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Abstract 

We study the evolution of quantitative molecular traits in the absence of selection. Using a 
simple theory based on Felsenstein’s 1981 DNA substitution model, we predict a linear restoring 
force on the mean of an additive phenotype. Remarkably, the mean dynamics are independent of 
the effect sizes and genotype and are similar to the widely-used OU model for stabilizing 
selection. We confirm the predictions empirically using additive molecular phenotypes 
calculated from ancestral reconstructions of putatively unconstrained DNA sequences in primate 
genomes. We show that the OU model is favoured by inference software even when applied to 
GC content of unconstrained sequences or simulations of DNA evolution. We predict and 
confirm empirically that the dynamics of the variance are more complicated than those predicted 
by the OU model, and show that our results for the restoring force of mutation hold even for non-
additive phenotypes, such as number of transcription factor binding sites, longest encoded 
peptide and folding propensity of the encoded peptide. Our results have implications for efforts 
to infer selection based on quantitative phenotype dynamics as well as to understand long-term 
trends in evolution of quantitative molecular traits. 

Introduction 

With the increasing availability of high-throughput data about molecular and cellular function 
from many species, a key challenge is detect selection on these quantitative molecular traits [1]–
[9]. The models used for selection in the comparative phylogenetic approach have rich 
theoretical grounding [10], [11] and software packages are available for data analysis under a 
variety of inference frameworks [12]–[14]. However, despite evidence that molecular 
phenotypes may evolve with little selective constraint [15]–[17] and classical work in the 
area[18], relatively little attention has been paid to improving the realism of the “neutral” or 
“null hypotheses” for phenotype evolution, as compared to protein coding sequences[19], [20] 
where the null hypothesis can explicitly formulated based on empirical estimates from neutral 
sites [19] or, more recently, biophysics of protein folding (e.g.,[21]).  

Brownian Motion (also referred to as a “random walk”[22]) is an appealing null hypothesis for 
phenotype evolution in comparative analysis of quantitative molecular traits[8]. It is 
mathematically convenient [23] and is referred to as a model of “pure drift” [1], [13] because it 
matches quantitative trait evolution in theory under genetic drift alone[23]. A key prediction of 
the Brownian Motion model is that changes from the ancestral phenotype are symmetric, and 
therefore, on average, phenotypes are not expected to change over time[24]. On the other hand, it 
has long been appreciated that in even in the absence of selection, mutation is expected to be (at 
least) a weak directional force on phenotype evolution[22], [25] and this has been observed 
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empirically in at least one recent mutation accumulation study[26]. This view is captured in the 
so-called house-of-cards model [27], which was meant to capture the idea that the force of 
random mutation would be expected to break down what had been built up by selection.  

With the increasing interest in studying evolution of molecular and cellular traits over long 
evolutionary time-scales, several theoretical studies have begun to take a closer look at the 
expected effects of mutation on the phenotype, finding that the equilibrium phenotype is the 
result of a trade-off between the directional effects of mutation and selection [28]–[30], and that 
biased mutation can drive the phenotype away from the optimum when selection is not 
strong[31]. To our knowledge, these predictions have not yet been compared directly with data, 
but global gene expression variation in mutation accumulation studies appears more consistent 
with the house-of-cards prediction[32]. Perhaps most intriguingly, a recent empirical study that 
estimated the effects of mutations on gene expression levels for 10 genes found asymmetric 
distributions (inconstant with Brownian Motion) and used simulations to predict approximately 
linear change over time in the absence of selection for most genes [33].  

Here we aimed to develop a neutral model of phenotype evolution that could be compared 
directly to DNA-based molecular phenotypes. We work out the dynamics of additive phenotypes 
in the weak-mutation regime[34], the regime of most relevance for molecular evolutionary 
studies. Under Felsenstein’s 1981 model of DNA evolution[35], we predict that mutation acts as 
a linear restoring force on the mean phenotype, similar to the OU models currently used for 
stabilizing selection[10] and to the house-of-cards model for phenotype evolution[22]. We find 
remarkable agreement with this prediction in observations of molecular phenotypes computed 
from reconstructed ancestors of putatively neutral sequences in primate genomes, even when the 
phenotypes are not strictly additive. Our results are inconsistent with the Brownian Motion null 
hypothesis used in phylogenetic comparative analysis, and consistent with this, an inference 
software package rejects this null hypothesis for our neutral phenotype data.  

Results 

Neutral dynamics of the mean of an additive phenotype under a DNA substitution model 

Our goal is to compare a neutral model of phenotype evolution to observations of molecular 
phenotypes obtained from closely related extant species. We therefore sought to derive the 
dynamics of the moments of the phenotype distribution under a standard model of DNA 
substitution. Let Z(X) be the phenotype as a function of the genotype X, and 𝑎  be the 
contribution of the m-th allele at the n-th locus. For example, for a DNA-based phenotype with 
n=10 contributing loci, a represents a 4 x 10 matrix. In order to compare with empirical 
phenotype data, we allow arbitrary values for 𝑎 , thus making no assumptions about the 
distribution of effect sizes. We assume the haploid loci are in linkage disequilibrium, and use a 
so-called “one-hot” encoding to represent the genotype, so that 𝑋 1  if the haploid genotype 
is the m-th allele at the n-the locus and zero otherwise. Thus, for n=10 loci, the genotype, X, is 
also a 4 x 10 matrix. If the phenotype is additive, we have: 

𝑍 𝑋 𝑎 𝑋 𝑎 ∙ 𝑋  
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where 𝑎 ∙ 𝑋  is a dot product between vectors of length 4 for DNA. Given a starting phenotype 
𝑍 , because evolution is a random process, we aim to calculate the mean phenotype over 
“replicate” populations as a function of time, t. 

𝐸 𝑍 𝑡 |𝑍 𝑃 𝑋 𝑃 𝑌|𝑋, 𝑡 𝑍 𝑌
 . .  

 

Where P(x) is the probability density of the random variable x and E[x] denotes the expectation 
(or mean), 𝐸 𝑥 ≝ ∑ 𝑃 𝑥 𝑥 , 𝑃 𝑌|𝑋, 𝑡  is the probability of the initial genotype X mutating into 
another genotype Y after evolutionary time t, and 𝑃 𝑋  is the probability of observing the initial 
genotype. In assuming that an initial genotype mutates into another genotype we are neglecting 
the possibility of polymorphism, competition and recombination between genotypes and other 
population genetic processes. This is the so-called “weak mutation” assumption commonly used 
to model molecular evolution at the timescale of inter species divergence[34]. 

To make progress, we first consider the dynamics of the mean phenotype given an initial 
genotype X: 

𝐸 𝑍 𝑡 |𝑋 𝑃 𝑌|𝑋, 𝑡 𝑍 𝑌 𝑃 𝑌 |𝑋 , 𝑡 𝑎𝑛 ∙ 𝑌𝑛 

Where the last equality is achieved using the linearity of the expectation and the assumption of 
the independence of genotype evolution at each locus. Under Felsenstein’s 1981 model (F81) of 
DNA evolution [35] the substitution probabilities are,  

𝑃 𝑌 |𝑋 , 𝑡 𝜋 1 𝑒  𝑓𝑜𝑟 𝑌 𝑋  

𝑃 𝑌 |𝑋 , 𝑡 𝑒 𝜋 1 𝑒  𝑓𝑜𝑟 𝑌 𝑋  

where 𝑢 ≝
∑

 is the DNA substitution rate, scaled to that evolutionary distance, ut, is 

measured in substitutions per site and π is the stationary distribution that parameterizes the 
continuous time markov process and can be interpreted as the long-term probabilities of each 
allele[35]. For notational convenience we define 𝜋 ≝ 𝜋 ∙ 𝑌  to represent the (scalar) long-term 
probability of the allele that is found at the n-th locus. Note that this model assumes that the loci 
evolve independently and identically, so there is no dependence on the locus for 𝜋 . Using 
straightforward algebra (see Appendix), we can show that 

𝐸 𝑍 𝑡 |𝑋 𝑒 𝑍 1 𝑒 𝑍 𝑒 𝑍 𝑍 𝑍  

Where 𝑍 ≝ ∑ 𝜋 ∙ 𝑎  and can be interpreted as the phenotype expected after a long-time of 
neutral evolution, or the phenotype at “mutational equilibrium.”  

