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Abstract 22 

Theoretical models of ecological specialization commonly assume that adaptation to one 23 

environment leads to fitness reductions (costs) in others. However, empirical studies often fail 24 

to detect such costs. We addressed this conundrum using experimental evolution with 25 

Escherichia coli in several homogeneous and heterogeneous environments at multiple 26 

population sizes. We found that in heterogeneous environments, smaller populations paid 27 

significant costs, but larger ones avoided them altogether. Contrastingly, in homogeneous 28 

environments, larger populations paid more costs than the smaller ones. Overall, large 29 

population sizes and heterogeneous environments led to cost avoidance when present together 30 

but not on their own. Whole-genome whole-population sequencing revealed that the 31 

enrichment of multiple mutations within the same lineage (and not subdivision into multiple 32 

distinct specialist subpopulations) was the mechanism of cost avoidance. Since the conditions 33 

revealed by our study for avoiding costs are widespread, it explains why the costs expected in 34 

theory are rarely detected in experiments. 35 
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Introduction 36 

Costs of adaptation, also known as ‘fitness costs’ and ‘true trade-offs,’ entail that a fitness 37 

increase in one environment leads to a fitness decline in another (Bono et al. 2017). Such costs 38 

are instrumental in understanding why species tend to favour a particular set of environmental 39 

conditions over others (Fry 1996; Bono et al. 2017). Apart from answering such fundamental 40 

questions in evolutionary ecology, understanding fitness costs can also help in combating 41 

practical challenges like the rampant spread of antibiotic resistance(Andersson & Hughes 42 

2010) and forecasting how species would respond to climate change (Wallenstein & Hall 43 

2012). Although such costs are a fundamental assumption of numerous models of ecological 44 

specialization (Levins 1968; Futuyma & Moreno 1988; Fry 1996), a large number of 45 

experimental evolution studies spanning diverse taxa have failed to detect them (Rausher 1984; 46 

Coustau et al. 2000; Vasilakis et al. 2009; Vila-Aiub et al. 2009; Friman & Buckling 2013). 47 

Consequently, explaining this rarity of detectable fitness costs has been a major challenge for 48 

evolutionary studies over the last two decades (Joshi & Thompson 1995; Fry 1996; Agrawal et 49 

al. 2010; Remold 2012).  50 

Here we investigate the evolutionary emergence and avoidance of fitness costs in asexual 51 

microbial populations, which have proven to be convenient model systems for experimental 52 

evolution studies over hundreds of generations (Kassen 2014; Bono et al. 2017). Whereas 53 

numerous microbial experimental evolution studies have reported the absence of detectable 54 

fitness costs altogether, several others have found such costs in some microbial populations but 55 

not in others (see Table S1 for a detailed list).  56 

An important but trivial explanation for the failure to find fitness costs is the absence of any 57 

real costs altogether (Coustau et al. 2000). Indeed, some recent investigations have found the 58 

pleiotropy of new mutations to be largely positive and not negative (i.e., costly) (Sane et al. 59 
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2018). More importantly, the extant literature offers three distinct explanations as to why 60 

fitness costs may exist but remain undetected in empirical studies (Velicer & Lenski 1999; 61 

Coustau et al. 2000). First, costs can be detected only under certain environmental conditions 62 

which the experimental setup may fail to provide (Coustau et al. 2000; Agrawal et al. 2010; 63 

Kassen 2014). Second, it is a statistically demanding task to detect negative pleiotropy (aka 64 

antagonistic pleiotropy), the very foundation of fitness costs, which entails that a mutation that 65 

is beneficial in one environment is deleterious in another. This is because the statistical 66 

significances of both the beneficial and deleterious effects need to be established 67 

simultaneously for detecting costs. If the experiment does not have enough statistical power to 68 

detect these opposite effects simultaneously, costs would not be detected (Coustau et al. 2000; 69 

Bono et al. 2017). Third, the emergence of fitness costs is expected to require a threshold 70 

amount of time; such costs may appear only after several thousand generations of microbial 71 

evolution have passed (Velicer & Lenski 1999; Jasmin & Zeyl 2013; Satterwhite & Cooper 72 

2015), and therefore would be detectable only in very long-term experimental evolution 73 

studies. 74 

A recent meta-analysis of microbial experimental evolution studies provides a new explanation 75 

for the emergence of fitness costs based on environmental heterogeneity, suggesting that 76 

environments imposing a single (homogeneous) selection pressure frequently lead to fitness 77 

costs that can be avoided in heterogeneous environments (which fluctuate across multiple 78 

individual selection pressures) (Bono et al. 2017). Antagonistic pleiotropy can evolve freely if 79 

the environment does not allow the ensuing costs of adaptation to be expressed. Since selection 80 

would be blind to the antagonistic pleiotropic effects if the environment does not change, 81 

fitness costs are more likely to appear in homogeneous environments with a single selection 82 

pressure as compared to heterogeneous environments with multiple fluctuating selection 83 

pressures.  84 
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Unfortunately, the above prediction holds only weakly as many microbial experimental 85 

evolution studies have failed to find lower costs in heterogeneous environments as compared 86 

to homogeneous ones (Jasmin & Kassen 2007b; Presloid et al. 2008; Friman & Buckling 2013; 87 

Ketola & Saarinen 2015). This opens up the possibility that factors other than environmental 88 

heterogeneity may be important in shaping the emergence of fitness costs. One such factor is 89 

populations size, which has been shown to be important in shaping the correlated changes in 90 

populations’ fitness in alternative environments (Chavhan et al. 2019a, 2020). For example, a 91 

recent study showed that larger populations evolving in a homogeneous environment 92 

containing a single carbon source suffer greater fitness costs in alternative environments 93 

(Chavhan et al. 2020). These results could be explained with a combination of two notions. 94 

First, adaptation in very large populations is primarily driven by beneficial mutations of large 95 

effect sizes (Desai & Fisher 2007a; Chavhan et al. 2019b). Second, larger beneficial mutations 96 

are expected to carry heavier disadvantages in alternative environments (Lande 1983; Orr & 97 

Coyne 1992). 98 

Taken together, the extant literature suggests that environmental heterogeneity and population 99 

size are two important factors that can potentially shape the evolution of fitness costs. However, 100 

the effects of the interaction of these two factors remains unknown. Interestingly, this 101 

interaction can be expected to play out in two contrasting ways. 102 

First, if mutational pleiotropy across environmental components is largely antagonistic, and 103 

large benefits in one context entail large costs in another, the multiplicity of selection pressures 104 

in a heterogeneous environment would prevent the enrichment of costly large effect mutations, 105 

even if the latter were accessible to the population. This is akin to Fisher’s formulation of 106 

micromutationism where adaptation is expected to proceed via mutations of small 107 

effects(Fisher 1930). In this scenario, in heterogenous environments, both large and small 108 

populations are expected to pay similar costs.   109 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted October 26, 2020. ; https://doi.org/10.1101/2020.10.26.355297doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.26.355297


Second, in a heterogeneous environment, evolving in larger numbers can make populations 110 

stumble upon greater number of mutations that are beneficial in a given environmental state, 111 

but not necessarily in others. The presence of multiple mutations within an individual 112 

belonging to a large asexual population has the potential to offset the costs carried by individual 113 

mutations in isolation. In this scenario, adapting in larger numbers in a heterogeneous 114 

environment would lead to the avoidance of fitness costs. Interestingly, bacterial experimental 115 

evolution studies conducted in heterogeneous environments agree with this notion: studies on 116 

smaller populations tend to detect costs, while those using larger populations do not (Fig 1a).  117 

Stated differently, in homogeneous environments, larger populations are expected to pay 118 

heavier costs of adaptation (Chavhan et al. 2020). However, in heterogeneous environments, 119 

larger populations may either pay similar or lower costs as compared to smaller populations, 120 

depending upon which one of the above two possibilities dominates the underlying adaptive 121 

dynamics. To the best of our knowledge, no studies in the existing literature have tested these 122 

contrasting expectations empirically.  123 

Here we study how environmental heterogeneity and population size interact with each other 124 

to influence the evolutionary emergence or avoidance of fitness costs. To this end, we use 125 

experimental evolution with clonally derived Escherichia coli populations in both 126 

heterogeneous and homogeneous environments at different population sizes for ~480 127 

generations. We investigate if population size has similar effects on fitness costs in 128 

homogeneous and heterogeneous environments. We also test if evolving in a heterogeneous 129 

environment can lead to cost avoidance, regardless of the population size. We show that 130 

population size influences costs in opposite ways in homogeneous and heterogeneous 131 

environments. Interestingly, large population size and heterogeneous environments lead to 132 

evolutionary avoidance of costs when present simultaneously but not in isolation. Mutational 133 

frequency distributions obtained by whole-genome whole-population sequencing revealed how 134 
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environmental heterogeneity led to cost avoidance in large populations but not in smaller ones. 135 

