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Abstract: Adaptive therapy is a promising new approach to cancer treatment. It is designed to
leverage competition between drug-sensitive and drug-resistant cells in order to suppress resistance
and maintain tumor control for longer. Prompted by encouraging results from a recent pilot clinical
trial, we evaluate the design of this initial test of adaptive therapy and identify three simple
modifications that should improve performance. These modifications are designed to increase
competition and are easy to implement. Using the mathematical model that supported the recent
adaptive therapy trial, we show that the suggested modifications further delay time to tumor
progression and also increase the range of patients who can benefit from adaptive therapy.
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1. Introduction

Drug discovery and regimen design play complementary roles in advancing cancer therapy.
Although drug discovery receives a disproportionate amount of attention [1–3], regimen design is
critically important and has been responsible for dramatic advancements in patient care. Regimen
design, for example, played a key role in making childhood acute lymphoblastic leukemia (ALL) an
essentially curable disease [4–6]. Regimen design often involves identifying synergistic combinations
[7–9] and sequences of drugs [10–12]. As discussed here, however, improving regimen design does
not have to involve changing or adding therapeutics. It is possible to enhance patient outcomes simply
by modifying how the current drugs are used.

We consider an innovative treatment regimen that is showing very promising results in a pilot
clinical trial [13]. This novel regimen, called "adaptive therapy", uses the same drug as the standard of
care, but applies it differently. This emphasizes that simply changing how we use therapeutics can lead
to dramatic improvements in patient care. Although these preliminary results must be interpreted with
caution, they suggest that – in certain circumstances – adaptive therapy may represent a promising
new paradigm for patient treatment.

Adaptive therapy has two important but distinct features. First, it is "adaptive" [14]. Instead of
using a fixed schedule, treatment decisions are based on how individual tumors respond to treatment.
This is in contrast to the majority of regimens which use predetermined treatment schedules. Second, it
is designed to leverage competition between drug-sensitive and drug-resistant cells to improve tumor
control (Figure 1). This differs from the common goal of achieving and/or sustaining large tumor
responses. Rather than attempting to drive tumor cell populations to undetectable levels, it deliberately
maintains a notable tumor burden in order to competitively suppress resistance [15]. Competitive
suppression has been shown to work in theory and experiment (both in vitro and in vivo) for both
cancer and infections [13,16–24]. The recent trial of adaptive therapy provides evidence that an easily
implementable realization of competitive suppression may work in the clinic [13].
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Figure 1. Different approaches to treatment. (a) In ideal circumstances continuous treatment (here
called the "standard of care") will stop tumor cell growth and lead to cure. (b) If there are drug-resistant
cells (red), the standard of care can only remove the drug-sensitive cells (blue) and this leaves a fully
resistant tumor that can expand in size. (c) If treatment is modulated so that not all drug-sensitive cells
(blue) are removed then these cells can competitively suppress the expansion of the resistant cells (red).
In ideal circumstances this would lead to longer tumor control.

Although this particular trial tested adaptive therapy on metastatic castrate resistant prostate
cancer (mCRPC) [25,26], we are interested in adaptive therapy as a general approach to cancer
treatment. Recent theoretical studies have considered the enhancement of adaptive therapy by using
multiple drugs [27,28]. Here we evaluate the design of adaptive therapy within the scope of a single
drug and discuss how simple modifications to the design should improve patient outcomes. The
modifications we suggest are not specific to prostate cancer but are intended to enhance competition
in general. This analysis rests on two important assumptions. First we take as a basic tenet that
"larger populations generate more competition". In essence, drug-sensitive cells should competitively
suppress the expansion of the resistant population and the larger the sensitive population the stronger
this effect should be. Second, we assume that the success of adaptive therapy can be attributed to
competitive suppression (see Box 1).

Box 1. Is competition the reason adaptive therapy works?

