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Abstract 

Alternative splicing of mRNA is an essential gene regulatory mechanism with important roles in 

development and disease. We present MntJULiP, a method for comprehensive and accurate 

quantification of splicing differences between two or more conditions. MntJULiP implements 

novel Dirichlet-multinomial and zero-inflated negative binomial models within a Bayesian 

framework to detect both changes in splicing ratios and in absolute splicing levels of introns 

with high accuracy, and can find classes of variation overlooked by reference tools. Additionally,  

a mixture model allows multiple conditions to be compared simultaneously. Highly scalable, it 

processed hundreds of GTEx samples in <1 hour to reveal splicing constituents of tissue 

differentiation. 

 

Introduction 

Gene alternative splicing is a fundamental biological process that gives rise to a wide 

array of protein isoforms with modified properties in plant and animal and plant 

systems. More than 95% of human genes are alternatively spliced, and high levels were 

reported in virtually all sequenced eukaryotic species. Most splicing variations are tissue 

specific, but splicing is also altered by external stimuli 1 and aberrant splicing has been 

associated with diseases 2. Therefore, there is a great need to accurately map and 

quantify gene splice variants, as well as to identify differences in splicing between 

conditions. 

 

Current methods aim to detect and quantify alternative splicing from RNA sequencing 

(RNA-seq) data at the level of transcripts (isoforms), splicing events (exon skipping, 
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mutually exclusive exons, alternative exon ends, intron retention), or primitive features 

(subexons, introns). Isoform-level quantification methods (Cuffdiff, Cuffdiff2, MISO 3-5) 

require a reference annotation or a reconstructed set of transcripts, and their 

performance suffers from incompleteness and inaccuracies in the assemblies. Event 

level methods (DiffSplice, rMATS 6,7) are less affected by assembly errors, but represent 

only a subset of alternative splicing variations. For both of these methods, quantification 

is further complicated by the ambiguity in assigning reads that map to multiple locations 

in the genome and multiple transcripts of a gene. In contrast, more recent methods 

(LeafCutter, MAJIQ, JunctionSeq 8-10) target introns, which can be more reliably 

identified from read alignments, capture a wider variety of splicing variations, and are 

less ambiguous to quantify, as intron-spanning reads associate with unique gene splice 

patterns. Methods further differ in how they define splicing differences. Most methods 

quantify changes in the relative splicing levels of the target feature within a group of 

mutually exclusive local splicing patterns (LeafCutter, MAJIQ, rMATS, DiffSplice), or 

alternately identify features with splicing usage inconsistent with the rest of the gene 

(JunctionSeq, DEXseq 11). Yet others look for changes in the overall (absolute) 

abundance levels, as a means to identify changes in isoform regulation leading to 

functional effects 3,4,12. Lastly, to increase accuracy, some methods rely on a pre-existing 

set of gene annotations to identify relevant splicing variations, limiting discovery of 

novel and potentially condition-specific features. The rich spectrum of methods for 

alternative splicing quantification and differential analysis offer a multifaceted yet 

inconsistent view of alternative splicing variation 13. 
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We introduce MntJULiP, a statistical learning method based on a novel mixture Bayesian 

framework, for detecting differences in splicing between large collections of RNA-seq 

samples. MntJULiP represents splicing variation at intron level, thus capturing most 

splicing variations while avoiding the pitfalls of assembly. It infers intron annotations 

directly from the alignments, making it possible to discover new unannotated candidate 

markers. MntJULiP detects both differences in intron splicing levels, herein called 

differential splicing abundance (DSA), and differences in intron splicing ratios relative to 

the local gene output, termed differential splicing ratio (DSR). Salient features of 

MntJULiP include:  

i) a novel statistical framework, including a zero-inflated negative binomial mixture 

model for individual introns, in the DSA model, and a Dirichlet multinomial mixture 

model for groups of alternatively spliced introns, in the DSR model; 

ii) it captures significantly more alternative splicing variation, and more types of 

variation, than existing tools; 

iii) superior performance compared to reference methods, including increased 

sensitivity in control experiments, and high reproducibility and reduced false positives in 

comparisons on real data; 

iv) a unique mixture model that allows comparison of multiple conditions 

simultaneously, to aptly capture global variation in complex and time-series 

experiments; and 

v) highly scalable, it could process hundreds of GTEx samples in less than half an hour.  
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MntJULiP is implemented in Python and is distributed free of charge under a GPL license 

from https://github.com/splicebox/MntJulip/  . 

 

Results 

We assess the performance of all programs on simulated and real RNA-seq data, with 

varying degrees of splice variation and different dataset sizes. We illustrate MntJULiP’s 

ability to detect more types of alternative splicing variation in the comparison of 

hippocampus samples from healthy and epileptic mice. We then demonstrate 

MntJULiP’s unique capability for simultaneous multi-condition comparisons in a 7-point 

time series experiment on differentiating mouse taste organoids, and its ability to 

handle large data sets on a large collection of RNA-seq samples from four human tissues 

obtained from the GTEx project. We include in the comparisons, as feasible, the state-

of-the-art intron-based tools LeafCutter, MAJIQ, JunctionSeq and the event-based 

rMATS, and Cuffdiff2 as the only tool among them compatible with the DSA test.  