Based on these observations, we propose a new explanation for the rarity of fitness costs in 136 

evolutionary and ecological studies, which can account for several contrasting observations 137 

made in the last two decades of microbial experimental evolution.  138 

  139 

Fig. 1. (a) The harmonic mean sizes of laboratory populations in existing bacterial 140 
experimental evolution studies on fitness costs conducted in heterogeneous environments. See 141 

Supplementary Text (ST.1) for the details of the studies shown in the ordinate. (b) A schematic 142 
representation of our evolution experiment. The experimental populations were maintained in 143 

five distinct environments at two different population sizes. T, G, S, and M refer to thymidine, 144 
galactose, sorbitol, and maltose, respectively. N stands for absolute population size. In the 145 
heterogeneous (randomly fluctuating environment, the identity of the sole carbon source 146 
changed every 13.3 generations. See the text for further details.  147 
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Results and Discussion 148 

Large population size and heterogeneous environments led to cost avoidance when present 149 

together but not on their own  150 

We carried out experimental evolution with clonally derived E. coli populations in five 151 

different nutrient limited environmental conditions at two different population sizes for ~480 152 

generations (Fig. 1b). This design gave rise to ten different evolutionary regimens (FL, FS, TL, 153 

TS, GL, GS, SL, SS, ML, and MS; where the first letter represents the sole carbon source in a 154 

regimen’s selection environment (fluctuating (F), thymidine (T), galactose (G), sorbitol (S), 155 

and maltose (M)) while the second letter stands for its population size (L (large) and S (small)). 156 

The harmonic mean population size for our principal treatment (F, Fluctuating (heterogeneous) 157 

environment) was ~1.01 × 108 for the large (FL) populations and ~4.04 × 105 for the small (FS) 158 

populations. Moreover, the adaptively relevant population sizes for L and S in this treatment 159 

were approximately equal to 9.13 × 106 and 2.28 × 103, respectively (Chavhan et al. 2019b). 160 

In the FL and FS regimens, the identity of the sole carbon source fluctuated randomly across 161 

four distinct states (T, G, S, and M) approximately every ~13.3 generations (Fig. 1b). Our study 162 

also involved four distinct homogeneous environmental controls, each with an unchanging 163 

identity of the sole carbon source corresponding to one of T, G, M, or S (Fig. 1b). With six 164 

replicates per regimen, our experiment involved 60 independently evolving populations in 165 

total. All the large (L) populations faced a periodic bottleneck ratio of 1:10 while all the small 166 

(S) populations experienced a periodic bottleneck of 1:104. We manipulated the timing and 167 

frequency of bottlenecks to ensure that large and small populations did not spend significantly 168 

different times in the stationary phase (Fig. 1b; see Methods for details). 169 

We conducted growth measurements to obtain high-resolution growth curves for all the 60 170 

independently evolving populations in all four distinct sole carbon sources (T, G, M, and S) at 171 
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the end of the evolution experiment. We used the maximum growth rate (R) as the measure of 172 

fitness (Leiby & Marx 2014; Karve et al. 2015; Chavhan et al. 2019a, b) (see Methods for 173 

details). We identified the occurrence of significant costs of adaptation in our experimental 174 

populations as cases that showed adaptation to one environment and simultaneous 175 

maladaptation to another. To this end, we carried out single sample t-tests with the ancestral 176 

fitness level (scaled to 1) as the reference value. We then corrected for family-wise error rates 177 

using the Holm- Šidàk procedure (Abdi 2010). Cases with fitness > 1 (corrected P < 0.05) were 178 

identified as adaptations; analogously, cases with fitness < 1 (corrected P < 0.05) were 179 

identified as maladaptations.  180 

We found that twenty-one out of the forty possible combinations of regimen and assay 181 

environment showed significant fitness changes as compared to the common ancestor 182 

(corrected P < 0.05; see Table S2). We used this information to analyse the effects of two 183 

factors that are expected to be important in shaping the evolution of fitness costs in bacterial 184 

populations, namely population size and environmental heterogeneity.  185 
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 186 

Fig. 2. Reaction norms of fitness of large (FL) and small (FS) populations evolved in the 187 
heterogeneous environment across the four environmental states faced during evolution. 188 
G, M, S, and T represent galactose, maltose, sorbitol, and thymidine, respectively. The error 189 

bands represent 95% CI (t-distribution). The solid black line represents the ancestral fitness.   190 
FL adapted simultaneously to two environments (G and T) and avoided the costs of adaptation 191 
across all the environmental pairs under consideration. Contrastingly, FS adapted to T and paid 192 
costs of adaptation in the other three environments (G, M, and S). See Tables S2 and S3 for 193 
detailed statistics.  194 

 

In the heterogeneous (F) environment, the large populations (FL) completely avoided costs 195 

across all the environmental pairs under consideration (Fig. 2; Tables S2 and S3). FL adapted 196 

simultaneously to both T and G and did not show a significant change in fitness (vis-à-vis the 197 

common ancestor) in S and M (Fig. 2; Tables S2 and S3). On the other hand, the small 198 

populations evolved in the heterogeneous environment (FS) adapted only to T, becoming 199 

maladapted to (and hence paid a cost of adaptation in) the other three sole carbon sources (G, 200 

S, and M) (Fig. 2; Tables S2 and S3). Taken together, when evolved in the heterogeneous (F) 201 

environment, the small populations paid greater costs than the large populations, with the latter 202 

avoiding all costs altogether. 203 

Interestingly, in the homogeneous (control) environments, the above pattern of costs reversed 204 

completely. Here, the large populations paid heavier costs of adaptation than the smaller ones 205 

(Fig. 3; the fitness changes pertaining to selection in homogeneous T and G environments have 206 
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been reported previously (Chavhan et al. 2020)). Specifically, when evolved in homogeneous 207 

T, both TL and TS paid significant costs. Interestingly, the costs suffered by TL were 208 

significantly greater than those suffered by TS, regardless of the environmental pair in question 209 

(Fig. 3; Tables S2 and S4). When evolved in homogeneous G, only GL paid costs of adaptation 210 

(GS failed to adapt significantly to the homogeneous G selection environment). None of the 211 

populations evolved in homogeneous M and S environments adapted to their respective 212 

selection environments, regardless of the population size; hence, there were no cots of 213 

adaptation in these regimens (Fig. 3; Tables S2 and S4).   214 

 215 

Fig. 3. Reaction norms of fitness of populations evolved in homogeneous environments. 216 

G, M, S, and T represent galactose, maltose, sorbitol, and thymidine, respectively. The error 217 
bands represent 95% CI (t-distribution). The solid black line represents the ancestral level of 218 
fitness. See Tables S2 and S3 for detailed statistics. (a) When evolved in T, both the large (TL) 219 
and small populations paid costs in the other three environments (G, M, and S). The costs paid 220 
by TL were significantly greater than those paid by TS (Chavhan et al. 2020). (b) GL paid 221 

significant costs in T. GL did not have significantly different fitness relative to the common 222 
ancestor in M and S. GS did not adapt significantly to G. Hence there were no costs of 223 
adaptation in this case. (c) Both SL and SS failed to show significantly different fitness with 224 
respect to the common ancestor. Hence there were no costs of adaptation in either SL or SS. 225 
(d) Neither ML nor MS had significantly different fitness with respect to the common ancestor. 226 
Hence there were no costs of adaptation in either ML or MS.  227 
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Homogeneous T and G environments are known to exhibit reciprocal fitness trade-offs with 228 

each other (Chavhan et al. 2020). In other words, adaptation to T is accompanied by 229 

maladaptation to G, and vice-versa (Chavhan et al. 2020). Agreeing with this notion, we found 230 

that when evolved in the heterogeneous environment (where the sole carbon source fluctuated 231 