The biology of prostate cancer and treatment is complicated. Even though adaptive therapy is
designed to leverage competition, it is quite possible that it works for reasons other than competition.
For example, improved outcomes may be due to adaptation to different local environments (similar to
the hypothesized mechanism of success for bipolar androgen therapy [29,30]). If success is due to
some factor other than competition, changes intended to enhance competition may actually reduce the
effectiveness of adaptive therapy. This means that modifications should be made with care. Gaining a
better understanding of what is causing the current success of adaptive therapy is critical if we are to
(i) optimize regimen design and (ii) successfully apply adaptive therapy to other cancers.
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2. Results

2.1. A primer on adaptive therapy

Adaptive therapy maintains a measurable (but contained) tumor burden by modulating treatment
according to tumor response. There are a variety of ways that this can be implemented [13,20]. Here
we focus on the specific approach taken in a recent pilot clinical trial for mCRPC (NCT02415621) [13].
In this trial, prostate specific antigen (PSA) [31] is used as a proxy for tumor burden and treatment is
administered according to the "50% rule" (Figure 2a).

Figure 2. Adaptive therapy designs. PSA is used as a proxy for tumor burden. (a) Current adaptive
therapy design. Treatment decisions are based on the "50% rule" using the patient’s initial pretreatment
baseline PSA (solid blue circle). Treatment is stopped when the PSA falls to 50% of the baseline PSA
(dashed blue circle) and is re-initiated only once the PSA returns to its initial baseline. (b) Modified
regimen design. If the initial baseline PSA (blue circle) is low the PSA is allowed to increase to a larger
acceptable baseline PSA (solid red circle). Treatment begins when the PSA exceeds the acceptable
baseline by a measurable amount (dashed red circle) and stops once the PSA returns to the acceptable
baseline (solid red circle).

Before adaptive therapy begins, a patient’s PSA is determined to establish a baseline from which
all treatment decisions will be made. Treatment is then administered until PSA is reduced to 50%
of initial baseline. Once a 50% reduction has been observed, treatment is halted and withheld until
PSA returns to the initial baseline. This completes a single cycle of adaptive therapy and cycles are
repeated until treatment can no longer prevent the PSA from exceeding the initial baseline (i.e., until
PSA progression).

This approach differs markedly from the standard of care which treats continuously until
progression. Because adaptive therapy halts treatment every time a 50% reduction in PSA is achieved,
the expectation is that an appreciable drug-sensitive population is maintained and that this population
will slow the expansion of the drug-resistant population — leading to prolonged tumor control
(Figure 1). Preliminary results are extremely promising with median time to progression of at least 27
months [13] compared to a median of 9 months (for PSA progression) and 14 months (for radiographic
progression) for a contemporaneous cohort which received the standard of care [13].

2.2. The role of tumor size and resistance frequency in adaptive therapy

A curious feature of this initial test of adaptive therapy is that absolute tumor size plays no
role in the current design. This is at odds with the general notion that "larger populations generate
more competition". Instead, the "50% rule" bases treatment decisions on the tumor size relative to the
initial baseline. An additional consequence of the "50% rule" is that resistance frequency determines
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which patients have the opportunity to benefit from competitive suppression (as described below).
Here we describe how small modifications to adaptive therapy can make absolute tumor size central
to the design and greatly enhance competitive suppression. Our suggested modifications are easily
implementable and preserve the "adaptive" nature of the treatment regimen. Under these modifications,
treatment would occur only when the tumor exceeds a predetermined acceptable burden (Figure 2b).

• Current design: Maximum tumor size is determined by a patient’s initial baseline burden.
Different patients will have different initial burdens when they present for treatment. Despite
this, the current adaptive therapy regimen always implements the "50% rule" from the patient’s
"initial baseline burden". This limits the maximum size of the tumor and so lowers the amount of
competitive suppression.
Design Modification: Can the patient’s tumor burden be safely increased? If yes, then the
initiation of adaptive therapy should be delayed until this new larger "acceptable baseline
burden" is reached. Withholding treatment until the tumor has grown to a larger size should
increase the amount of competition and enhance the performance of adaptive therapy. Whether
it is acceptable to allow the tumor to grow before initiating treatment will depend on the
specific details of the patient and the cancer as well as the size of the initial baseline burden. In
general, making this decision will require balancing the possible benefits (e.g., prolonged time
to progression, reduced drug use) with the possible risks (e.g., increased metastasis, greater
morbidity). The relationship between tumor size and these other factors is not straightforward
[32–36]. In the original trial, however, the initial baseline PSAs ranged from 2.42 to 109.4 ng/ml,
suggesting that there is a wide range of acceptable PSA levels [13].