Remarkably, our formula for the dynamics of the mean of an additive phenotype is independent 
of the starting genotype, X, and depends only on the starting phenotype 𝑍 . In other words, the 
dynamics of the phenotype are the same for all genotypes that encode that phenotype. We 
conjecture that the F81 model is the most realistic DNA substitution model for which this can be 
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true (for example, it is not true of models with transition-transversion rate bias[36], see 
Discussion). This removes the need to average over all 𝑋 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡  𝑍 𝑋 𝑍 , leading to our 
main theoretical result, which we refer to as the F81 model for mean phenotypes: 

𝐸 𝑍 𝑡 |𝑍 𝐸 𝑍 𝑡 |𝑋 𝑒 𝑍 𝑍 𝑍  

Thus, under the F81 DNA substitution model, the dynamics of the mean phenotype depend only 
on the initial phenotype, the mutational equilibrium phenotype and the evolutionary rate. The 
dynamics of the mean phenotype are independent of the number of alleles, loci, and the 
distribution of allelic effect sizes, 𝑎. The dynamics of the mean phenotype are similar to those 
expected under the (not DNA-based) house-of-cards mutation model[22], if the mean of the 
phenotype effect distribution in the house-of-cards model is chosen to be the “mutational 
equilibrium” phenotype, 𝑍 , defined above.    

Since we measure evolutionary distance in units of substitutions per site, for evolutionary times 
of interest in the primate phylogeny considered below, 𝑢𝑡 ≪ 1, so 𝑒 1 𝑢𝑡. Hence 

𝐸 𝑍 𝑢𝑡 ≪ 1 |𝑍 𝑢𝑡 𝑍 𝑍 𝑍  

This says that the mean phenotype is driven towards the equilibrium with a force simply 
proportional to the distance of the initial phenotype from the mean. Near the equilibrium, 
mutation can be neglected, but the further the phenotype is from equilibrium, the stronger the 
directional force of mutation becomes. The appearance of a directional force on the mean 
phenotype in the absence of selection is contradictory to the Brownian Motion null hypothesis 
for phenotype evolution[23], which argues that in the absence of selection, the mean phenotype 
is not expected on average to change in one direction or the other[23]. 

Another remarkable feature of our result is that the dynamics of the mean phenotype match 
exactly to the mean of the well-studied OU process, a stochastic model that is widely used to 
capture the restoring force of stabilizing selection in phylogenetic comparative analysis[10], 
[11], [13]. If our prediction of OU-like mean dynamics in the absence of selection is correct, 
naïve use of the OU process to model selection may be misleading (see discussion). The OU 
process is a Gaussian process, and therefore the dynamics are fully specified by the mean and 
variance. The parameters of the OU process are the restoring force (which must be 𝑢 based on 
the form of the mean dynamics we predict above) and the fluctuation size (𝜎 ), which doesn’t 
affect the mean dynamics. If the F81 neutral phenotype dynamics matched an OU process 
exactly, the variance would be independent of the starting phenotype, and at short evolutionary 
distance would increase proportional to time 

𝑉 𝑍 𝑡 |𝑍 𝑉 𝑍 𝑡
𝜎
2𝑢

1 𝑒
𝜎
2𝑢

2𝑢𝑡 𝜎 𝑡 

Where V[x] is the variance of the random variable x. To figure out the fluctuation size, 𝜎 , we 

consider that the long time variance should go to 𝑉 𝑍 𝑡 → ∞ . So under an OU model 

with the only force being that of mutation, 𝜎 2𝑢𝑉 𝑍 𝑡 → ∞  and  
𝑉 𝑍 𝑢𝑡 ≪ 1 2𝑢𝑡𝑉 𝑍 𝑡 → ∞  
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This means that, if the phenotypic dynamics in the absence of selection follow an OU process, 
the variance of the phenotype will increase proportionally to evolutionary distance, at the rate of 
twice the long-time or equilibrium variance. Since this prediction is the same as the prediction of 
the Brownian-Motion model[37], the variance dynamics at short times cannot be used to 
distinguish the Brownian-Motion and OU models.  

 

Molecular phenotypes from ERVs in primate genomes  

Since our goal is to test empirically the predictions of the model, we considered phenotypes that 
could be computed directly from DNA sequences: these represent so-called quantitative 
molecular traits[5] with known genetic architecture and no measurement noise. This 
experimental set-up is attractive for several reasons: we can be sure that the phenotypes are truly 
“additive” (therefore not violating the assumptions of the model), we can rule out that stochastic 
effects we observe are intrinsic to the evolutionary process and not due to measurement or 
sampling errors[38], [39], and we can compare the observations from real DNA sequences to 
comparable observations from forward simulations under the DNA substitution models to 
determine the effects (if any) of mis-specification of the substitution model. 

To obtain neutral phenotypes, we analyzed alignments of endogenous retroviruses (ERVs, see 
Methods), which are well-annotated ancient pseudogenized copies of retroviruses that are no 
longer replicating, but are easily identifiable and distributed in large number over the human 
genome[40]. We treat these sequences as independent “replicates” of the evolutionary process 
and compute the mean and variance of quantitative molecular phenotypes derived from these 
sequences. We use reconstructed ancestral DNA sequences (based on alignments of closely 
related primates) along the lineage leading to human, and infer the ancestral phenotypes from 
these. This allows us to directly study the forward evolution of phenotypes in an evolutionary 
ensemble without relying on model assumptions for parameter inference. 

Dynamics of GC content and TATA box strength confirm the directional force of mutation 

We first considered the “simplest” possible DNA-based phenotype: GC content, a phenotype that 
has been studied using comparative phylogenetic methods, e.g., [41]. We computed GC content 
in 100 nucleotide segments extracted from ERVs (see Methods) binned by the GC content of the 
inferred ancestral sequence. As expected for a simple restoring force of mutation, qualitatively, 
sequences with relatively high GC content (Figure 1a, triangles) show a decrease over 
evolutionary time, while sequences that start with a low GC content show an increase in GC 
content over time (figure 1b, filled squares). As predicted, the decrease at these short 
evolutionary distances appears linear. 

To compare quantitatively, we express GC content in the notation of our theory. The GC content 
of the ancestral sequences in the bin represents 𝑍  and we used 𝜋 𝜋 , 𝜋 , 𝜋 , 𝜋

0.32,0.18,0.18,0.32  which gives 𝑢 ≝
∑

1.37. For GC content in a sequence of 

length L, each locus contributes 1/L if it is G or C, and 0 otherwise. This means 𝑎

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 26, 2020. ; https://doi.org/10.1101/2020.10.26.355438doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.26.355438
http://creativecommons.org/licenses/by/4.0/


𝑎𝐴, 𝑎𝐶, 𝑎𝐺, 𝑎𝑇 0, , , 0  for all n. From these we compute the other key parameters for GC 

content  

𝑍 ≝ 𝜋 ∙ 𝑎 𝜋 𝜋 0.36 

𝑉 𝑍 𝑡 → ∞
1
𝐿

𝜋 𝜋 1 𝜋 𝜋 0.002304 

We found good agreement between the theory based on the F81 DNA substitution model (dashed 
lines in Figure 1a,b) and the observed changes in GC content. We also used simple linear 
regression to infer the change in GC content over time as an estimate of the evolutionary force 
(see Methods). Once again we found good agreement between the theory and the observations, 
(Figure 1c) with some slight deviations for sequences with ancestral GC content much different 
than equilibrium. We believe these deviations are due to the mis-specification of our DNA 
substitution model which does not include CpG bias in the mutation rate or transition-
transversion rate bias. Finally, we note good agreement between the variance predicted by an OU 
process and the observed increase in variance for GC content. To rule out possible circularity due 
to the use of probabilistic models of evolution in ancestral genome reconstruction [42] we 
repeated this analysis using ancestral sequences reconstructed using maximum-parsimony, which 
makes no assumptions about the relative likelihood of substitutions between different 
nucleotides. We found qualitatively similar results. 