randomly), the small populations (FS) indeed suffered from the T-G costs. Specifically, FS 232 

adapted to T but became significantly maladapted to G (Fig. 2; Table S3). Contrastingly, the 233 

large populations evolved in the heterogeneous environment (FL) completely bypassed the 234 

expected T-G trade-off, adapting simultaneously to both the carbon sources, thereby avoiding 235 

the costs of adaptation across this environmental pair (Fig. 2, Table S3).  236 

Taken together, evolution in the ten regimens of our study reveals that an interplay of 237 

environmental heterogeneity and population size shaped how fitness costs evolved. We found 238 

that population size had opposite effects on costs of adaptation during evolution in 239 

heterogeneous versus homogeneous environments. While in homogeneous environments, 240 

larger populations evolved greater costs; contrastingly, in heterogeneous environments, smaller 241 

populations paid greater costs while larger ones avoided them altogether. Importantly, neither 242 

environmental heterogeneity nor population size could sufficiently explain the emergence (or 243 

avoidance) of costs on their own (compare Figs. 2 and 3). Overall, costs could be avoided 244 

altogether only when heterogeneous environments and large population size were present 245 

simultaneously (the FL regimen). 246 

Conventional explanations cannot account for the avoidance of fitness costs in our 247 

experiments 248 

Conventional notions about the rarity of detectable fitness costs failed to explain our 249 

observations. One such explanation is that perhaps the experiment did not provide the relevant 250 
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conditions for costs to be expressed (Coustau et al. 2000; Agrawal et al. 2010; Kassen 2014). 251 

This was not the case in our experiments as several environmental pairs showed significant 252 

costs of adaptation. Another potential explanation is that the substantial statistical demands of 253 

establishing antagonistic pleiotropy were not met (Coustau et al. 2000; Anderson et al. 2013; 254 

Ågren et al. 2013; Bono et al. 2017). However, we were able to statistically detect costs caused 255 

by antagonistic pleiotropy in multiple regimens and in both homogeneous and heterogeneous 256 

environments (Figs 2 and 3). Finally, an often-quoted explanation for the lack of fitness costs 257 

is the relatively short duration of the experimental evolution study (Velicer & Lenski 1999; 258 

Jasmin & Kassen 2007a; Jasmin & Zeyl 2013; Satterwhite & Cooper 2015; Schick et al. 2015). 259 

However, this was simply not true in our case, as several fitness costs had already emerged 260 

over the ~480 generations of selection. 261 

As discussed earlier, evolution in heterogeneous environments is expected to lead to lower 262 

costs than evolution in homogeneous environments because the former offer multiple dynamic 263 

selection pressures (Bono et al. 2017). Although our temporally heterogeneous (F) 264 

environment contained only a single carbon source at any given point of time, the identity of 265 

this carbon source fluctuated randomly over four states every ~13.3 generations. Therefore, 266 

selection was not expected to be blind to the pleiotropic fitness effects of mutations across T, 267 

G, M, and S. Despite evolving in such a heterogeneous environment, the FS populations paid 268 

significant fitness costs. Thus, Fig. 2 shows that contrary to the expectations of the extant 269 

literature (Bono et al. 2017), the presence of multiple dynamic selection pressures can be 270 

insufficient for cost avoidance.  271 

Interestingly, evolutionary success in fluctuating environments is reflected by the geometric 272 

mean (GM) fitness across the states about which the environment oscillates (and not necessarily 273 

the arithmetic mean fitness) (Orr 2007; Kassen 2014). We found that across G, M, S and T, FL 274 

had significantly greater GM fitness than both FS and the common ancestor (Fig. S1a; Table 275 
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S5). In contrast, the GM fitness of FS was not significantly different from the ancestral value 276 

(Fig. S1a; S5). Furthermore, as expected, evolution in homogeneous (unchanging) 277 

environments did not result in increased GM fitness above the ancestral value, regardless of 278 

the population size (Fig. S1b and Table S5). FL was better prepared to face the fluctuating 279 

environment than all the eight homogeneous environmental regimens (Tables S6 and S8) 280 

Surprisingly, the preparedness of FS to face the environmental fluctuations across G, M, S and 281 

T was similar to most homogeneous environment regimens (Tables S7 and S8). These 282 

observations highlight the key role played by population size in shaping fitness relationships 283 

across the component states of heterogeneous environments. Thus, the mere presence of 284 

multiple dynamic selective pressures in a heterogeneous environment was not enough to 285 

prevent costs of adaptation, which ultimately precluded any significant increase in the 286 

geometric mean fitness of FS. 287 

The genetic basis of cost avoidance 288 

The observation that FS suffered substantial costs that were completely avoided by FL can be 289 

explained by the notion that in the presence of multiple selection pressures, a threshold amount 290 

of mutational supply is required to avoid costs. Owing to their relatively larger size, FL are 291 

expected to have much higher mutational supply as compared to FS. We hypothesised that FL 292 

enriched a larger number of mutations than FS, which made them adapt to multiple carbon 293 

sources, thereby avoiding the costs that were paid by the FS populations. To validate this 294 

hypothesis, we performed end-point whole-genome whole-population sequencing in three 295 

randomly chosen populations each from FL and FS. For our analysis, we considered only 296 

mutations that had a frequency ≥ 10% (Lang et al. 2013; Bailey et al. 2015; Copin et al. 2016; 297 

McDonald et al. 2016; Swings et al. 2017). Theory suggests that any mutation rising to 298 

frequencies ≥ 10% within 480 generations in any of our treatment populations is likely to be 299 

beneficial and highly unlikely to be neutral or deleterious (Desai & Fisher 2007a; Good et al. 300 
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2012; Cooper 2018). Consistent with this notion, we found that the number of mutations rising 301 

to frequencies ≥ 10% was much greater in FL as compared to FS (Fig. 4).  302 

 303 

Fig. 4. The spectrum of mutations observed in FL and FS after 480 generations. Three 304 
randomly chosen replicate populations each of FL (upper row) and FS (lower row) were 305 
subjected to whole-genome whole-population sequencing. The radial bars are located at the 306 
genomic position of the observed mutations and their heights represent the corresponding 307 

mutational frequency. The mutated loci known to be associated with thymidine (T) utilization 308 

are highlighted in blue while those associated with galactose (G) utilization are highlighted in 309 

brown. See Table S9 for details. 310 

 

A detailed description of the various observed mutations is given in Table S9, while the key 311 

observations and their interpretations are described below. 312 
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We found that the loci mutated in FL are known to be associated with the uptake and/or 313 

metabolism of either G or T in the extant literature. Contrastingly, the loci mutated in FS had 314 

known links to T uptake and/or metabolism but none with that of G (Fig. 4). This agrees with 315 

the observation that FL adapted to both T and G while FS adapted to T but not to G.  316 

Interestingly, some mutated loci that could be linked with T adaptation were common across 317 

FL and FS while others were found exclusively in either FL or FS. Remarkably, five out of the 318 

six sequenced populations (3/3 in FL and 2/3 in FS) had high frequencies of mutations in cytR 319 

(Fig. 4), an important regulator of thymidine metabolism that is instrumental in the regulation 320 

of pyrimidine uptake and degradation (Hammer-Jespersen & Munch-Petersen 1975; Valentin-321 

Hansen et al. 1996). Similarly, insertions in the upstream regulator region of gadE, a 322 

transcriptional activator that plays an important role in thymidine metabolism (Ketcham 2019), 323 

were found to be enriched in one replicate of both FL and FS.   324 

A deletion in the expressed but non-active exoribonuclease rph got enriched in an FL 325 

population, but was not found in any of the FS populations (Fig. 4). Such a deletions is likely 326 

to affect the expression of pyrE, a key gene in thymidine biosynthesis whose promoter lies 327 

within rph (Gama-Castro et al. 2016; Wytock et al. 2018). On the other hand, two out of the 328 

three sequenced FS populations showed mutations in rbsR, the ribose operon repressor that has 329 

known links to thymidine metabolism (Shimada et al. 2013). Interestingly, mutations in rbsR 330 

did not get enriched in any of the three FL populations.  331 

The mutations identified to be associated with adaptation in Gal were found exclusively in FL 332 

