between the probe and a reflected packet, ∆sn = 2`n measures the optical path of the n-th back-reflected packet,191

θz,n is the angle of the packet’s trajectory with respect to the r-axis of the lab reference frame, and rmax is the192

maximum depth reached by the photon packet. The depth-resolved reflectance is then calculated as193

R(r) =
1

N

N∑
n=1

I(z, n)Lnwn, (2)

The correction factor Ln is a likelihood ratio that compensates for biased scattering in the calculation of `n and wn.194

We introduced biased scattering artificially as discussed in [22], [24], [25] to speed up the calculation of R, since195

most tissue materials have anisotropies close to unity (i.e. dominantly forward scattering), requiring a prohibitively196

large number of packets to be simulated in order to generate a reliable signal. The signal associated with Eqs 1 and197
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TABLE I
SUMMARY STATISTICS OF THE CUIMC PATIENT COHORT AND ASSOCIATED OCT AND PATHOLOGY DATASETS.

Variable Values

Data period 2014-2018
Number of patients 189
Age 70.0 ± 9.4
Sex (% male) 130/188 (69.2)

High-grade dysplasia (%) 83/189 (43.9)
Malignant neoplasia (%) 24/189 (12.7)
Family history of GI cancers 19/189 (10.1)
Reflux esophagitis 49/189 (25.9)
Atrophic gastritis 31/189 (16.4)
Hiatial hernia (%) 127/189 (67.2)
Duodenitis (%) 11/189 (5.8)

Number of OCT scans 508
Full scans (%) 299/508 (58.9)
Manual scans (%) 147/508 (28.9)
Scout (test) scans (%) 62/508 (12.2)

Number of biospecimens 552
Biopsies (%) 527/552 (95.5)
Endoscopic mucosal resection (%) 12/552 (2.2)
Endoscpic submucosal dissection (%) 7/552 (1.3)
Number of laser markings 118

2 is an estimate of the back-reflected power distribution along the tissue depth, contributed by multiply scattered198

packets. A similar procedure gives the contribution of ballistic and semi-ballistic back-reflection events [22].199

200

4) Tissue structure: We treated the esophageal tissue as a composite of epithelial, stromal, and muscularis layers. The201

optical properties of each layer are specified as four scalar fields, n = n(r, θ, z), µa = µa(r, θ, z), µs = µs(r, θ, z),202

and g = g(r, θ, z), which are discretized using a tetrahedral mesh. In the simplest approximation, we can study the203

esophageal cross-section in the limit of vanishing displacement from a perfectly dilated reference configuration204

(here idealized as a multilayered annulus). We neglect the curvature of the annulus over segments corresponding to205

128×256 patches and assume material homogeneity in each layer. The choice of numeric values for µs, µa, g, and206

n is guided by published experimental work on the optical properties of gut mucosa over the spectral window of207

the OCT instrument (1250–1350 nm) [26]–[29].208

D. Simulations209

We implemented all classifiers in PyTorch and trained all models using a local NVIDIA Tesla GPU cluster. We used210

TetGen [30] to generate 3D tetrahedral meshes and an open-source implementation of the Monte Carlo method in211

CUDA C [22] to perform the subsurface scattering simulations on an NVIDIA Quadro P6000 card. We implemented212

all pipelines in Jupyter notebooks.213

III. RESULTS214

A. Patient population215

Table I provides a summary of the CUIMC patient population and associated pathology and imaging data. Patients216

met the inclusions criteria if they had a diagnosis of BE and at least one OCT scan of the lower esophagus. We217

identified a total of 189 BE patients, among whom 43.9% had progressed to BE dysplasia and 12.7% to cancer218

during their health history. Hiatial hernias were present in 67.2% of the patients.219
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Dataset Label Patients Sessions Scans Patches (%)

Train/Test NORMAL 6 6 6 102,816 (44%)
Train/Test METAPLASIA 29 30 34 132,992 (56%)
Valid NORMAL 16 16 16 742 (72.2%)
Valid METAPLASIA 12 12 12 286 (27.8%)
Sim I NORMAL - - - 12560 (50.2%)
Sim I METAPLASIA - - - 12440 (49.8%)