We next repeated these analyses for the strength of matches to the TATA box ([43], see 
Methods) in the first 10 residues of each ERV segment. Because positions in transcription factor 
binding sites contribute approximately linearly to affinity[44], this represents a simple 
biochemical phenotype whose evolution is well studied[4]. For clarity we note that in our case 
none of these sequences are expected to have functioning TATA boxes: these are sequences with 
similarity to the TATA box that arise by chance[45]. The strength of matches to the TATA box 
is computed using a 4 x 10 weight matrix model, which corresponds to a in our model (see 
Methods). We bin the sequences by the average strength of TATA box in the inferred ancestor, 
𝑍 , and again we used 𝜋 0.32,0.18,0.18,0.32  which implies 𝑢 1.37. The other 
parameters are 𝑍 9.223 and 𝑉 𝑍 𝑡 ∞ 24.6, which are obtained directly from the 
matrix model (see Methods). We found good agreement with the predictions of the model 
(Figure 2a-c). Once again the linear, constant increase in variance seems to agree reasonably well 
with the prediction that neutral phenotypes evolve according to an OU process. 

The BM null hypothesis is rejected for GC content evolution in the absence of selection 

To test whether the observed deviations from the Brownian Motion null hypothesis were strong 
enough to be detected in a typical analysis, we applied the widely used OUCH package for 
comparative phylogenetic analysis[39]. We obtained six well-aligned fragments from an 
alignment of 39 mammals (see Methods) for an unusually ancient ERV that is thought to evolve 
in the absence of selection[46]. We found that for the five of six segments where the inference 
algorithm converged, the OU model was strongly supported over the Brownian Motion null 
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hypothesis (all differences in corrected AIC >50, Table 1), which in the standard interpretation in 
comparative phylogenetic analysis would be considered strong evidence for stabilizing selection 
(Figure 3a). We note that these results cannot be explained by noise [38]in our phenotypic 
measurements, as GC content is computed exactly from sequences. 

Although this ERV is thought to evolve in the absence of selection[46], we wanted to ensure that 
the results were not due to cryptic selection on GC content. We therefore simulated molecular 
evolution of these ERV sequences under a simple neutral model of DNA substitutions (see 
Methods) and found the same results using OUCH for inference: in the five cases where the 
algorithm converged, the data strongly supported the rejection of the BM model in favour of the 
OU model usually associated with stabilizing selection (all differences in corrected AUC >50, 
Figure 3b). Qualitatively, the strength of support (as measured by AUC in bootstrap resamplings) 
was similar to (albeit stronger than) that obtained with the real data, consistent with the idea that 
ERV sequences are likely evolving in the absence of selection on GC content. Taken together, 
these results are consistent with the idea that the force of mutation on quantitative molecular 
traits is sufficient to reject the Brownian Motion null hypothesis in a phylogenetic comparative 
analysis (see Discussion) 

Dynamics of ATGs show the predicted mutational force, but no longer match an OU process 

Although our predictions of the mean phenotype dynamics make no assumptions about the 
underlying distribution of the phenotype, this assumption is made in the Brownian Motion and 
OU process predictions; both GC content and strength of TATA boxes are expected to be 
approximately Gaussian (GC content is an estimate of a binomial distribution parameter and the 
strength of a TATA box is the sum of 10 different numbers). Therefore, we next considered a 
sequence-based trait that we expected to be far from Gaussian: the number of ATG start codons 
in 100 bp segments. Since the number of ATGs cannot be negative, sequences that start with 0 
ATGs will certainly violate the predictions of Brownian Motion and OU process models. Once 
again, we emphasize that we do not expect these ERV sequences to encode functional proteins, 
so these are simply ATGs that occur by chance or may have functioned in the ancestral viral 
proteins.  

As for GC content and strength of TATA boxes, we found that the number of ATGs in neutral 
sequences shows a clear mean-reverting force. For example, in ancestral sequences that have 
exactly 4 ATGs, we see the number of ATGs decreasing over time (Figure 4a, triangles). This is 
intuitive as we expect random mutation to destroy these “informative” signals over time. Less 
intuitive is the analogous result for ancestral sequences that start with no ATGs: in these 
sequences we see (on average) the accumulation of ATGs over evolutionary time (figure 4b 
filled squares). Evolution appears to be creating start codons, such that overall 142 ATGs are 
found in human ERV segments that had none in the primate ancestor. Again, we emphasize that 
the creation of ATGs is not the result of any selection or biological function, rather, in these 
sequences ATGs are simply being created by random mutations faster than they are being 
destroyed. We note that the temptation to create adaptive explanations for the appearance of 
ATGs in these sequences is very strong (see Discussion), but we confirmed that the dynamics of 
ATGs are similar in simulations where we can be certain there is no selection or function. 
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To predict the dynamics of the number of exact matches to a short sequence, which is not strictly 
an additive phenotype, we treat the DNA sequences as a series of overlapping w-mers, which we 
assume are independent; in the case of ATGs, w = 3. This means that we imagine 4  possible 
alleles at each locus, and 𝑎 1 for the short sequence of interest, and 0 ortherwise. If we 
assume that each DNA letter still evolves independently and at the same per-site rate, the 

effective evolutionary rate between these alleles will be 𝑤𝑢
∑

. Furthermore, with 

4  ≫ 1, as long as the mutation process is not too biased, 𝜋 → 0, so 𝑢 → 1 and the 
mutational restoring force is simply w. As before, the number of ATGs in the ancestral 
sequences in the bin represents 𝑍 . The equilibrium phenotype in this model can be computed 
exactly 

𝑍 ≝ 𝜋 𝑎
,

𝐿 𝑤 1 𝑎 ∙ 𝜋 𝐿 2 𝜋 𝜋 𝜋 1.806 

As with GC content and strength of TATA boxes, we find very good agreement between the 
theory and the mean dynamics (dashed lines in figures 4a,b,c) and clear evidence for the linear 
restoring force with strength simply equal to 3 start codons per substitution per 100nt sites 
(Figure 4c). We note that the agreement between the observations and theory must be highly 
approximate in this case, because the exact dynamics of the number of ATGs is strongly 
genotype dependent: initial sequences with many “one-off” sequences (e.g., ATC, ATT, ATA, 
AAG, etc.) are much more likely to increase their number of ATGs than sequences with few of 
these “one-off” sequences. We believe that because we are measuring the average over a large 
number of initial sequences, these effects are averaged out (see Discussion). 

Since the number of exact matches is approximately binomial, the long-time variance will be 
approximately  

𝑉 𝑍 𝑡 → ∞ 𝐿 2 𝜋 𝜋 𝜋 1 𝜋 𝜋 𝜋 1.773 

Unlike for GC content and strength of TATA boxes, we found that the variance in number of 
ATGs was not independent of the starting phenotype 𝑍 , and therefore inconsistent with the OU 
prediction (dashed line in figure 5a). For number of ATGs we found that sequences with more 
ATGs than the equilibrium (4 ancestral ATGs, triangles in figure 5a) showed a faster increase in 
variance than sequences with fewer (0 ancestral ATGs, filled squares in figure 5a). We therefore 
looked at the ancestral bin that was closest to the mutational equilibrium (2 ancestral ATGs, x’s 
in figure 5a) and found that the variance increased in very good agreement with the OU 
prediction. Taken together, these results for the variance suggest that the true dynamics for 
molecular phenotypes do not match an OU process when the phenotype is strongly non-Gaussian 
and/or sufficiently far from the mutational equilibrium.  

 

Variance dynamics of neutral phenotypes are more complicated than OU or BM model predicts 
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We next explored the dynamics of the variance. Under the assumptions above (weak-mutation 
regime, full linkage disequilibrium, haploid), the dynamics of the variance of an additive 
phenotype given an initial genotype, X, is given by  

𝑉 𝑍 𝑡 |𝑋 𝐶 𝑋 ∙ 𝑎 𝑎  

Where 𝑎 is the vector of effects of alleles at position n, and 𝐶 𝑋  is the variance-covariance 
matrix for the current genotype at the n-th locus with entries given by 𝐶 𝐸 𝑌 𝐸 𝑌 𝑌

𝐸 𝑌 , and the multiplication, indicated by ∙  is an inner product between the two matrices. 
Because the genotype at each locus is a categorical random variable, we know the form of 
𝐶 𝑋 , which works out to: 

𝐶 𝐸 𝑌 |𝑋𝑛 1 𝐸 𝑌 |𝑋𝑛 1 𝑒 𝜋 1 𝜋 𝑒 𝑋 𝜋  

𝐶 𝐸 𝑌 |𝑋𝑛 𝐸 𝑌 |𝑋𝑛 1 𝑒 𝜋 𝜋 𝑒 𝜋 𝑋 𝑋 𝜋 𝜋 𝜋  

Where k and m index two different alleles. In general, under the F81 model, the variance appears 
to depend on the initial genotype, X, and is non-monotonic.  