(none in FS) and were distributed across diverse loci. For example, mutations influencing the 333 

expression of nagA and nagC genes were found at frequencies > 50% in two out of the three 334 

sequenced FL populations (Fig. 4). Mutations in these genes are known to increase fitness in 335 

galactose minimal media (Soupene et al. 2003; El Qaidi et al. 2009). Similarly, a mutation in 336 
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the operator of galP, the galactose:H+ symporter (a gene that is instrumental in galactose 337 

uptake) got fixed in one FL population (Fig. 4). 338 

We also found a high frequency mutation directly associated with maltose utilization in one of 339 

the FL populations, but none in FS (Fig. 4, Table S9). The presence of this mutation could 340 

explain the avoidance of costs in M that could have arisen due to T-associated mutations in FL. 341 

Furthermore, we also found several mutations in genes with widespread effects that were not 342 

specific to the uptake or metabolism of the carbon sources used in this study (Fig. 4, Table S9). 343 

Since fitness in T has been shown to be negatively correlated with fitness in G (Chavhan et al. 344 

2020), mutations beneficial in T are likely to be deleterious in G, and vice versa. Hence, the 345 

presence of several T-associated mutations at high frequencies in FS can explain their 346 

maladaptation to G. Moreover, we did not find any known G-associated mutations in FS that 347 

could alleviate the putative maladaptive effects of T-associated mutations in G.  Had there been 348 

no G-associated mutations in FL, the enrichment of a relatively larger number of T-associated 349 

mutations should have led to greater maladaptation of FL in G. However, we found several G-350 

associated mutations at high frequencies in FL that can explain these populations’ adaptation 351 

to G. 352 

The presence of both T- and G-associated mutations in FL agrees with the observation that this 353 

regimen adapted to both T and G. The large population size of FL could have allowed them to 354 

stumble upon highly rare mutations that were simultaneously beneficial in multiple 355 

environments (Li et al. 2019) (T and G in this case). However, the convergent enrichment of 356 

multiple mutations at the level of loci (e.g., within cytR and upstream of gadE (Fig. 4)) in FL 357 

and FS makes such a possibility unlikely. Although the investigation of such individual and 358 

epistatic effects of mutations on fitness across different environments is interesting in its own 359 
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right, it is outside the scope of our study, which is primarily targeted towards unravelling the 360 

interactive effects of population size and environmental heterogeneity in shaping fitness costs.  361 

Taken together, the genomic changes enriched during evolution in the heterogeneous 362 

environment were congruent with the phenotypic observation that the large (FL) avoided all 363 

the fitness costs that were suffered by the small (FS) populations. Having discussed the match 364 

between our phenotypic and genotypic observations, we now turn to the population genetic 365 

drivers that could have shaped evolution in our experiments. 366 

Antagonistic pleiotropy can readily explain the positive relationship between population size 367 

and fitness costs observed in homogeneous environments (Rose & Charlesworth 1980; Cohan 368 

et al. 1994; Holt 1996; Cooper & Lenski 2000; Cooper 2014) (Fig. 3). Since these populations 369 

faced only one carbon source throughout the experiment, their evolution was blind to fitness 370 

changes in other carbon sources. The pleiotropic disadvantages of beneficial mutations are 371 

generally expected to be correlated with their direct effects (Lande 1983; Orr & Coyne 1992; 372 

Otto 2004; Chavhan et al. 2019a). Since the larger asexual populations adapt primarily via 373 

beneficial mutations with relatively greater direct effect sizes (Desai et al. 2007; Desai & Fisher 374 

2007b; Sniegowski & Gerrish 2010; Chavhan et al. 2019b), adapting to homogeneous 375 

environments in larger numbers should lead to heavier costs of adaptation, as observed in our 376 

study (Fig. 3) (Chavhan et al. 2020).   377 

When evolved in the heterogeneous (fluctuating) environment, smaller (FS) populations paid 378 

significant costs of adaptation across three distinct environmental pairs under consideration, 379 

but the larger (FL) populations avoided costs altogether. As described above, FS suffered 380 

significantly from T-G trade-offs while FL bypassed them. Interestingly, despite facing both T 381 

and G as the sole sources of carbon for equal number of generations (~120), the T-G trade-off 382 

manifested itself in FS as adaptation to T and maladaptation to G. To explain this asymmetry 383 
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of fitness changes across T and G, we note that despite evolving in homogeneous G for ~480 384 

generations, GS could not adapt significantly to this environment. Contrastingly, TS increased 385 

their fitness in T by > 1.5-fold within the same period (Fig. 3). This shows that the size of our 386 

small-population regimens was sufficient to adapt significantly to T but not to G. Put 387 

differently, the scope of adaptation in T was much greater than that in G (Chavhan et al. 2020). 388 

This can explain why FS adapted to T but not to G. Analogous to TS, such adaptation of FS to 389 

T also led to significant maladaptation in the other three environments.  390 

In contrast to the small populations, the large populations in our study had sufficient supply of 391 

mutations to adapt to G within ~480 generations (Fig. 3). Curiously, we also found that FS 392 

could adapt significantly to G despite encountering this particular environment intermittently 393 

for a total period of ~120 generations (Fig. 2). This observation was also supported by the 394 

genome-wide analysis of the evolutionary changes in this regimen, which revealed substantial 395 

enrichment of putative G-associated beneficial mutations (Fig. 4).  396 

An important alternative explanation for cost avoidance in heterogeneous environments 397 

involves the divergence of the population in question into multiple subpopulations, each one 398 

specialized on a different environmental component (Kassen 2002, 2014). However, our 399 

genomic data suggest that this explanation of cost avoidance in unlikely in our study. 400 

Specifically, in one of the sequenced FL populations (FL(a)), multiple mutations went to 401 

fixation, one of which was in a locus known to be associated with galactose uptake/metabolism 402 

and another with that of thymidine (Fig. 4). Hence, the individuals in FL(a) simultaneously 403 

carried both putative G and putative T adaptations. In the second sequenced FL population 404 

(FL(b)), a putative G-associated mutation went to fixation and three putative T-associated 405 

mutations rose to the frequencies of 60.7%, 41.4%, and 32.3% respectively (Fig. 4, Table S9). 406 

Thus, the probability that an individual in FL(b) carried at least one of the three putative T 407 

mutations was 84.41%. Hence, the probability that a given individual in FL(b) simultaneously 408 
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carried a G- and T-associated mutation was 84.41%. Although the third sequenced FL 409 

population (FL(d)) did not show any fixation events, it enriched a putatively G-associated 410 

mutation at 57.70% and multiple putatively T-associated mutations at 68.5%, 63.0%, and 411 

30.9%, respectively (Fig. 4, Table S9). Hence, the probability that an individual in this 412 

population carried at least one T-associated mutation was 91.95%. Moreover, the probability 413 

of an FL(d) individual simultaneously carrying both G- and T-associated mutations is 53.05%. 414 

Thus, the high likelihoods of simultaneously showing G- and T-associated mutations FL 415 

suggests that it is unlikely that this regimen avoided costs by divergent specialization on 416 

individual carbon sources within populations. 417 

Overall, these results demonstrate that the phenomenon of cost avoidance in heterogeneous 418 

(fluctuating) environments requires the supply of variation to be large enough to make use of 419 

multiple dynamic selection pressures.  420 

 

 

Implications 421 

Our observations offer a novel explanation for an important conundrum in evolutionary 422 

ecology, namely the rarity of detectable fitness costs in empirical studies. Specifically, we 423 

demonstrate a previously unreported interaction of population size and environmental 424 

heterogeneity that determines the evolutionary appearance (or avoidance) of fitness costs. 425 

These results can potentially explain how evolving populations can escape fitness costs despite 426 

substantial antagonistic pleiotropy across environmental states. Our study shows that the 427 

simultaneity of two conditions, namely large population size and heterogeneous environment, 428 

can avoid all the fitness costs that potentially evolve when these conditions are not present 429 

together. Finally, to our knowledge, this is the first experimental study to demonstrate that 430 
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multiple mutations can fix rapidly (within ~480 generations) in asexual populations evolving 431 

in highly dynamic heterogeneous environments, a possibility raised recently (Cvijović et al. 432 