• Current design: The "50% rule" reduces the average tumor size. In the current design, treatment
begins whenever the tumor reaches the baseline burden and stops whenever it falls below 50
percent of the baseline burden. These successive 50% reductions in tumor burden reduces the
average size of the population that is generating competition.
Design Modification: What should trigger treatment? Since larger populations generate more
competition, we suggest "inverting" what triggers treatment starts and stops. Treatment should
start whenever the tumor burden exceeds the baseline level by a measurable amount (e.g., 10%
larger than the baseline burden) and treatment should stop whenever the burden returns to the
baseline. Figure 2 shows how this modification shifts the timing of treatment (shaded blocks in
panel b are shifted relative to shaded blocks in panel a). This should increase the average size of
the population and enhance competition.

• Current design: Patients with a high resistance frequency cannot benefit from adaptive
therapy. If a patient’s initial resistance frequency exceeds 50%, they will not be able to achieve a
50% reduction in PSA during the first cycle of adaptive therapy. For these patients treatment
resembles the standard of care and they are unable to benefit from adaptive therapy. The above
suggested modifications of (i) increasing the baseline (whenever acceptable) and (ii) treating
only when the burden exceeds this baseline, help to ameliorate this shortcoming. With these
modifications, only patients who begin with almost completely resistant tumors will be unable to
complete multiple rounds of adaptive therapy.
Design Modification: Is the patient’s initial resistance frequency likely to be low? Although
the previous modifications should allow patients with high resistance frequencies to benefit from
adaptive therapy, special consideration should also be given to patients with very low resistance
frequencies. Patients with low initial resistance frequencies may do better with the standard of
care than with adaptive therapy (Box 2). For this reason, an effort should be made to identify
and exclude patients with very low resistance frequencies. This may be difficult to do, but an
evaluation of patient treatment history could help.
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Box 2. How does resistance frequency impact the performance of adaptive therapy?

Resistance frequency impacts the performance of adaptive therapy in two distinct ways.

Absolute performance: Lowering the resistance frequency improves the absolute performance of
adaptive therapy. This is not surprising since the lower the initial resistance frequency, the longer it
will take for resistance to dominate and exceed the baseline burden. This observation does not rely on
competitive suppression and the same relationship also holds for the standard of care [37]. Both
adaptive therapy and the standard of care perform better when the initial resistance frequency is low.

Performance relative to the standard of care: At very low resistance frequencies adaptive therapy
may not perform as well as the standard of care. Consider, for example, a completely sensitive tumor
(i.e., resistance frequency of zero). In this case, the standard of care may even clear the tumor and
result in cure. On the other hand, with adaptive therapy there is an increased risk that resistance will
be introduced de novo (e.g., via mutation or epigenetic changes [38–41]). If resistance is successfully
introduced then adaptive therapy will control the tumor only until resistance expands to dominate the
cancer.

Extrapolating from this simple example suggests that if the resistance frequency is sufficiently small,
standard of care may be a better treatment option than adaptive therapy. This is precisely what theory
predicts [23]. According to theory, the resistance frequency must be sufficiently large before adaptive
therapy is the preferred treatment option.