For the simplest phenotype, we can show that the F81 neutral dynamics of the variance are 
independent of the initial genotype, X, but they are still more complicated that the OU model 
predicts. Consider the additive phenotype where only one allele contributes at each locus, and the 
effect size is the same at each locus, say 1 unit. The phenotype is proportional to the counts of 
the m-th allele over all the loci, and corresponds to a phenotype considered in recent theoretical 
work [28]. In our notation, 𝑎 1 for the m-th allele at each position, and 0 otherwise. For 
each of L identical loci, if the m-th allele is listed first, 

𝑎 𝑎

1 0 0 ⋯
0 0 0
0
⋮

0 0
 

The variance is simply 𝑉 𝑍 𝑡 |𝑋 ∑ 𝐶 . Since for this simple phenotype  𝑍 𝐿𝜋 [28], 
substituting the formula above gives 

𝑉 𝑍 𝑡 |𝑋 1 𝑒 𝑢𝑡 𝑍 1
𝑍
𝐿

1 𝑒 𝑢𝑡 𝑒 𝑢𝑡 𝑋𝑛𝑚 𝜋𝑚
2

𝑛

 

The first term is a single exponential decay to the long-term variance, 𝑍 1 . The second 

term is proportional to the squared difference of the starting genotype from the probability of the 
m-th allele at equilibrium. However, it can be simplified into a genotype independent form in 
this case: we get exactly 𝑍 ∑ 𝑋 terms of  1 𝜋  and exactly 𝐿 𝑍  of 𝜋 , so 

𝑉 𝑍 𝑡 |𝑍 1 𝑒 𝑢𝑡 𝑍 1
𝑍
𝐿

1 𝑒 𝑢𝑡 𝑒 𝑢𝑡 𝑍 1 2
𝑍

𝐿
𝑍

𝐿
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Thus, the variance of the simplest additive phenotype is independent of the genotype, but shows 
non-monotonic, initial phenotype dependent dynamics. This also appears to be consistent with 
analysis of a simple phenotype under the house-of-cards mutation model, which also predicts 
non-monotonic dynamics that depend on the starting phenotype[22]. Only in the case where 

 is the variance dynamics independent of the initial phenotype (as predicted by the OU 

dynamics), which corresponds to a case where exactly ½ of the sites have the m-th allele at 
equilibrium. However, even in this situation the dynamics deviate from the OU prediction. 

To reconcile these theoretical results with our observations of additive phenotypes showing 
nearly OU variance dynamics, we consider the case where 𝑍  approaches 𝑍 . After algebra, we 

have 𝑉 𝑍 𝑡 |𝑍 → 𝑍 1 𝑒 𝑢𝑡 1 𝑒 𝑢𝑡 𝑍 1 1 𝑒 2𝑢𝑡 𝑍 1 ,  

which is exactly the OU dynamics. Hence, at least in this case, the variance shows OU dynamics 
when the initial phenotype is at equilibrium. We conjecture that more generally, the variance 
dynamics approach OU dynamics when the phenotype approaches equilibrium. However, for 
only slightly more complicated phenotypes (such as GC content as defined above) the dynamics 
are not exactly OU, even if the phenotype is at the mutational equilibrium, owing to covariance 
between the alleles at each locus (see Appendix). We note that although the prediction matches 
the data for GC content and TATA boxes in ERVs, the case where the initial phenotype, 𝑍 , 
approaches the mutational equilibrium, 𝑍 , is not a realistic case for a phenotype that has been 
under selection, where the phenotype is likely very far from that expected under mutation alone 
(see Discussion). 

Because our approximate model for the number of ATGs described above corresponds to this 
simple counting phenotype, we compared these predictions to that data. At short evolutionary 
distance, and since for ATGs in 100 residues, 𝑍 ≪ 𝐿, we obtain a simple approximation for the 
variance of number of ATGs under the F81 model: 

𝑉 𝑍 𝑡 ≪ 1 |𝑍 𝑢𝑡 𝑍 𝑍  

To our knowledge this simple prediction for the rate of increase of variance based on the initial 
phenotype has not been reported under the house-of-cards model[22]. Comparing this to our 
observations for the variance of ATGs (with u=3) gives remarkably good agreement, and better 
predicts the linear increase in variance than the OU model (Figure 5b,c).  

Neutral dynamics of more complex molecular phenotypes also show a linear restoring force 

Many of the molecular phenotypes of interest (e.g., gene expression level) are much more 
complicated than GC content or strength of binding and are hard to express as additive 
phenotypes. Nevertheless, a recent study of the mutational effects on gene expression used 
simulations parameterized by empirical measurements to show simple linear dynamics of gene 
expression phenotypes[47] even though the traits are unlikely to be linear. To test the generality 
of our finding of a mutational force on the mean phenotype, we next empirically studied the 
neutral dynamics of non-additive phenotypes that can be computed from sequence. We chose 
three phenotypes that are of more biological interest: the number of TATA boxes in a 100 bp 
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sequence, the length of the longest encoded peptide, and the intrinsic disorder in the longest 
encoded peptide. The first of these relates to how non-coding sequences evolve so-called 
homotypic clusters of binding sites[48], [49], and the latter two of these phenotypes are related to 
the emergence of new protein-encoding genes from random DNA [50], [51]. To obtain these, we 
computed the lengths of six-frame translations from our 100-basepair ERV segments, and the 
propensity of the peptide to fold ([52], see methods). We emphasize that these phenotypes are 
highly non-linear in the DNA sequence genotype, and therefore strongly violate the assumptions 
used to derive our results above. 

Remarkably, we found that these phenotypes also showed simple linear mean dynamics, albeit 
with stronger evolutionary forces pushing the phenotypes to their mutational equilibrium (Figure 
6a) than the additive phenotypes considered above. The force appears to be different for each 
phenotype, but we have no theory to predict it. To a large extent, the evolutionary force appears 
simply proportional to the distance of the ancestral sequence from the equilibrium (Figure 6b) 
and the quantitative strength of the force is less than 10 units per 100 bp DNA sequence. Thus, 
non-additive phenotypes also appear to show a simple force of mutation proportional to the 
distance of the ancestral phenotype from the mutational equilibrium.  

We also repeated the OUCH analysis on the longest ORF in ancient mammalian ERV segments 
to test if the mutational force would be strong enough to reject the BM null hypothesis. Indeed, 
we find significant support for the OU process model for the longest ORF (all 4 of 6 segments 
where the inference converged show corrected AIC differences > 50, Table 1). We note that 
under the current interpretation of this as evidence for stabilizing selection, this would lead to the 
(interesting) inference that ancient ERVs are under selection to retain coding capacity. However, 
we can find the similar evidence for the OU process in simulated versions of these segments (see 
methods) where we know there is no selection for coding capacity (all 3 of 6 segments where the 
inference converged show corrected AIC differences > 20, Table 1), consistent with the idea that 
mutation alone (or model mis-specification due to mutation, see Discussion) appears sufficient to 
create a detectable evolutionary restoring force on molecular phenotypes of current research 
interest. 

Discussion 

Our results show that mutation is expected to aid the creation of molecular phenotypes de novo 
and relate to several areas of molecular evolution. For example, in agreement with simulation 
results [53], we find that mutation alone is sufficient to create transcription factor binding sites in 
DNA sequences, and we quantify this effect: 100 nt sequences that have no strong matches to the 
TATA box are expected to accumulate them at a rate of approximately 0.5 TATA box matches 
per substitution per site. Similarly, in random 100 nt sequences with no open reading frames, 
mutation will tend to create open reading frames at a rate of >50 codons per substitution per site. 
Even if the encoded peptides start out as strongly disordered[51], the force of mutation is 
expected on average to increase their tendency for folding[50]. Remarkably, but consistent with 
a recent report [33], even though all of these molecular phenotypes are non-additive, they show 
simple linear change over time, following our predictions for additive phenotypes. We believe 
that this is because our ERV sequences are relatively near the mutational equilibrium for these 
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phenotypes, and speculate that the evolutionary dynamics are approximately linear near the 
mutational equilibrium. It will be of great interest to extend the theoretical work to explain these 
observations. 