2015), but discounted by older studies (Whitlock 1996; Kassen 2002). Remarkably, this 433 

phenomenon was observed in both FL and FS populations. This shows that such rapid fixation 434 

of multiple mutations in heterogeneous environments can happen in the face of both lenient 435 

and harsh population bottlenecks.  436 

The environments of most natural populations of asexual microbes are known to be 437 

heterogeneous (Green & Bohannan 2006; Muscarella et al. 2019). Moreover, such natural 438 

asexual populations are also known to have extremely large sizes (Torsvik et al. 2002; 439 

Tenaillon et al. 2010). Our results suggest that if the asexual population under consideration 440 

has a history of evolving in heterogeneous environments in large numbers, it is expected to 441 

have reached its current state after having avoided fitness costs during its past evolution. 442 

Therefore, if a sample from such a population is now employed to analyse fitness correlations 443 

in a single-generation study, such correlations may not be negative, and costs may not be found.   444 

Contrastingly, several laboratory evolution studies using unchanging (homogeneous) 445 

environments and large population sizes (> 106 in terms of harmonic mean population size) 446 

have successfully detected fitness costs (Kassen & Bell 1998; Cooper & Lenski 2000; Cooper 447 

et al. 2001; Nilsson et al. 2004; Hall & Colegrave 2008; Presloid et al. 2008; Philippe et al. 448 

2009; Vasilakis et al. 2009; Bedhomme et al. 2012; Ensminger et al. 2012; Kubinak & Potts 449 

2013; Leiby & Marx 2014). This agrees with the interplay of population size and environmental 450 

heterogeneity revealed by our results, which predicts such a combination of constant 451 

environment and large populations to lead to significant costs. 452 

Thus, apart from explaining why costs may not be detected in single-generation studies with 453 

natural isolates, our observations also explain why costs can still be detected if the artificially 454 
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controlled laboratory conditions remain constant over a few hundred generations in an 455 

evolution experiment.  456 

Although the environments used in our experimental setup were nutritionally challenging 457 

minimal media, the explanation of our observations applies to the general notion of fitness 458 

costs across multiple environments in asexual microbial populations. In particular, our results 459 

can have important implications for understanding the rampant evolution and spread of 460 

antibiotic resistance, which has direct practical values.  Mutations that confer resistance to 461 

antibiotics have been routinely shown to bear fitness costs in drug-free conditions (Andersson 462 

& Hughes 2010; Vogwill & MacLean 2015). Interestingly, resistant microbes mostly evolve 463 

in a heterogeneous environment that fluctuates randomly across antibiotic-laden and antibiotic-464 

free conditions (Baquero et al. 1998). Our results predict that small populations evolving in 465 

heterogeneous environments suffer heavy fitness costs while large populations are likely to 466 

avoid them altogether (Fig. 2). Thus, even if most antibiotic resistance mutations carry a cost 467 

in drug-free conditions, large microbial population sizes stemming from lack of sanitary 468 

conditions and proper medical waste-disposal (Cantón et al. 2013) could themselves lead to 469 

vigorous spread of cost-free resistance.  470 

 

Methods 471 

Experimental evolution 472 

We derived ten different evolutionary regimens from a single colony of E. coli MG1655 by 473 

culturing populations at two different sizes in five different environments as described above 474 

(see Supplementary Methods (SM.1) for more details regarding the ancestral strain and media 475 

compositions). Using the standard batch culture technique, we let all the 60 populations 476 

propagate as continuously shaken cultures (150 rpm) in 96 well plates maintained at 37º C. In 477 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted October 26, 2020. ; https://doi.org/10.1101/2020.10.26.355297doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.26.355297


all the 60 populations, the culture volume was fixed at 300 µl. Whereas the large (L) 478 

populations experienced a lenient periodic bottleneck (1:10, the small (S) populations faced a 479 

relatively harsher periodic bottleneck (1:104 dilution). We ensured that populations of different 480 

sizes did not remain in the stationary phase for significantly different time-periods by 481 

bottlenecking the L populations every 12 hrs (~3.3 generations), and the smaller ones every 48 482 

hrs (~13.3 generations). The selection protocol pertaining to the T and G populations has been 483 

reported in a previous study (Chavhan et al. 2020). 484 

 485 

Fitness quantification 486 

We conducted fitness measurements for all the 60 independently evolving populations in all 487 

four carbon sources (T, G, M, and S) at the end of the evolution experiment (~480 generations). 488 

To this end, we revived the cryo-stocks belonging to each of the 60 experimental populations 489 

in a common nutrient limited environment that was not encountered by any population during 490 

the ~480 generations of our experiment (glucose based M9 minimal medium) and allowed them 491 

to grow for 24 hours. Using a well-plate reader (Synergy HT, BIOTEK® Winooski, VT, USA), 492 

we then performed automated growth measurements on each of the 60 revived populations in 493 

all four different minimal media, each based on one of T, G, M, or S. Ensuring that the physical 494 

conditions during the fitness measurements were the same as the culture conditions (96 well 495 

plates shaken at 150 rpm and ambient temperature maintained at 37º C), we obtained growth 496 

readings every 20 minutes for 24 hours. We used optical density (OD) at 600 nm as the measure 497 

of population density.  498 

Since the total number of growth curves was much larger than number of wells in the assay 499 

plate, we used a randomized complete block design (RCBD) for growth 500 

measurements(Milliken & Johnson 2009). Specifically, we assayed one replicate population of 501 
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each of the ten different evolutionary lines in all four environments on a given day. Since there 502 

were six replicates for each evolutionary line, we conducted growth measurements over six 503 

different days. We used the maximum growth rate (R) as the measure of fitness. We computed 504 

R as the maximum slope of the growth curve over a dynamic window of ten OD (600 nm) 505 

readings (Leiby & Marx 2014; Karve et al. 2015; Chavhan et al. 2019a, b). As described in the 506 

Results section, for each of the four sole carbon sources (G, M, S, and T), we used single 507 

sample t-tests to compare the fitness of each of the ten evolutionary regimens to that of the 508 

ancestor. Subsequently, we corrected for family-wise error rates using the Holm-Šidàk 509 

procedure.  510 

As described in the Supplementary Methods, we also investigated the changes in the geometric 511 

mean fitness across G, M, S, and T for all the ten evolutionary regimens (see SM.2 for details).    512 

 513 

Whole genome whole population sequencing 514 

For both the ancestor and the six randomly chosen evolved populations (three each from FL 515 

and FS), pellets obtained from overnight grown cultures were sent for sequencing to an external 516 

service provider. For each sample, the genomic DNA was isolated using c-TAB and phenol-517 

chloroform extraction. This procedure was followed by RNAase A treatment. The quality and 518 

quantity of the isolated DNA samples was verified using a NanoDrop™ spectrophotometer 519 

(Thermo Fisher Scientific Inc., MA, USA). The isolated DNA samples were initially subjected 520 

to a further check by targeting the bacterial 16s gene using Sanger sequencing. After these 521 

checks, 2 x 150 NextSeq500 Shotgun Libraries were prepared from each sample using an 522 

Illumina TruSeq® Nano DNA Library Prep Kit (Illumina Inc, CA, USA). The quality of each 523 

library was checked using the Agilent 4200 Tape Station (Agilent Technologies, CA, USA). 524 

The libraries were then loaded onto NextSeq500 (Illumina Inc, CA, USA) for cluster generation 525 
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and paired-end sequencing. Trimmomatic (v0.38) was used to remove adapter sequences, 526 

ambiguous reads (with unknown nucleotides > 5%) and low-quality sequences (reads with > 527 

10% quality threshold < 20 phred score). After trimming, a minimum length of 100nt was 528 

applied. The mean coverage across the sequenced populations was ~100-fold at a quality score 529 

of 20.  530 

We subjected these trimmed high quality sequences to the BRESEQ pipeline (Deatherage & 531 

Barrick 2014) (v0.33.2) to identify mutations enriched during our evolution experiment. We 532 

initially compared the ancestral sequence to the reference E. coli MG1655 genome to identify 533 

differences relative to the latter expected to be found in all the six evolved populations. Next, 534 

we adjusted for these differences by using the ancestral sequences as the reference for 535 

identifying mutational frequencies in each of the six descendant populations using the 536 

‘polymorphic’ mode in BRESEQ. To avoid false positives and to restrict our analysis to 537 

mutations that must have been instrumental in shaping the average fitness of the population, 538 

we ignored mutations with frequencies < 10%.  539 
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Table S1. The absence of costs in experimental evolution studies with asexual microbes  