Combining the roles of resistance frequency in the absolute and relative performance of adaptive
therapy leads to the following rule: "The resistance frequency must exceed a minimum threshold, but
beyond that, lower resistance frequencies are better". This ensures that adaptive therapy is the
preferred option while still maintaining the absolute performance of adaptive therapy. It is possible
that this minimum threshold is so low as to be inconsequential (i.e., for tumors of interest, resistance
frequencies might naturally exceed this minimum level)[42,43]. If this is the case, then resistance
frequency need not play a role in adaptive therapy design. The essential observation, however, is that
if resistance frequency is important, its role should be the opposite of what it is in the current adaptive
therapy design. A low resistance frequency – not a high resistance frequency – should preclude the
use of adaptive therapy.

Accurately predicting the impact of these design modifications is difficult because the biology
of prostate cancer is complicated and poorly understood. For example, it is known that prostate
cancer can be heterogeneous with cell populations that vary in their (i) dependence on and (ii) ability
to produce androgens [44–46]. How these different cell populations interact and compete may be
more complicated than the simple "larger populations generate more competition" tenet that we
use. Therefore, as an initial validation step, we have assessed the impact of these modifications
using a mathematical model that accounts for these interactions. This model is the same model
that was used to design the current adaptive therapy regimen. According to this model, the design
modifications we suggest will improve performance (Figure 3). This emphasizes that, at least for the
biological understanding used to design the current regimen, the suggested modified regimen will
more effectively prolong time to progression.
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Figure 3. Simulations comparing current and modified adaptive therapy designs. Comparison
was performed for three different types of patients. These patients differ in their initial resistance
frequencies: low (Patient 1, panels a-b), medium (Patient 2, panels c-d) and high (Patient 3, panels e-r).
(a) Comparison for Patient 1 assuming that the initial baseline (solid red) cannot be increased. Modified
design (blue) controls PSA for longer than the current design (black). Both adaptive therapy designs
are better than standard of care (dotted light blue curve). To facilitate comparison, PSA progression for
both designs occurs when PSA exceeds 10% of the baseline (dashed red). PSA is normalized relative to
initial baseline PSA. (b) Time to PSA progression for Patient 1 under the modified (blue) and current
(black) adaptive therapy design. If the current design is implemented at the initial baseline indicated
by the black square, the modified design implemented at the same baseline would improve results
(blue square). But increasing the baseline by 10% (leftmost blue circle) or 25% (rightmost blue circle)
improve results further. Asterisks correspond to dynamics shown in (a). (c-d) Same as (a-b) except for
Patient 2. (e-f) Same as (a-b) except for Patient 3. Notice that Patient 3 does not achieve a 50% reduction
in PSA during the first cycle of adaptive therapy (black curve in panel (e) is always above 0.5). This
means that the current adaptive therapy design coincides with the standard of care (black curve and
dotted light blue curve in panel (e) lie on top of each other). Simulations use same mathematical model
as the original simulations that supported the design of the current adaptive therapy regimen [13,47].
See Section 4 for details on patient types and simulations.

The original simulations used to develop the current adaptive therapy regimen [13] focused on
two types of patients. These patient types differ in how the different cell populations compete and
this leads to different initial resistance frequencies. The first patient type (represented by "Patient 1"
in Figure 3) exhibits competition dynamics that make resistant cells initially rare. The second patient
type (represented by "Patient 2") is characterized by competition dynamics that promote moderate
pretreatment levels of resistant cells. We have also considered a third patient type ("Patient 3") with an
initially high resistance frequency. This third patient type demonstrates that patients can benefit from
the modified regimen even if they would have been excluded from the current adaptive therapy trial.
(See Section 4 for additional details on patient types.)

Figure 3 shows that the suggested modifications should improve the performance of adaptive
therapy for all three types of patients. Even if adaptive therapy must be implemented from a patient’s
initial baseline, the modified design results in significant improvements (compare black curves to blue
curves). Additionally, these improvements will be enhanced if a larger acceptable baseline can be used.
For example, if the current adaptive therapy design results in the performance indicated by the black
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square (panel b) then the modified design (implemented at the initial baseline) will increase the length
of tumor control (blue square, panel b). This improvement can be further enhanced if the baseline can
be increased even by modest amounts (leftmost blue square shows improvement for a 10% increase in
the baseline, rightmost blue square for a 25% increase, panel b). Further increases will result in further
improvements (blue curve is increasing).