Unlike previous theoretical work which focused on quantifying the force of mutation on 
phenotype evolution by including mutational bias[29], [31], here we used the F81 substitution 
model, which is formulated in terms of the (possibly non-uniform) equilibrium frequencies for 
the DNA bases (alleles). Our results suggest that the mutational equilibrium phenotype, rather 
than the mutation rate bias plays the key role in determining the neutral dynamics of phenotypes, 
consistent with recent theoretical results[28], [31]. Although the F81 model does have mutation 
bias (the rate bias from allele m to allele k is πm/ πk; there is no transition-transversion bias or 
CpG hypermutation), we also considered the Jukes-Cantor model, which is a specific instance of 
the F81 model where all πm=1/4 (𝑢=4/3) for DNA, and therefore shows no mutation bias. 
Importantly, even under this simplification, we still predict a restoring force proportional to the 
distance from the mutational equilibrium, although some simplification of the dynamics is 
obtained (e.g., the neutral variance dynamics of GC content is no longer genotype dependent). 
Even simplified bi-allelic (non-DNA based) models with no mutation bias show a restoring force 
of mutation when far from mutational equilibrium (Appendix), strongly suggesting that the force 
of mutation in phenotype evolution is not due to mutation rate bias, but is a more fundamental 
result of the mapping between the discrete genotype space and the continuous (or ordinal) 
phenotype. We did not pursue these simplified models further because the predictions of the 
dynamics were not close to our observations from ERV sequences, presumably because the 
predicted mutational equilibrium is too far from the real data (e.g., equilibrium GC content of 
50%, rather than 36%). This highlights the need to develop simpler (approximate) theory that can 
still be quantitatively compared to data. 

Interestingly, for GC content we found agreement with the predictions of the variance based on 
the OU process, even though we can show that this is only approximate (See Appendix). We 
believe this is because GC content in ERVs is close enough to mutational equilibrium, where we 
find the dynamics to be well approximated by the OU process. However, more generally, our 
F81 phenotype evolution model is meant to be used as a null hypothesis for phenotypes that may 
be under selection (such as gene expression levels), and these phenotypes are unlikely to be close 
to mutational equilibrium. This is consistent with observations of directional evolution of 
phenotypes in mutation accumulation studies[26], where selection is removed, but phenotypes 
are far from their mutational equilibriums. 

We note that in practice even neutral evolution of GC content may still be problematic if 
analyzed with the standard OU process models[41] because the rate of increase of variance 
depends on the number of loci (See Appendix). Thus, although for a fixed sequence size GC 
content appears to evolve according to an OU process, for real sequences (that change in length 
over the phylogeny) although the variance in GC content is expected to increase approximately 
linearly for reasonably short evolutionary times, it will increase at a slower rate for longer 
sequences. This reduction in variance could be mis-interpreted in the OU framework as increased 
selection intensity. 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 26, 2020. ; https://doi.org/10.1101/2020.10.26.355438doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.26.355438
http://creativecommons.org/licenses/by/4.0/


More generally, the similarity of the dynamics of neutral phenotypes to an OU process suggests 
that at time-scales considered here, similarity of phenotype evolution to OU process should not 
be used as evidence for purifying selection (as suggested in[1]). Indeed, a widely used software 
implementation [13], [39] infers strong evidence for selection on GC content and length of 
longest ORF in our ERV sequences and in DNA-based simulations with no selection. Also, our 
results complicate whether statistical evidence for multi-optimum OU models represents 
evidence for adaptive shifts, which is a widely adopted assumption in comparative phylogenetic 
analysis[10]. Shifts in optima could be expected even in the absence of selection, due to changes 
in the mutational equilibrium over phylogenies (for example, simply because of changes in GC 
content.) Further, since even neutral phenotypes show more complicated variance dynamics 
(genotype-dependent and non-monotonic) than the OU model predicts, our results add the 
possibility of misspecification of the underlying models[54] to the previously reported 
challenges with phylogenetic inference of OU models[38], [39], [55]. Developing tests based 
only on the mean (which does seem to match the OU process assumptions remarkably well) is an 
area of promise, though it remains unclear how much information about mean dynamics is 
contained in the observations at the tips of the tree[55].  

On the positive side, our results are consistent with the idea that mutation and selection act in a 
simple additive way on the evolution of mean phentoypes[11], [28], both leading to OU-like 
dynamics. Further, our results limit the quantitative range of restoring force expected due to 
mutation alone: if the restoring force estimated in an OU model exceeds the predicted value, we 
believe this can be interpreted as stabilizing selection. Similarly, large changes in the optima in 
multi-optimum OU models [10] are unlikely to result from mutation alone.  

Finally, our approach of using reconstructed ancestral sequences to study the forward evolution 
of phenotypes is applicable whenever the genetic architecture of a trait is known. With the 
increasing power of association and other high-throughput studies to determine the loci and their 
effect sizes for many phenotypes[56], [57], additive models of traits can be inferred. 
Furthermore, machine learning methods trained on genome-scale data and massively parallel 
assays may be able to predict non-additive molecular phenotypes from sequences [58], [59]. 
Once a genotype to phenotype model is defined, observed phenotype evolution can be compared 
directly to neutral phenotypes obtained from neutral sites (such as ERVs[40]) or simulations at 
the sequence level[60]. The simulation approach has been applied successfully to molecular 
traits that can be computed directly from intrinsically disordered protein sequences[61], [62]. If 
applied more generally to quantitative characters, this could be viewed as an extension to 
practice of inferring phylogenetic trees from genotypes, even when studying phenotypes [18], 
[24]: the null hypotheses for phenotype dynamics can also be obtained using our understanding 
of genotype evolution, further cementing the inevitable merger of systematics and evolutionary 
genetics[18]. 

Methods 

Unconstrained sequences in primate genomes 
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We obtained 6362 coordinates for predicted ERVs in the human genome from the gEVE 
database[63], corresponding to a subset of ERV segments that span more than 100 nucleotide 
residues and contain no ambiguous letters. We obtained alignments of these along with their 
reconstructed ancestors[42] from the 100 vertebrate alignment tree from Ensembl, we extracted 
the species in the aligned segments using the Ensembl compara REST API[64]. As a control for 
possible circularity due to probabilistic models of sequence evolution used in ancestral genome 
reconstruction [42], we also performed analysis on ancestral sequences reconstructed maximum 
parsimony as implemented in the phangorn package[65]. 

We used the extant human sequence, as well as the following reconstructed ancestors using the 
naming convention from ensembl: Hsap-Ppan-Ptro[3], Ggor-Hsap-Ppan-Ptro[4], Ggor-Hsap-
Pabe-Ppan-Ptro[5], Ggor-Hsap-Nleu-Pabe-Ppan-Ptro[6], and Csab-Ggor-Hsap-Mfas-Mmul-
Nleu-Pabe-Panu-Ppan-Ptro-Tgel[11] (square brackets in these names refer to the ancestor 
number in the ensembl tree are not references). For each ERV alignment we extracted segments 
of at length 100 with <10% gapped columns, required all sequences to be present in each 
alignment, yielding 8386 segments. Csab-Ggor-Hsap-Mfas-Mmul-Nleu-Pabe-Panu-Ppan-Ptro-
Tgel[11] was considered the “primate ancestor” and the value of the phenotypes computed based 
on this sequence was used as the ancestral phenotype, Z0. Binning was done based on this value, 
and each of the descendent sequence phenotype values were assigned to this bin. Phenotype 
mean and variance were calculated for all sequences in the bin, and these sample sizes are 
reported as N for bins shown in figures 1, 2 and 4. 

For each “descendent” sequence, we computed the evolutionary distance in substitutions per site 
from the ancestor using the Juke-Cantor model and used the average of these as the evolutionary 
distance for that phenotype bin. The common ancestor was always assigned a distance of zero. 