Sampling
Rate Training Testing Validation

0.0 0.4985 ± 0.0932 0.4947 ± 0.2094 0.4999 ± 0.0698
0.1 0.7792 ± 0.0192 0.8883 ± 0.0354 0.5646 ± 0.0902
0.3 0.9082 ± 0.0091 0.9939 ± 0.0033 0.6375 ± 0.0838
0.5 0.9455 ± 0.0064 0.9991 ± 0.0005 0.6651 ± 0.0520
0.7 0.9634 ± 0.0026 0.9997 ± 0.0001 0.6909 ± 0.0329
1.0 0.9757 ± 0.0021 0.9999 ± 5.26e-05 0.6980 ± 0.0499

Fig. 2. Model performance evaluation after fine-tuning on synthetic and clinical data (A; top left) Classification performance of
ResNet-18 with ImageNet weights over epochs of training on synthetic dataset I, and a clinical dataset with noisy annotations; (B; top right)
Classification performance on the validation set as a function of the sampling rate of the synthetic dataset during model training; (C; bottom
left) Overview of both training datasets and the validation set; (D; bottom right) Tabulated results corresponding to B.

B. Imaging dataset and annotations220

We obtained a total of 508 scans, of which 299 were full scans, covering an invariant 6 cm of tissue that coincided221

with the lower esophagus and gastric cardia. We excluded partial scans from the study. We assigned frame-by-frame222

annotations to each scan based on the indications extracted from pathology reports and the approximate locations of223

tissue samples in the corresponding scan as reported in the GI endoscopy reports. In deriving the annotations, we224

extracted and analyzed an exhaustive dictionary of descriptive terms from pathology reports, and reduced them to a225

small set of labels that indicated the extent of disease progression as described in the Supplementary Information226

(Table II). Measurement of longitudinal and angular positions of tissue samples were based on readings from227

the regular endoscopic probe. The large discrepancy in how precisely the regular endoscopic probe and the OCT228

catheter measured distances limited precise assignment of readings from pathology reports to the corresponding229

sampling locations in the scans. We therefore restricted the clinical training set to the subset of encounters in230

which at least one biospecimen had been collected with the aid of laser markings (118 in total). We assigned the231

corresponding annotation to the frames within a given distance from the laser marking (equal to typical dimensions of232

biopsies obtained using large-capacity forceps, cold forceps, endoscopic mucosal resection, or endoscopic submucosal233

dissection as indicated in the EHR). The resulting annotated ranges of frames constituted a training/testing dataset234

of 128×256 patches (Fig. 2-C). Significant variation and bias toward controls was present in the pathology dataset235

(Fig. 3, Supplementary Information).236

C. Simulation of OCT B-scans237

We designed the simulated as a set of 128×256 patches equally partitioned between the METAPLASIA and NORMAL238

labels. We adopted an idealized model geometry with three distinct layers to simulate each label, and approximated239

the scattering and adsorption coefficients and anisotropy of each layer based on the literature on optical imaging240

of gut mucosa in the 1250-1350 nm range of source wavelengths. In setting these parameters, we assumed the241

muscularis and stromal layers had the same optical properties in both labels, but the epithelial layer in METAPLASIA242
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had increased adsorption and scattering coefficients and decreased anisotropy compared with NORMAL. We then243

derived synthetic OCT A-lines from power distributions of back-scattered radiation using a mesh-based Monte Carlo244

light light scattering algorithm. The algorithm constructed image patches (i.e. subregions of OCT B-scans) one245

A-line at a time for 128 placements of the light source and probe over the model geometry and clipped to 256246

pixels in the axial direction. We augmented the resulting dataset by a factor of 10 by permuting a white noise247

floor in the range [15, 25] dB and re-scaling the total pixel intensity to [100, 200] dB, assuming a value of 255248

corresponded to the reflectance of the balloon catheter material.249

D. Classification accuracy250

We first trained a set of ResNet-18 instances with ImageNet weights on a clinical dataset comprised, respectively, of251