Reference no. Model system Absence of costs 

1 Bacteriophage φ6 uniform 

2 Bacteriophage φ6 nonuniform 

3 Bacteriophage φ6 nonuniform 

4 Bacteriophage φ6 nonuniform 

5 Bacteriophage φ6 nonuniform 

6 Bacteriophage ID8 and NC28 uniform 

7 Burkholderia sp. nonuniform 

8 Chlamydomonas reinhardtii uniform 

9 Cucumber mosaic virus uniform 

10 Dengue virus uniform 

11 Escherichia coli uniform 

12 Escherichia coli nonuniform 

13 Escherichia coli nonuniform 

14 Escherichia coli nonuniform 

15 Escherichia coli nonuniform 

16 Escherichia coli nonuniform 

17 Escherichia coli nonuniform 

18 Holospora undulata nonuniform 

19 Pseudomonas aeruginosa nonuniform 

20 Pseudomonas fluorescens uniform 

21 Pseudomonas fluorescens uniform 

22 Pseudomonas fluorescens nonuniform 

23 Pseudomonas fluorescens nonuniform 

24 Pseudomonas fluorescens nonuniform 

25 Saccharomyces cerevisiae nonuniform 

26 Saccharomyces cerevisiae nonuniform 

27 Saccharomyces cerevisiae nonuniform 

28 Saccharomyces cerevisiae nonuniform 

29 Serratia marcescens nonuniform 
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30 St. Louis encephalitis virus nonuniform 

uniform = costs absent from some experimental populations; nonuniform = costs absent from some, but not all 

experimental populations 

 

 

Supplementary text 762 

ST.1. Details of the studies shown in Fig. 1a: 763 

Fig. 1a incorporates those bacterial experimental evolution studies on fitness costs in 764 
heterogeneous environments for which estimates of harmonic mean population size could be 765 

obtained. Studies conducted with viruses, and eukaryotes are not included here.   766 

Key in the legend of Fig. 1a: 767 

A: Ref. 29*; B: Ref. 24; C: Ref. 19; D: Ref. 23; E: Ref. 15; F: Ref. 11; G: Ref. 22; H: Ref. 20; 768 
I: Ref. 17‡ 769 

*The population size reported for Study A (Ref. 29) has been calculated indirectly using the 770 
stationary phase densities reported for a different bacterial species in the selection medium in 771 
question and is likely an overestimate. 772 

‡The data for population size have been provided by the authors of Study I (Ref. 17). 773 
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Supplementary Methods 774 

SM.1. Details of the ancestral strain and nutrient media: 775 

Ancestral strain: Escherichia coli MG1655 lacY::kan. The ancestral strain was resistant to 776 

kanamycin. 777 

 778 

Nutrient media: There was one heterogeneous and four homogeneous environments in our 779 
evolution experiment. Each homogeneous environment comprised of an M9-based minimal 780 
medium, 1 litre of which contained the following: 781 

• 12.8 g Na2HPO4.7H2O 782 

• 3.0 g KH2PO4 783 
• 0.5 g NaCl 784 
• 1.0 g NH4Cl 785 

• 240.6 mg MgSO4 786 
• 11.1 mg CaCl2 787 

• 4g of the pre-decided sole carbon source 788 
• 50 mg Kanamycin sulphate 789 

The four homogeneous environments differed in terms of the identity of the pre-decided sole 790 
carbon source. The following four carbon sources were used in our experiment:  791 

• Thymidine 792 

• Galactose 793 

• Maltose 794 

• Sorbitol 795 

The heterogeneous environment fluctuated randomly between the above four carbon sources 796 

every 13.3 generations. 797 
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SM.2. Analysis of differences in geometric mean fitness in our experimental regimens: 798 

We computed the geometric mean fitness across each of the four carbon sources (G, M, S, and 799 

T) for all the ten evolutionary regimens in our experiment (comprising sixty independently 800 

evolving populations in total). 801 

We used a mixed model ANOVA to compare the geometric mean fitness across the populations 802 

evolved in the heterogeneous environment (FL and FS). In this analysis, we considered the 803 

population size (two levels: large (L) and small (S)) as the fixed factor and the day of assay as 804 

the random factor, with each day corresponding to one biological replicate in our randomized 805 

complete block design (RCBD (see the Main text for details)). We also determined the effect 806 

size of the difference between FL and FS using partial η2, interpreting the latter as showing 807 

small, medium, or large effect for Partial η2 < 0.06, 0.06 < Partial η2 < 0.14, 0.14 < Partial η2 808 

respectively31. 809 

We further tested if the treatment regimens evolved in the heterogeneous environment (FL / 810 

FS) had evolved significantly different geometric mean fitness (over T, G, M, and S) as 811 

compared to the control regimens evolved in homogeneous environments. To this end, we 812 

conducted two mixed-model ANOVAs with evolutionary regimen (nine levels) as the fixed 813 

factor and day of assay (six levels) as the random factor. In the first ANOVA (Table S6), the 814 

nine levels in the evolutionary regimen (fixed factor) consisted of the eight homogeneous 815 

environments regimens and FL, while in the second ANOVA (Table S7), the fixed factor 816 

consisted of the same eight homogeneous environments and FS. For both ANOVAs, we used 817 

the Dunnett’s procedure) to assess the pairwise differences of FL or FS with the eight 818 

homogeneous environment regimens.  819 

In another (more conservative) analysis of the differences in GM fitness across regimens, we 820 

used a mixed model ANOVA with evolutionary regimen (ten levels: FL, FS and eight 821 

homogeneous environment regimens) as the fixed factor and day of assay (six levels) as the 822 

random factor. Subsequently, we compared all possible pairwise differences between the ten 823 

evolutionary regimens using Tukey’s HSD (Table S8).  824 
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Supplementary Results 

 

Table S2. Analysis of adaptation and maladaptation events in all ten evolutionary 

regimens using single-sample t-tests (N = 6) with reference to the ancestral fitness in 

each of the four carbon sources* (scaled to 1). 
Selection 

environment 

Population 

type 

Assay 

environment 

P value Corrected P 

value 

Inference 

Heterogeneous  FL T 1.58 × 10-5 6.33 × 10-5 Adaptation 

Heterogeneous  FL G 7.025 × 10-3 0.021 Adaptation 

Heterogeneous   FL M 0.564 - No change 

Heterogeneous FL S 0.612 - No change 

Heterogeneous  FS T 0.049 0.049 Adaptation 

Heterogeneous  FS G 0.025 0.051 Maladaptation 

Heterogeneous  FS M 2.5 × 10-4 0.001 Maladaptation 

Heterogeneous FS S 0.009 0.02635 Maladaptation 

Homogeneous T TL T 8.1 × 10-7 3.24 × 10-6 Adaptation 

Homogeneous T TL G 8.94 × 10-5 2.68 × 10-4 Maladaptation 

Homogeneous T TL M 5.53 × 10-4 5.53 × 10-4 Maladaptation 

Homogeneous T TL S 1.13 × 10-4 2.27 × 10-4 Maladaptation 

Homogeneous T TS T 1.83 × 10-4 7.33 × 10-4 Adaptation 

Homogeneous T TS G 6.839 × 10-3 6.839 × 10-3 Maladaptation 

Homogeneous T TS M 4.58 × 10-4 1.372 × 10-3 Maladaptation 

Homogeneous T TS S 6.19 × 10-4 1.238 × 10-3 Maladaptation 

Homogeneous G GL T 0.003 0.013 Maladaptation 

Homogeneous G GL G 0.016 0.049 Adaptation 

Homogeneous G GL M 0.633 0.633 No change 

Homogeneous G GL S 0.973 0.973 No change 

Homogeneous G GS T 0.122 0.122 No change 

Homogeneous G GS G 0.617 0.617 No change 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted October 26, 2020. ; https://doi.org/10.1101/2020.10.26.355297doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.26.355297


Homogeneous G GS M 0.483 0.483 No change 

Homogeneous G GS S 0.016 0.061 No change 

     continued… 
 

 

 