To estimate the mutational restoring force and rate of variance increase, we used simple linear 
regression to estimate the slope of the regression of the mean phenotype and variance of the 
phenotype on time (in substitutions per site). Because the ancestral value was determined by the 
binning process, and the evolutionary time for the ancestor was zero by construction, to avoid 
potentially biasing the estimate of the slope, we excluded the common ancestor from the 
regression and used the remaining 5 datapoints. R2 for these was typically >0.9. 

Strength and number of TATA boxes 

We obtained the matrix model of TBP from the Jaspar database [43].  

a = 

0.157760814     0.371501272     0.389312977     0.081424936 

0.043256997     0.119592875     0.048346056     0.788804071 

0.89821883      0.002544529     0.007633588     0.091603053 

0.010178117     0.027989822     0.007633588     0.954198473 

0.903307888     0.002544529     0.015267176     0.078880407 
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0.684478372     0.002544529     0.002544529     0.31043257 

0.942558747     0.010443864     0.028720627     0.018276762 

0.567430025     0.007633588     0.114503817     0.31043257 

0.396946565     0.114503817     0.402035623     0.086513995 

0.145038168     0.34605598      0.384223919     0.124681934 

We assumed a position independent background model, as above, 𝜋 0.32,0.18,0.18,0.32 . 
For the strength of TATA box analysis, we used the strength of the match in the first 10 bp of 
each ERV alignment and used the standard log-likelihood ratio score, S, as a measure of binding 
strength[66]. To compute the other parameters for the strength of TATA boxes, which have 
width w=10, we used 

𝑍 𝜋𝑚 log
𝑝 𝑋𝑛𝑚 1|𝑚𝑜𝑡𝑖𝑓

𝜋𝑚
𝑚

𝑤

𝑛 1

≡ 𝑍

𝑤

𝑛 1

 

𝑉 𝑍 𝑡 → ∞ 𝜋𝑚 log
𝑝 𝑋𝑛𝑚 1|𝑚𝑜𝑡𝑖𝑓

𝜋𝑚
𝑍

𝑚

2𝑤

𝑛 1

 

Where 𝑝 𝑋 1|𝑚𝑜𝑡𝑖𝑓  is the probability of observing the mth allele at the nth position in the 
transcription factor binding probability matrix. For the expected number of TATA boxes in the entire 
sequence, we used the sum of the posterior probability of each position being a match to the 

motif[66], 𝑍 𝑋 ∑ , where each 𝑆  represents the standard likelihood ratio score 

[66] for the subsequence of length w starting at position n, , and R is the (position independent) 
log odds of the prior probabilities of observing a match to the motif or not at each position. 

𝑅 log . We used 1/100 for this prior, so 𝑅 log .. 

Alignment, phylogeny and simulation of ancient mammalian ERVs 

we retrieved the human ERV sequence [46] and used BLAST on the Ensembl database[67] to 
obtain an alignment with all orthologous mammalian sequences therein. After filtering the results 
for quality, we were left with orthologous matches in a total of 39 other mammalian species. We 
manually extracted 6 segments with relatively few gaps and most of the species present 
(supplementary data). 

For each of the 6 segments, we used PAML (v4.9) [68]to infer the branch lengths of the 
evolutionary tree and reconstruct the corresponding ancestral sequence of the 40 mammalian 
species included in the study. Then, we employed a DNA substitution simulator [60] to evolve 
the reconstructed sequences along the mammalian phylogeny. For each set of real or simulated 
sequences we computed the quantitative molecular phenotypes and analyzed them with 
OUCH[39]. Tree was drawn using plot function from the APE package for R [69] 
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Alignments, scripts and evolutionary trees are available at https://github.com/shz9/neutral-
phenotype-model. 

Foldedness of longest peptides 

We considered all 6-frame translations within the 100bp sequences starting with ATG, and 
selected the longest. Using these peptides, we measured the propensity to fold using the method 
described in [52]. In this scale, positive values indicate folded, while disordered regions obtain 
negative values. 

 

Acknowledgements 

We acknowledge Dr. Amin Zia, Gavin Douglas, Caressa Tsai, and other members of the Moses 
Lab who contributed ideas and valiant attempts to this research over many years. We 
acknowledge Prof. Michael Laessig for hosting SZ during part of this research. We thank Prof. 
Michael Lynch for helpful comments on the manuscript. AMM and SZ were supported by 
NSERC discovery and CFI grants to AMM.  

 

Figure Legends 

Figure 1 – neutral dynamics of GC content 

a) observed mean GC content in inferred ancestral primate ERV sequences with GC content in 
the common ancestor between 0.45 and 0.5 (filled symbols) compared to predictions of the 
model considered here (F81, dashed line) and the Brownian Motion model (BM, solid line). H. 
sap indicates the extant human sequences. b) as in a), but GC content in the common ancestor 
between 0.3 and 0.35 (filled symbols) c) inferred strength of evolutionary restoring force 
estimated by simple linear regression on the GC content for each bin of ancestral GC content 
(symbols) compared to predictions of the model considered here (F81, dashed line) and the 
Brownian Motion model (BM, solid line). d) observed variance of GC content in the two bins of 
ancestral GC content shown in a) and b) (filled triangles and squares, respectively) compared to 
predictions of an OU model with mean restoring force given by our theory (OU, dashed line). 
Filled circles below the graphs represent the phylogenetic positions of the reconstructed primate 
ancestors used in the analysis. H. sap indicates the phenotype of the extant human sequences. 

Figure 2 – neutral dynamics of TATA box strength 

As in figure 1, but for the strength of the match to the TATA box in the first 10 nucleotides of 
the ERV sequences. Ancestral strength in a) is between 0 and 2, while in b) between -14 and -12. 

Figure 3 –the BM null hypothesis is rejected for GC content in ERVs 

a) shows the inferred phylogenetic tree and associated GC content measurements (GC%) for the 
segment 320 – 722 for the species used in the phylogenetic comparative analysis of GC content. 
b) shows the difference in corrected AIC between Brownian Motion (BM) and OU models for 
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six segments of an alignment of an ancient ERV. The average over 200 bootstrap samples for 
each segment where the algorithm converged, and the standard deviation is indicated by error 
bars. Filled bars represent observed ERV segments (Real), and unfilled represent results of a 
simulation with no selection on GC content (Simulated). 

Figure 4 - neutral dynamics of mean number of ATGs 

As in figure 1, but for the number of ATGs in the ERV sequences. Ancestral number of ATGs in 
a) is 4, while in b) it is 0. 

Figure 5 – neutral dynamics of the variance of ATGs. 

a-b) variance of number of ATGs in 100 bp ERV segments that in the primate ancestor are 
inferred to have no ATGs (filled squares), 2 ATGs (x’s) or 4 ATGs (filled triangles). Predictions 
based on an OU process model and the F81 model developed here are shown as dashed lines in 
panels a) and b), respectively. c) the rate of increase of the variance (inferred using simple linear 
regression) as a function of the ancestral ATG number (symbols) compared to the predictions of 
the OU model or the F81 model developed here. 

Figure 6 – mean dynamics of non-additive molecular phenotypes show mutational restoring 
force 

a) three molecular phenotypes computed from 100 bp ERV segments in reconstructed sequences, 
binned by their values in the primate ancestor. Colours indicate different ancestral values. See 
text for phenotype details. b) inferred mutational restoring force as a function of ancestral 
phenotype, estimated through simple linear regression. 

 

Table 1 – differences in corrected AUC between OU and BM from OUCH analysis 

Segment GC  simulated 
segment GC  

Longest ORF  Simulated 
segment longest 
ORF 

10270_10563 62.27 
 

77.4 Convergence 
error 

49.17 

11935_12275 194.76 
 

255.55 252.13 Convergence 
error 

11196_11705 Convergence 
error 

223.01 Convergence 
error 

210.91 

320_722 161.05 
 

184.27 229.07 Convergence 
error 

7916_8695 54.65 
 

59.3 56.76 22.84 

8938_9248 259 Convergence 
error 

219.14 237.68 
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Each cell represents the corrected AIC estimated by OUCH [39] comparing Brownian Motion to 
a single optimum OU model. When the algorithm reported errors in convergence, this is 
indicated by “Convergence error” in the table. 