102,816 and 132,992 patches of NORMAL and METAPLASIA. We evaluated the classification accuracy of this model252

on the external validation set and observed generally poor performance over 40 train epochs as illustrated in Fig.253

2-A. As a comparator, we trained an independent set of ResNet-18 instances on a synthetic dataset comprised of ∼254

12,500 patches per label, also starting with ImageNet weights, and evaluated for classification accuracy using the255

validation set. Training on the synthetic dataset yielded a peak mean AUC ROC of ≈ 0.7 over 40 train epochs (Fig.256

2-A). We then repeated the experiments with synthetic data, this time varying the fraction of data used during model257

training between 0.0 and 1.0, using a dataset of white noise images as the negative control. Fig. 2-B illustrates the258

evolution in the mean and variance of the resulting AUC ROC as a function of the sampling rate, where mean259

performance shows a monotonous increase. Similarly, the variance in performance between different instances shows260

a decreasing trend.261

IV. DISCUSSION262

CAD systems based on models of computer vision employing deep learning rely on sizable and precisely annotated263

clinical datasets. The curation of such datasets is laborious as it may require extensive retrospective expert evaluation.264

These datasets may be further limited in size, heavily biased toward cases or controls, and scattered across different265

institutions for clinical conditions of low population prevalence. In this work, we have reported the use of synthetic266

imaging data to boost the performance of a deep classifier of epithelial disease in one such data-poor setting. We267

found that fine-tuning a pre-trained deep convolutional architecture on synthetic data derived from simulations of268

light scattering provided a performance advantage to fine-tuning on a (larger) clinical dataset with noisy labels.269

To the best of our knowledge, this work is the first to demonstrate transfer from simulated to clinical data in the270

context of biomedical imaging.271

In this study, the performance obtained from the model trained on clinical data was poorer than that obtained from272

the model trained on simulated data. We speculate that this discrepancy can be explained by persistent uncertainty273

in the labels of regions within a scanned volume. We have identified several contributing factors to this uncertainty,274

including limited spatial coverage of biopsy sampling, variation in biospecimen size, and imprecise measurement of275

longitudinal and angular positions corresponding to sampled regions within a scan. We expect the issues encountered276

here to be typical of similar datasets in other rare cancers and diseases. Transfer learning from simulations can be277

regarded as leveraging computation in a directed manner to address both (i) imprecise annotations, and (ii) imbalanced278

datasets, operating at a trade-off between fidelity and computational tractability. When scalable computations with279

properly motivated models are possible, they may reduce the burden of retrospective data surveys and enable the280

development of otherwise unreliable classifiers.281

We can expand the simulations performed in this study in a number of ways. Accounting for residual stress282

and thickness inhomogeneities [31] and deformations induced by the balloon catheter [32], [33] can improve283

the modeling of tissue configuration during imaging. Simulations of wave scattering and signal localization in284

OCT can be based on first-principles calculations using Maxwell’s equations, although this method is currently285

computationally prohibitive [19], [34], [35]. Explicitly accounting for light source geometry and signal localization286

in frequency-domain OCT in the Monte Carlo method may further improve the fidelity of the estimated OCT287

signal [36]. Efforts are currently underway to expand the implementation of the Monte Carlo to situations where288

significant spatial variation in the scattering phase function p(θ, ϕ) is expected [37], as is the case in glandular289

mucosa. Finally, material inhomogeneities inside each tissue layer can be accounted for using models of epithelial290
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morphogenesis [38], although simultaneous resolution of deformations due to small-scale and tissue-scale stresses291

requires a multiscale treatment that is yet to be developed. The mesh-based Monte Carlo method facilitates the292

integration of biomechanical modeling in the existing data generation pipeline.293

Among the priorities for future work is the resolution of inter-patient variability focusing on known biases in the294

target patient population. Candidates for BE surveillance present with tissue damage from long-term chronic reflux295

disease and epithelial alterations due to persistent esophagitis. Estimates of the optical properties in the control296

population may therefore require further adjustments for deviations from the healthy stratified squamous epithelium.297