Table S2 continued 
Selection 

environment 

Population 

type 

Assay 

environment 
P value 

Corrected P 

value 
Inference 

Homogeneous M ML T 0.252 - No change 

Homogeneous M ML G 0.036 0.134661 No change 

Homogeneous M ML M 0.090 - No change 

Homogeneous M ML S 0.762 - No change 

Homogeneous M MS T 0.134 - No change 

Homogeneous M MS G 0.164 - No change 

Homogeneous M MS M 0.066 - No change 

Homogeneous M MS S 0.069 - No change 

Homogeneous S SL T 3.14 × 10-4 1.257 × 10-3 Maladaptation 

Homogeneous S SL G 7.59 × 10-3 0.023 Maladaptation 

Homogeneous S SL M 0.088 - No change 

Homogeneous S SL S 0.690 - No change 

Homogeneous S SS T 5.5 × 10-3 0.011 Maladaptation 

Homogeneous S SS G 6.4 × 10-5 2.56 × 10-4 Maladaptation 

Homogeneous S SS M 0.001 0.003 Maladaptation 

Homogeneous S SS S 0.366 - No change 

 *The data pertaining to evolution in T and G have been reported in a previous study32. 
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Table S3. The evolutionary emergence of costs of adaptation in populations evolved in the 

heterogeneous environment                  

Case(s) which showed costs of adaptation Case(s) which showed simultaneous adaptation 

Population 

size 
Environmental pair(s) 

Population 

size 
Environmental pair(s) 

Large None Large T (adaptation) – G (adaptation) 

Small 

T (adaptation) - G (maladaptation) 

Small None T (adaptation) - S (maladaptation) 

T (adaptation) - M (maladaptation) 

 

 

Table S4. The evolutionary emergence of costs of adaptation in populations evolved in 

homogeneous environments 

Case(s) which showed costs of adaptation Case(s) which showed 

simultaneous 

adaptation Selection 

environment 

Population 

size 
Environmental pair(s) 

T Large 

T (adaptation) - G (maladaptation)† 

None 

T (adaptation) - S (maladaptation)† 

T (adaptation) - M (maladaptation)† 

T Small 

T (adaptation) - G (maladaptation) 

T (adaptation) - S (maladaptation) 

T (adaptation) - M (maladaptation) 

G Large G (adaptation) - T (maladaptation) 

G Small 

Not applicable 

(no adaptation to the selection 

environment) 

S Large 

S Small 
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M Large 

M Small 

†Across the T - M, T - G, and T - S pairs, the costs suffered by the large (TL) populations were greater than 

those suffered by the small (TS) populations32. 

 825 

Fig. S1. Changes in geometric mean fitness of our experimental populations across T, G, 826 
M, and S. The solid lines in the box plots mark the 25th, 50th, and 75th percentiles while the 827 
whiskers mark the 10th and 90th percentiles; the short-dashed lines within the box plots 828 

represent means (N = 6). The long-dashed line outside the box plots represent the ancestral 829 
level of the ordinate. (a) Geometric mean fitness of populations evolved in the heterogeneous 830 
environment.  FL > FS (P < 0.01). (b) Geometric mean fitness of populations evolved in 831 
homogeneous environments. See Tables S5 and S6 for details. 832 

 

We found that FL populations had significantly higher geometric mean fitness than FS (Fig. 833 

5a; Table S4; mixed-model ANOVA: F1,5 = 18.002; P = 0.008; partial η2 = 0.783 (large effect)). 834 

Thus, the large (FL) populations adapted better than the small (FS) populations to their 835 
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common heterogeneous environment. This result is expected from the absence of any fitness 836 

costs in FL and the presence of such costs across the maximum possible number of 837 

environmental pairs under consideration in FS. We further found that FL could significantly 838 

enhance their geometric mean fitness with respect to the common ancestor, but FS failed to do 839 

so (Fig. S1a; Table S5). Curiously, despite showing significant fitness changes in T 840 

(adaptation) and G (maladaptation), FS did not have significantly different geometric mean 841 

fitness as compared to the common ancestor (Fig. S1a; Table S5). Adaptation to homogeneous 842 

environments is not expected to entail increased geometric mean fitness over multiple 843 

(unencountered) environments. Indeed, we found that the geometric mean fitness over the four 844 

carbon sources did not increase significantly as compared to the ancestral level in any of the 845 

homogeneous environment regimens, regardless of the population size (Fig. S1b; Table S5).  846 

We also found that FL had a much larger geometric mean fitness than all the homogeneous 847 

environment regimens (Table S6). However, FS did not have significantly different geometric 848 

mean fitness as compared to a vast majority (seven out of the eight) of homogeneous 849 

environment regimens (Table S7). A similar pattern was revealed by a more conservative post 850 

hoc analysis using Tukey’s HSD (Table S8).  851 

Both the above analyses (using Dunnett’s or Tukey’s post-hoc tests) sought to answer the same 852 

question: whether the FL / FS regimens significantly differed in their GM fitness as compared 853 

to the homogeneous environment regimens. Comparing Tables S6-S7 with S8, we find that the 854 

pair-wise differences that turn up as statistically significant are identical between the two 855 

analyses (except one case: FS and SL show up as significantly different in Dunnett’s test but 856 

not in Tukey’s HSD). This is not surprising, as the analysis with two Dunnett’s procedures 857 

comprises of (and therefore corrects for) only 18 pair-wise tests, while the corresponding 858 

analysis with Tukey’s HSD corrects for 81 pair-wise tests (of which only 18 are relevant for 859 

our purpose). Therefore, the second analysis has a lot less power than the first one. The fact 860 
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that the results remain virtually identical across both cases highlights the robustness of the 861 

same. It should be noted here that our interpretation of the difference between FL and FS 862 

remains agnostic to the choice of analysis. 863 

Taken together, FL adapted significantly to the heterogeneous (fluctuating) environment, but 864 

FS failed to do so. Importantly, the preparedness of FS to face the environmental fluctuations 865 

across G, M, S and T was similar to most homogeneous environment regimens.  866 

 867 

Table S5. Summary of single-sample t-tests (N = 6) of 

differences in the geometric mean fitness (calculated over G, 

M, S, and T) of the ten evolutionary regimens with the 

corresponding ancestral value (= 1) 

Selection 

environment 

Population type P value Inference 

Heterogeneous  FL 0.002 GM enhanced 

Heterogeneous  FS 0.584 No change 

Homogeneous TL 0.703 No change 

Homogeneous TS 0.826 No change 

Homogeneous GL 0.922 No change 

Homogeneous GS 0.026 GM reduced 

Homogeneous ML 0.027 GM reduced 

Homogeneous MS 0.069 No change 

Homogeneous SL 0.034 GM reduced 

Homogeneous SS 5.96 × 10-4 GM reduced 

   868 

 869 

Table S6. Summary of Dunnett post-hoc tests (N = 6) with respect to FL 

done after analysing the geometric mean fitness differences across nine 

evolutionary regimens (FL and eight homogeneous environment regimens) 

using a mixed model ANOVA, which revealed a significant main effect of 

the identity of the evolutionary regimen: F8,40 = 16.284, P = 2.172 × 10-10 

Population type P value (Dunnett (reference: FL)) 
GL 0.000016 
GS 0.000009 
TL 0.000028 
TS 0.000016 
ML 0.000009 
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MS 0.000009 
SL 0.000009 
SS 0.000009 

 870 

 871 

 872 

Table S7. Summary of Dunnett post-hoc tests (N = 6) with respect to FS 

done after analysing the geometric mean fitness differences across nine 

evolutionary regimens (FS and eight homogeneous environment regimens) 

using a mixed model ANOVA, which revealed a significant main effect of 

the identity of the evolutionary regimen: F8,40 = 5.094, P = 2.074 × 10-4 

Population type P value (Dunnett (reference: FS)) 
GL 0.999771 
GS 0.577267 
TL 0.984290 
TS 0.999855 
ML 0.666052 
MS 0.243947 
SL 0.024777 
SS 0.004229 

 873 

 874 

 875 

Table S8. Summary of Tukey post-hoc tests (N = 6) done after analysing the geometric mean fitness differences 

across all the ten evolutionary regimens using a mixed model ANOVA, which revealed a significant main effect 

of the identity of the evolutionary regimen: F9,45 = 14.566, P = 1.129 × 10-10. Tukey P values for pairwise 

differences with only FL and FS are shown below:  