Supplementary figures 

Figure S1 – as in figure 1a-c, but with ancestral reconstruction done using maximum parsimony 

Figure S2 – as in figure 4 and 5, but with ancestral reconstruction done using maximum 
parsimony 
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Appendix - Evolutionary dynamics of neutral phenotypes under DNA substitution models 

Shadi Zabad and Alan M Moses 

 

1. Mean phenotype dynamics under the F81 model 

Starting with the formula given in the main text, we show that the mean phenotype dynamics are 
independent of the genotype. 

𝐸 𝑍 𝑡 |𝑋 𝑃 𝑌|𝑋, 𝑡 𝑍 𝑌 𝑃 𝑌 |𝑋 , 𝑡 𝑍 𝑌  

We note that there are two possibilities, either the genotype at the n-th locus has stayed the same 
or it has changed into one of the other genotypes: 

𝑃 𝑋 |𝑋 , 𝑡 𝑍 𝑋 𝑃 𝑌 |𝑋 , 𝑡 𝑍 𝑌  

Substituting in the F81 model,  
𝑃 𝑌 |𝑋 , 𝑡 𝜋 1 𝑒  𝑓𝑜𝑟 𝑌 𝑋  

𝑃 𝑌 |𝑋 , 𝑡 𝑒 𝜋 1 𝑒  𝑓𝑜𝑟 𝑌 𝑋  

we have: 

𝐸 𝑍 𝑡 |𝑋 𝑒 𝑍 𝑋 𝜋 1 𝑒 𝑍 𝑋 𝜋 1 𝑒 𝑍 𝑌  

Noting that the middle term is exactly the term for 𝑌 𝑋  in the last sum, we have 

𝐸 𝑍 𝑡 |𝑋 𝑒 𝑍 𝑋 𝜋 1 𝑒 𝑍 𝑌  

Now we can factor out terms that are independent of n 

𝐸 𝑍 𝑡 |𝑋 𝑒 𝑍 𝑋 1 𝑒 𝜋 𝑍 𝑌  

The sum over n in the first term is the definition of 𝑍 , the initial phenotype, and the double sum 
in the second term is the definition of 𝑍 , the long-time mutational equilibrium. This gives 

𝐸 𝑍 𝑡 |𝑋 𝑒 𝑍 1 𝑒 𝑍  

Which depends only on 𝑍  and 𝑍  as claimed in the main text. 

 

2. A Biallelic model 
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We envisage L independent and identical loci evolving in an unconstrained fashion, subject only 
to mutation and drift. These L loci, it is further assumed, are in linkage equilibrium (i.e. evolving 
in a free recombination regime) and evolve independently. This last assumption will enable us to 
derive expressions for the evolutionary dynamics of the mean phenotype as a linear function of 
the single locus statistics. Using the notation commonly employed in modern GWAS studies, we 
have: 

𝑧 𝑋𝛽 𝜖 𝑋 𝛽 𝜖 

Where z denotes the phenotype , 𝑋𝛽 is the genetic contribution to the phenotype, 𝛽 are the effect 
sizes at each locus, and 𝜖 captures the contribution of the environment and other non-linear 
effects. We assume evolution proceeds in the weak mutation regime, where at any point in time 
the population is monomorphic. 𝑋 is a 1×L binary vector indicating whether that population (or 
species) has the reference or alternative allele at each locus.  

𝑋
0            if reference allele at locus n
1          if alternative allele at locus n  

The main quantity of interest in our analysis is the mean over an ensemble of replicate 
evolutionary processes, 𝐸 𝑍 𝑡 , given an initial starting phenotype 𝑍 𝑡 0 ≡ 𝑍 . The 
environmental contribution is omitted because we follow the standard assumption that 𝐸 𝜖 0. 
Assuming that the effect sizes are fixed and the genetic architecture remains constant, we use the 
linearity of the expectation to obtain: 

𝐸 𝑍 𝑡 𝐸 𝑋 𝑡 𝛽 𝐸 𝑋 𝑡 𝛽  

The weak-mutation assumption means that instead of modeling the full trajectory of the 
genotype, 𝑋 𝑡 , from introduction to  fixation or extinction, we model the state of the locus as a 
jump process between 2 states (reference vs. alternative), governed by a Continuous Time 
Markov Chain (CTMC). Under this model, the reference allele is expected to be substituted by 
the alternative allele with an infinitesimal rate, 𝜆, while the reverse happens with rate 𝜆𝜅 , where 
𝜅 0 is a parameter that quantifies the possible bias in mutation rates. We note that in this 
model (in contrast to Jukes- Cantor or F81) rates are not correctly scaled so that evolutionary 
distance is measured in substitutions per site. The transition probabilities in this model are given 
by 

𝑃 𝑋 𝑡 𝑋 0
𝑃 𝑡 𝑃 𝑡
𝑃 𝑡 𝑃 𝑡

1
1 𝜅

𝜅 𝑒 1 𝑒
𝜅 𝜅𝑒 1 𝜅𝑒

 

To find the probability that the alternative allele is fixed at any point in time, we marginalize 
over the ancestral state 𝑃 𝑋 𝑡 1 ∑ 𝑃 𝑋 0 𝑖, 𝑃 𝑡 . We have 

𝑃 𝑋 𝑡 1 𝑃 𝑋 0 1 𝑒
1

1 𝜅
1 𝑒  
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This system has a stationary distribution, 1 𝜋
𝜋

𝑃 𝑋 𝑡 → ∞ 0
𝑃 𝑋 𝑡 → ∞ 1

𝜅
1 , so we can 

also write 

𝑃 𝑋 𝑡 1 𝑃 𝑋 0 1 𝑒 𝜋 1 𝑒  

Given that the state of the locus at any point in time is a Bernoulli random variable with the 
success probability corresponding to the probability of the alternative allele being fixed, we can 
write the expected value for the state at time t as 𝐸 𝑋 𝑡 𝑃 𝑋 𝑡 1 . Substituting this in, 

𝐸 𝑍 𝑡 𝐸 𝑋 𝑡 𝛽 𝑃 𝑋 0 1 𝑒 𝛽 𝜋 1 𝑒 𝛽  

Factoring out the locus independent terms, 

𝐸 𝑍 𝑡 𝑒 𝑃 𝑋 0 1 𝛽 1 𝑒 𝜋𝛽  

We note that ∑ 𝑃 𝑋 0 1 𝛽 𝐸 𝑍 𝑡 0  and ∑ 𝜋𝛽 𝐸 𝑍 𝑡 → ∞ .Since  
𝐸 𝑍 𝑡 → ∞ ≡ 𝑍  and since we assume the population is monomorphic, 𝐸 𝑍 𝑡 0 𝑍 .  

𝐸 𝑍 𝑡 𝑒 𝑍 1 𝑒 𝑍  

The above expression for the mean has the exact mean-reverting form as the mean of the 
Ornstein-Uhlenbeck model, as claimed in the main text. Formulated in this way, we see that the 
role of mutation bias is to modulate the strength of the mutational force on the mean phenotype: 
if the bias is in the direction of the alternative allele, the mutational equilibrium is obtained 
faster, while if the bias is toward the reference allele, the equilibrium is obtained slower. In 
practice, since the bias would be on the order of 1, the effect on the mutational force is small, and 
with no bias, 𝜅 1, the force of mutation remains. 

A second quantity that we can use to characterize the evolutionary dynamics of neutral 
phenotypes is the covariance, particularly the phylogenetic covariance between two or more 
species. The scenario that we envision in this case is that of an ancestral population that evolved 
for t time units and then split into two different species that evolved completely independently. 
The first species evolved for s time units and the second species evolved for r time units. Since 
the loci are assumed to be independent, the phylogenetic covariance then reduces to the sum of 
the covariances between the state of locus j at times (t + s) and (t + r).  