Hiatial hernias were present in the majority of the patients in our cohort, requiring further examination of the298

differences between the esophageal and gastric mucosa, and those between the gastric and Barrett’s mucosa. To a299

first approximation, we aggregated all tissue states prior to the onset of glandular morphogenesis into one label300

in the present work. Similarly, we aggregated the states corresponding to glandular mucosae of the gastric and301

esophageal phenotypes. We expect the expansion of the set of labels considered in the classification problem and302

inverse modeling of optical properties to inform data generation to improve the performance of our pipeline.303

304

V. CONCLUSIONS305

Computational approaches to data augmentation represent a promising approach to overcoming data scarcity in the306

application of deep learning to diagnostic surveillance of rare conditions via tissue imaging. Physically-motivated307

computations that rely on clinical knowledge and mechanistic understanding of disease may provide an advantage308

over limited clinical datasets in data-poor settings. We demonstrated the utility of this approach for a proof-of-concept309

application to the classification of esophageal OCT.310
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VII. SUPPLEMENTARY INFORMATION404

TABLE II
(SUPPLEMENT) GLOSSARY OF TERMS EXTRACTED FROM PATHOLOGY REPORTS AND THEIR CORRESPONDENCE TO REDUCED LABELS
INDICATING THE UNDERLYING MICROANATOMY AND DISEASE STAGE. THE FINAL LABEL DESCRIBES THE ANNOTATION IN THE ABSENCE

OF ANY OTHER INDICATION.

Keyword Abbrv. Label

esophagitis ESGTS STRATIFIED EPITHELIUM
inflammation INF STRATIFIED EPITHELIUM
reflux esophagitis RFLX_ESGTS STRATIFIED EPITHELIUM
reactive features R STRATIFIED EPITHELIUM
intraepithelial eosinophil INTR_EOSIN STRATIFIED EPITHELIUM
increased eosinophils INCR_EOSIN STRATIFIED EPITHELIUM
squamous mucosa SQ_MUCOSA STRATIFIED EPITHELIUM
mild reactive features M_R STRATIFIED EPITHELIUM
reflux RFLX_INDICATED STRATIFIED EPITHELIUM

columnar epithelium COLE METAPLASIA
consistent with Barrett’s esophagus BE METAPLASIA
rare goblet cells RGC METAPLASIA
goblet cells GC METAPLASIA
positive for intestinal metaplasia IM METAPLASIA
squamocolumnar mucosa SCOLE METAPLASIA

reflux carditis RFLX_CDTS STOMACH
cardia-type mucosa CM STOMACH
gastric cardia-type mucosa CM STOMACH
cardiac-type mucosa CM STOMACH
carido-oxyntic-type mucosa COM STOMACH
gastric cardio-oxyntic mucosa COM STOMACH
gastric oxyntic-type mucosa COM STOMACH
gastric oxyntic mucosa COM STOMACH
cardio-fundic type mucosa CFM STOMACH
fundic-type mucosa FM STOMACH

low-grade dysplasia LGD DYSPLASIA
high-grade dysplasia HGD DYSPLASIA

intramucosal adenocarcinoma IMC CANCER
adenocarcinoma AC CANCER

high-grade squamous dysplasia SHGD OTHER
low-grade squamous dysplasia SLGD OTHER
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Fig. 3. (SUPPLEMENT) Examples of missingness and heterogeneity in the imaging and pathology datasets: (top left: A) The number
of ROIs and laser-marked regions vary among scans. Different balloon catheter diameters and pressures had been used during the period of
data collection. (top right: B) Annotated biospecimens were skewed toward controls (stratified epithelium = NORMAL). (bottom left: C) Tissue
sampling is guided by the endoscopist’s on-the-fly assessment of the risk of progression, and the extent of ex vivo confirmation needed on a
patient-by-patient basis. (bottom right: D) Patients present at different stages of diagnosis and treatment, some for follow-up after interventions
like tissue eradication therapy, and different treatments vary in terms of their impact on existing tissue; e.g. radiofrequency ablation (RFA)
may remove large segments of the epithelium while endoscopic mucosal resection (EMR) is a localized intervention.
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