 GL GS TL TS ML MS SL SS FL FS 

FL 0.000177 0.000156 0.000216 0.000175 0.000156 0.000156 0.000156 0.000156 - 0.000161 

FS 0.999998 0.921270 0.999688 0.999999 0.952902 0.647098 0.126786 0.027274 0.000161 - 

876 
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Table S9. Details of mutations observed at frequencies ≥ 10% after ~480 generations of evolution  877 

Population Position Mutation Frequency Annotation Locus/Region Region description Putative link to adaptation 

FL(A) 19,09,523 IS2 (+) +5 bp 100% intergenic (-22/+644) yobF ← / ← yebO DUF2527 domain-containing protein 

YobF / uncharacterized protein YebO 

- 

FL(A) 30,89,333 C→A 100% intergenic (+341/-83) metK → / → galP methionine adenosyltransferase / 

galactose:H(+) symporter 

Galactose uptake 

FL(A) 39,67,800 G→T 100% S84I (AGC→ATC)  rho → transcription termination factor Rho - 

FL(A) 41,25,478 G→A 100% Q38* (CAG→TAG)  cytR ← DNA-binding transcriptional repressor 

CytR 

Thymidine metabolism 

FL(A) 10,04,716 A→C 12.80% T66P (ACG→CCG)  ycbF → putative fimbrial chaperone YcbF - 

FL(A) 17,10,904 A→C 11.60% A692A (GCA→GCC)  rsxC → SoxR [2Fe-2S] reducing system protein 

RsxC 

- 

FL(B) 7,02,169 A→C 100% intergenic (-1/+8) nagC ← / ← nagA DNA-binding transcriptional dual 

regulator NagC / 

N-acetylglucosamine-6-phosphate 

deacetylase 

Galactose metabolism 

FL(B) 19,09,302 IS5 (–) +4 bp 100% coding (41-44/210 nt) cspC ← stress protein, member of the CspA 

family 

- 

FL(B) 41,24,957 Δ8 bp 60.70% coding (626-633/1026 nt) cytR ← DNA-binding transcriptional repressor 

CytR 

Thymidine metabolism 

FL(B) 38,16,992 Δ82 bp 41.40% 
 

[rph] [rph] Thymidine metabolism 

FL(B) 41,25,100 Δ1 bp 32.30% coding (490/1026 nt) cytR ← DNA-binding transcriptional repressor 

CytR 

Thymidine metabolism 

FL(B) 23,17,127 IS2 (–) +5 bp 27.00% coding (2508-2512/2673 nt) rcsD → RcsD phosphotransferase Galactose metabolism 

FL(B) 35,54,248 T→A 22.20% V11D (GTT→GAT)  malT → DNA-binding transcriptional activator 

MalT 

Maltose metabolism 

FL(B) 16,70,246 IS2 (–) +5 bp 17.40% coding (225-229/1221 nt) mlc ← DNA-binding transcriptional repressor 

Mlc 

- 

FL(B) 17,10,904 A→C 16.20% A692A (GCA→GCC)  rsxC → SoxR [2Fe-2S] reducing system protein 

RsxC 

- 

FL(B) 19,17,415 Δ1 bp 15.40% coding (30/699 nt) proQ ← RNA chaperone ProQ - 

FL(B) 19,17,411 +TTTACTGCTAT 14.80% coding (34/699 nt) proQ ← RNA chaperone ProQ - 

continued… 
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Table S9 (continued) 

Population Position Mutation Frequency Annotation Locus/Region Region description Putative link to adaptation  

FL(B) 15,54,101 C→A 14.40% intergenic (+200/+207) fdnI → / ← yddM formate dehydrogenase N subunit 

gamma / putative DNA-binding 

transcriptional regulator YddM 

- 

FL(B) 12,55,907 T→G 10.60% K652N (AAA→AAC)  ycgV ← putative autotransporter adhesin YcgV - 

FL(D) 41,24,871 A→G 68.50% L240P (CTT→CCT)  cytR ← DNA-binding transcriptional repressor 

CytR 

Thymidine metabolism 

FL(D) 20,86,018 G→A 65.50% A214A (GCC→GCT)  yeeE ← inner membrane protein YeeE - 

FL(D) 36,59,405 IS5 (–) +4 bp 63.00% intergenic (-218/-91) arrS ← / → gadE small regulatory RNA 

ArrS/DNA-binding transcriptional 

activator GadE 

Thymidine metabolism 

FL(D) 7,02,933 T→G 57.70% E131D (GAA→GAC)  nagA ← N-acetylglucosamine-6-phosphate 

deacetylase 

Galactose metabolism 

FL(D) 41,24,679 C→T 30.90% G304D (GGT→GAT)  cytR ← DNA-binding transcriptional repressor 

CytR 

Thymidine metabolism 

FL(D) 39,67,875 G→T 27.90% R109L (CGC→CTC) ‡ rho → transcription termination factor Rho - 

FL(D) 39,67,876 C→T 27.90% R109R (CGC→CGT) ‡ rho → transcription termination factor Rho - 

FL(D) 30,14,614 T→G 10.00% N253T (AAC→ACC)  yqeB ← XdhC-CoxI family protein YqeB - 

FS(A) 39,39,901 C→T 100% A181V (GCC→GTC)  rbsR → DNA-binding transcriptional dual 

regulator RbsR 

Thymidine metabolism 

FS(A) 41,25,434 Δ3 bp 100% coding (154-156/1026 nt) cytR ← DNA-binding transcriptional repressor 

CytR 

Thymidine metabolism 

FS(A) 23,77,019 T→G 16.90% T26P (ACC→CCC)  menC ← o-succinylbenzoate synthase - 

FS(A) 17,10,565 A→G 14.20% E579E (GAA→GAG)  rsxC → SoxR [2Fe-2S] reducing system protein 

RsxC 

- 

FS(A) 17,10,904 A→C 12.90% A692A (GCA→GCC)  rsxC → SoxR [2Fe-2S] reducing system protein 

RsxC 

- 

FS(D) 41,24,694 G→T 100% P299Q (CCG→CAG)  cytR ← DNA-binding transcriptional repressor 

CytR 

Thymidine metabolism 

FS(D) 41,87,795 A→C 100% E438A (GAA→GCA)  rpoC → RNA polymerase subunit beta' 
 

FS(D) 33,08,226 T→G 18.70% N256T (AAC→ACC)  deaD ← ATP-dependent RNA helicase DeaD 
 

FS(D) 20,83,798 Δ1 bp 16.90% intergenic (-117/-92) dacD ← / → sbcB D-alanyl-D-alanine carboxypeptidase 

DacD/exodeoxyribonuclease I 

 

continued… 
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Table S9 (continued) 

Population Position Mutation Frequency Annotation Locus/Region Region description Putative link to adaptation  

FS(D) 17,10,572 C→G 12.90% Q582E (CAA→GAA)  rsxC → SoxR [2Fe-2S] reducing system protein 

RsxC 

- 

FS(D) 15,54,101 C→A 11.80% intergenic (+200/+207) fdnI → / ← yddM formate dehydrogenase N subunit 

gamma/putative DNA-binding 

transcriptional regulator YddM 

- 

FS(D) 17,10,904 A→C 11.00% A692A (GCA→GCC)  rsxC → SoxR [2Fe-2S] reducing system protein 

RsxC 

- 

FS(D) 25,71,607 A→C 10.40% L426R (CTG→CGG)  eutE ← putative aldehyde dehydrogenase, 

ethanolamine utilization protein 

- 

FS(E) 22,22,617 G→C 67.50% R169G (CGT→GGT)  bglX ← beta-D-glucoside glucohydrolase, 

periplasmic 

- 

FS(E) 3,939,469:1 +T 54.40% coding (110/993 nt) rbsR → DNA-binding transcriptional dual 

regulator RbsR 

Thymidine metabolism 

FS(E) 36,59,368 IS5 (–) +4 bp 18.40% intergenic (-181/-128) arrS ← / → gadE small regulatory RNA 

ArrS/DNA-binding transcriptional 

activator GadE 

Thymidine metabolism 

FS(E) 1,26,126 G→A 12.90% K144K (AAG→AAA)  aceF → pyruvate dehydrogenase, E2 subunit - 

FS(E) 1,07,554 G→T 10.40% intergenic (+80/-151) lpxC → / → secM UDP-3-O-acyl-N-acetylglucosamine 

deacetylase/SecA translation regulator 

- 
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