𝐶𝑜𝑣 𝑍 𝑡 𝑠 , 𝑍 𝑡 𝑟 𝛽 𝐶𝑜𝑣 𝑋 𝑡 𝑠 , 𝑋 𝑡 𝑟  

𝛽 𝐸 𝑋 𝑡 𝑠 𝑋 𝑡 𝑟 𝐸 𝑋 𝑡 𝑠 𝐸 𝑋 𝑡 𝑟  

Substituting these in and simplifying gives 
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𝐶𝑜𝑣 𝑍 𝑡 𝑠 , 𝑍 𝑡 𝑟

𝑒 𝛽 2𝜋 1 𝜋 𝑃 𝑋 0 1 𝑒

𝜋 𝑃 𝑋 0 1 𝜋 1 𝜋 𝑒  

Note that the covariance cannot be expressed in terms of phenotypic quantities alone, and 
therefore depends on the genotype. Under certain assumptions we can obtain genotype 
independent forms. The simplest is when we assume the initial genotype is at its long term 
equilibrium, 𝑃 𝑋 0 1 𝜋. 

𝐶𝑜𝑣 𝑍 𝑡 𝑠 , 𝑍 𝑡 𝑟 𝑒 𝛽 𝜋 1 𝜋 𝑒 𝑉 𝑍 𝑡 → ∞  

Where we recognized ∑ 𝛽 𝜋 1 𝜋 ∑ 𝐸 𝑍 |𝑡 → ∞ 𝐸 𝑍 |𝑡 → ∞ 𝑉 𝑍 𝑡 → ∞  
as the long-term phenotypic variance. When t and s are small, the covariance is nearly equal to 
the variance (so the phenotypes are totally correlated) but at long divergence time (t and s large) 
the covariance decays. While the form of this is attractive, it is inconsistent with the weak-
mutation assumption (and empirical observation) that genotypes are not at their equilibriums in 
finite populations, but rather close to monomorphic. For example, this formula predicts that the 
variance in the population is always at its mutational equilibrium. 

Another assumption that allows a simple expression for the covariance is that there is no 

mutational bias, 𝜅 1. In this case, 𝜋 .  

𝐶𝑜𝑣 𝑍 𝑡 𝑠 , 𝑍 𝑡 𝑟 𝑒 𝛽
1
2

𝑃 𝑋 0 1
1
4

𝑒  

𝑒 𝛽
1
4

𝑃 𝑋 0 1 1 𝑃 𝑋 0 1
1
4

𝑒  

𝑒 𝛽 𝑉 𝑋 𝑡 0
1
4

1 𝑒  

We can recognize∑ 𝛽 𝑉 𝑋 𝑡 0 𝑉 𝑍 𝑡 0  and ∑ 𝛽 𝑉 𝑍 𝑡 → ∞ , so we have 

𝐶𝑜𝑣 𝑍 𝑡 𝑠 , 𝑍 𝑡 𝑟 𝑒 𝑉 𝑍 𝑡 0 1 𝑒 𝑉 𝑍 𝑡 → ∞  

This is now genotype independent, and depends only on the initial phenotypic variance and the 
long-term phenotypic variance. In the weak-mutation regime, where we assume the population is 
monomorphic, the initial variance is 𝑉 𝑍 𝑡 0 0, and we can further simplify: 

𝐶𝑜𝑣 𝑍 𝑡 𝑠 , 𝑍 𝑡 𝑟 𝑒 𝑉 𝑍 𝑡 → ∞ 𝑒 𝑉 𝑍 𝑡 → ∞  

Thus, the variance (r=0, s=0) shows OU dynamics with rate = 2𝜆. This model could be used 
directly as a null hypothesis in standard phylogenetic comparative inference frameworks. 
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3. Variance of GC content under the F81 model 

Starting from the general formula for the variance of an additive phenotype, 

𝑉 𝑍 𝑡 |𝑋 𝐶 𝑋 ∙ 𝑎 𝑎  

For GC content, 𝑎

0
1
1
0

, for all n, so for all n 

𝑎 𝑎
1
𝐿

0 0 0 0
0 1 1 0
0
0

1
0

1 0
0 0

 

𝐶 𝐸 𝑌 |𝑋 1 𝐸 𝑌 |𝑋 1 𝑒 𝜋 1 𝜋 𝑒 𝑋 𝜋  

𝐶 𝐸 𝑌 |𝑋 𝐸 𝑌 |𝑋 1 𝑒 𝜋 𝜋 𝑒 𝜋 𝑋 𝑋 𝜋 𝜋 𝜋  

𝑉 𝑍 𝑡 |𝑋
1
𝐿

𝐶 𝐶 𝐶 𝐶  

Because 𝐶 𝐶 , noting that 𝜋 𝜋 𝑍  

𝑉 𝑍 𝑡 |𝑋
1 𝑒

𝐿
𝜋 1 𝜋 𝑒 𝑋 𝜋

,

2 𝜋 𝜋

𝑒 𝜋 𝑋 𝑋 𝜋 𝜋 𝜋  

Defining 𝑁 𝑁 𝐿𝑍  to be the numbers of Gs and Cs in the initial genotype, 

𝑉 𝑍 𝑡 |𝑋
1 𝑒

𝐿
𝐿 𝜋 1 𝜋

,

2𝐿𝜋 𝜋

𝑒 2 𝜋 𝑁 𝑁 𝜋 𝐿𝜋 𝜋 𝑋 𝜋
,

 

𝑉 𝑍 𝑡 |𝑋
1 𝑒

𝐿
𝐿 𝜋 1 𝜋

,

2𝐿𝜋 𝜋

𝑒 2 𝜋 𝑁 𝑁 𝜋 𝐿𝜋 𝜋 𝑁 1 𝜋 𝑁 𝜋 𝑁 1 𝜋
𝑁 𝜋  

𝑉 𝑍 𝑡 |𝑋
1 𝑒

𝐿
𝐿 𝜋 1 𝜋

,

2 1 𝑒 𝐿𝜋 𝜋

𝑒 𝑁 𝜋 4𝜋 1 𝜋 𝑁 𝜋 4𝜋 1 𝜋  
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Which clearly depends on the genotype. If we assume that 𝜋 𝜋  which is usually the 

case, we can get a genotype independent result by substituting: 

𝑉 𝑍 𝑡 |𝑋
1 𝑒

𝐿
2𝐿

𝑍
2

2𝐿
𝑍
2

2 1 𝑒 𝐿
𝑍
2

𝑒 𝐿𝑍 2
𝑍
2

4
𝑍
2

1  

This can be simplified 

𝑉 𝑍 𝑡 |𝑋 2
1 𝑒

𝐿
𝑍
2

𝑍
2

1 𝑒
𝑍
2

𝑒 𝑍
𝑍
2

𝑍
1
2

 

𝑉 𝑍 𝑡 |𝑋 𝑍
1 𝑒

𝐿
1 𝑍 𝑒 𝑍 𝑍

𝑍
2

2
1

𝑍
 

But it still looks non-monotonic. If 𝑍 𝑍  

𝑉 𝑍 𝑡 |𝑋 𝑍
1 𝑒

𝐿
1 𝑍 1 𝑒 𝑒

𝑍
2

 

𝑉 𝑍 𝑡 |𝑋
1 𝑒

𝐿
𝑍 1 𝑍

𝑒 𝑒
𝐿

𝑍
2

1 𝑒
𝐿

𝑍 1 𝑍  

Since 𝑍 is small, this is very close to an exponential decay to the equilibrium variance with 
twice the rate, which is the OU dynamics. So it is very close to an OU process at equilibrium, but 
not exact. The equilibrium variance is 

𝑉 𝑍 𝑡 → ∞
1
𝐿

𝑍 1 𝑍  

and is inversely proportional to the number of loci (L). Therefore the rate of increase of the 
variance will be inversely proportional to the length of the sequence considered. 

4. Dynamics of GC content under the Jukes cantor model  

This means that 𝜋 𝜋  , 𝑢  and 𝑍 . Now 

𝐸 𝑍 𝑡 |𝑋 𝑒 𝑍 1 𝑒
1
2

4
3

𝑡
1
2

𝑍  𝑍  

Which still shows a linear restoring force proportional to the distance of the initial phenotype 
from 1/2. 
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𝑉 𝑍 𝑡 |𝑋
1 𝑒

2𝐿
1
2

1 𝑒 𝑒 𝑍
1
4

1 𝑒

𝐿
1
4

𝑒 𝑒
8𝐿

𝑍  

Now there is no genotype dependence on the variance. Since 8L >> 4L, this shows a weak 
dependence on the initial phenotype, and is weakly non-monotonic. As before, the first term 
matches exactly the OU variance dynamics, with the equilibrium variance of 1/4L as expected. 
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