3. Discussion

Adaptive therapy is a novel treatment paradigm that has shown very promising results in a
small clinical trial for mCRPC. Its novelty partly lies in that it is designed to competitively suppress
resistance as opposed to minimize tumor burden. Here we have outlined simple modifications that
should enhance the performance of adaptive therapy.

According to the tenet "larger populations generate more competition", our modified design
should increase the amount of competitive suppression by (i) increasing the baseline tumor burden
whenever possible and (ii) only treating when the tumor exceeds the baseline. An additional benefit of
the modified design is that it does not exclude patients with resistance frequencies greater than 50%.
This means that more patients have the opportunity to benefit from adaptive therapy.

The main risk of using adaptive therapy is that some patients may do worse than if they had
received the standard of care [23]. This is most likely to occur when there is little to no resistance. To
mitigate this risk, emphasis should be placed on identifying and excluding patients who are unlikely
to harbor much resistance. Here we have not explicitly considered the possibility of cure or additional
dynamics which could make adaptive therapy perform worse than the standard of care (e.g., mutation
or epigenetic changes [38–41]). In general, these may be possibilities and will complicate the choice
between the standard of care and adaptive therapy [48].

In addition to our assumption that larger tumor cell populations generate more competition
and adaptive therapy works because of competition (see Box 1) there are two further assumptions
underpinning our analysis: (i) PSA is a good proxy for tumor burden [49] and (ii) when PSA progression
occurs it can actually be linked to resistance [50]. The comparison we presented uses the same
mathematical model that supported the original development of the current adaptive therapy regimen.
This model makes very specific assumptions about how cell populations interact (see Section 4). As
knowledge of cancer biology and treatment improves, there should be a continuing effort to account
for all interactions that will influence performance and inform regimen design.

Our discussion uses mCRPC as an illustrative example because this was adaptive therapy’s first
clinical application. We are, however, interested in adaptive therapy as a general approach to cancer
treatment. It is essential to emphasize that the performance of adaptive therapy will depend on the
cancer, drug and patient population. The modifications we suggest are not specific to prostate cancer
but are intended to enhance competition in general. We are certainly not claiming that our design
modifications lead to the optimal design. But they are simple, easily implementable modifications that
maintain the adaptive nature of adaptive therapy. Regardless of why adaptive therapy is working, or
whether it can be improved – the results from the current clinical trial make one thing clear. Having
effective therapeutics is not enough; how you use them matters.

4. Materials and Methods

4.1. Mathematical Model

Prostate cancer cells often rely on androgens to grow. Treatment normally aims to exploit this
dependence by employing some form of androgen deprivation therapy (ADT). Even though ADT
is initially successful, resistance almost inevitably develops and the cancer progresses. There are
a variety of mechanisms that can contribute to this resistance [40,51,52] but variation in androgen
dependence is often a contributing factor. The mathematical model used to conceptualize the current
adaptive therapy design assumes that certain cells are less dependent on androgens [13,47]. These cells
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(called androgen independent and denoted by I) are resistant to ADT and are responsible for tumor
progression during treatment. We use the same model here to compare the current and modified
adaptive therapy designs.

This model involves three different populations of cancer cells: (i) androgen dependent (D), (ii)
androgen independent (I) and (iii) androgen producing (P). The mathematical equations describing
the interactions of these populations are:

Ḋ = rD

(
1 − aDDD + aDI I + aDPP

KD

)
D, (1)

İ = rI

(
1 − aIDD + aI I I + aIPP

KI

)
I,

Ṗ = rP

(
1 − aPDD + aPI I + aPPP

KP

)
P,

where (i) rD, rI and rP are the per capita growth rates of the respective populations in the absence
of competition, (ii) KD, KI and KP are the carrying capacities of the respective populations and (iii) the
aij are constants describing how competition between populations impacts growth.

According to these equations the different populations exhibit logistic growth with both intra-
and inter-population competition. Consider, for example, the dynamics of the androgen dependent
population (D) described by Equation (1). In the absence of any competition, growth would simply be
proportional to the size of the population (i.e., Equation (1) would become Ḋ = rDD). Intra-population
competition, however, reduces this growth by the factor

(
1 − aDD D

KD

)
. Accounting for competition

from all populations reduces growth even further (i.e., by the factor
(

1 − aDD D+aDI I+aDPP
KD

)
).

An essential feature of this model is that the different cell populations interact with each other in
two ways. The first is competition (as described through the coefficients aij). Competition reduces the
growth capacity of each population. The second interaction occurs between the androgen dependent
(D) and androgen producing cells (P). Increasing the androgen producing population (P) increases
the amount of available androgen and this increases the carrying capacity of the androgen dependent
cells (D). Mathematically this is encoded by making the carrying capacity of the androgen dependent
population (KD) proportional to the size of the androgen producing population (i.e., KD = αP).
Increasing KD reduces the effect of competition (from all populations) on the androgen dependent
population (D). Other types of interactions are not included in the model. For example, cells cannot
move between populations through processes like mutation or epigenetic changes [38–41].

This model assumes that treatment modulates dynamics by changing the carrying capacities of
the androgen dependent population (KD) and the androgen producing population (KP). When there is
no treatment these carrying capacities are KD = 1.5P and KP = KI . During treatment these carrying
capacities are reduced to KD = 0.5P and KP = 0.01KI . Treatment has no direct effect on the androgen
independent population (I).

4.2. Parameter Values and Simulation Details

The parameter values used to produce Figure 3 are the same as the ones used in [13]. The intrinsic
growth parameters are (rD, rI , rP) = (0.00278, 0.00665, 0.00355) 1

day and the carrying capacity for the
androgen independent population is KI = 10000. Two different sets of competition coefficients are
used to simulate the dynamics of the two patient types described in [13]. We have also included a
third patient type which does not respond well to the current adaptive therapy design. Coefficients for
this third patient type were chosen to be identical to the "non-responder" patient type described by
Cunningham et al. in an extended analysis of the original mathematical model [47]. The competition
coefficients for the different patient types are given in Table 1.
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Table 1. Competition coefficients for different patient types

aDD aDI aDP aID aI I aIP aPD aPI aPP

Patient 1 1 0.8 0.7 0.6 1 0.9 0.4 0.5 1
Patient 2 1 0.8 0.6 0.5 1 0.9 0.4 0.7 1
Patient 3 1 0.9 0.7 0.5 1 0.8 0.4 0.6 1

Changes in PSA are described by ( d
dt PSA = 2(D + I + P)− 0.5PSA). Initial conditions for the

simulations were determined in the same way as in [13]. Cell populations were initialized to the
values shown in Table 2. The populations were then allowed to grow in the absence of treatment until
the PSA reached the desired baseline. Once the PSA reached the desired baseline, adaptive therapy
(either the current or modified version) was initiated. The range of PSA baselines used in Figure 3 was
2[D0 + I0 + P0, 0.8KI ].

Table 2. Initial conditions for different patient types

D0 I0 P0

Patient 1 2424.2 0.4x10−9 3030.3
Patient 2 2508.3 132.01 2904.3
Patient 3 298.87 2548.9 2397.9

5. Conclusions

Adaptive therapy is a promising new approach to treating cancer. It is designed to forestall
treatment resistance and prolong tumor control by competitively suppressing drug-resistant cancer
cells. If its improved performance over the standard of care is due to competitive suppression,
then certain design modifications should enhance its performance. Here we propose three design
modifications aimed at increasing competition and improving the selection of patients who receive
adaptive therapy. Using the same mathematical model that supported the original adaptive therapy
design, we demonstrate that these modifications substantially improve the performance of adaptive
therapy.

Supplementary Materials: The following are available online at http://www.mdpi.com//xx/1/5/s1, Code S1:
matlab code to generate Figure 3.
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