 

Performance evaluation on simulated data 

In a first, controlled experiment we used simulated data, namely 25 control and 25 

perturbed samples, to evaluate MntJULiP (DSR), MAJIQ, LeafCutter, and rMATS in 

detecting differences in splicing ratios, and MntJULiP (DSA) and Cuffdiff2 in detecting 

differences in splicing abundance (see Methods and Figure 1A). On the DSR experiment, 

MntJULiP(DSR) achieved sensitivity 74.5%, which was 8.0-60.0% higher than its 
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competitors, at very high and comparable precision, 97.4%. Notably, Cuffdiff2, which 

was not designed as a DSR method, had the highest sensitivity at 94.9%, however at a 

very significant drop in precision, to 46.4%. On the DSA experiment, MntJULiP(DSA) had 

very high 97.9% sensitivity and 95.3% precision, to Cuffdiff2’s values of 95.9% and 

70.3%, respectively. Sensitivity of MntJULiP’s DSA test was also significantly higher than 

any of the DSR programs’, which ranged between 31.7-50.3%, illustrating the fact that 

methods developed for DSR detection are in general not suitable to detect changes in 

splicing abundance. We further examined in more details the programs’ results by gene 

class.  While true positives for all programs were fairly uniformly distributed across the 

constituent gene categories, false positives for MAJIQ, rMATS and Cuffdiff2 were 

dominated by genes outside of the simulated gene set, underscoring the difficulty for 

these programs to effectively distinguish and filter paralogs and other alignment and 

assembly artifacts (Supplementary Figure S1 and Source Data).  

 

We further assessed the methods’ accuracy in quantifying the amount of change in 

splicing of individual introns (Supplementary Figure S2). For the DSR experiment, 

MntJULiP predictions most closely aligned with the reference annotation (𝑅2=0.935, 

Pearson correlation coefficient) between predicted and reference dPSI values, 

compared to 0.879 for LeafCutter and 0.847 for MAJIQ. For the DSA experiment, 

MntJULiP had the higher correlation (0.991 versus 0.848) between predicted and 

reference log fold change values of the two methods. Therefore, MntJULiP predicted 

values are strongly indicative of the amount of change, and can be used reliably to 
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inform event selection, for instance to select candidate events for experimental 

validation.  

 

Performance evaluation on real data 

We next applied the methods to RNA-seq samples from hippocampus tissue of 24 

healthy mice and 20 mice with pilocarpine induced epilepsy, illustrating a typical RNA-

seq experiment. Programs MntJULiP(DSR), LeafCutter, MAJIQ and rMATS predicted 

between 700 and 1,137 DSR genes (Figure 1B). While it is not possible to precisely 

measure the prediction accuracy in the absence of a ground truth reference, we deem 

genes predicted by multiple tools as being more reliable. A majority of DSR genes (974 

out of 1,878) were predicted by two or more tools. Importantly, MntJULiP had the 

smallest number and proportion of uniquely predicted genes, 84 (9.7% of its 

predictions), compared to 350 genes (35.5%) for rMATS, 367 genes (32.3%) for 

LeafCutter and 103 genes (14.7%) for MAJIQ, and therefore potentially reported the 

smallest number of putative false positives. 

 

DSR tests capture only a fraction of the alternative splicing variation in an experiment. 

To showcase the potential of MntJULiP to expand upon the classes of alternative splicing 

events detected, we assessed the outcomes of MntJULiP's DSA test. Of the 4,187 genes 

predicted, 485 were also reported by MntJULiP's DSR test and an additional 379 by 

other tools, representing genes with traditional splicing patterns (Supplementary Figure 

S3). An additional 2,510 genes were determined to be differentially expressed by the 
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DESeq2 14 method, a category that is captured by the DSA test. The remaining 813 genes 

represent a combination of genes with traditional event patterns that could not have 

been discovered by other tools and putative complex or non-conventional splicing 

events.  

 

Figure 1C and Supplementary Figure S4 illustrate some of these cases. The Pyruvate 

Kinase M 1/2 (Pkm) gene has two isoforms resulting from the use of mutually exclusive 

exons Supplementary Figure S4A. Pkm1 is expressed in the adult stage where it 

promotes oxidative phosphorylation, whereas Pkm2 is prevalent during embryogenesis 

and promotes aerobic glycolysis. Splicing dysregulation at this gene has been identified 

as an oncogenic driver and passenger factor in brain tumors 15. While the difference in 

the isoforms' splicing ratio is low (0.05) and may have contributed to being missed by 

other tools, introns flanking both exons yielded positive MntJULiP DSA tests. Most 

importantly, MntJULiP can detect classes of events that cannot be detected by other 

methods. In one example at the CWC22 Spliceosome Associated Protein Homolog 

(Cwc22) gene, the two overlapping and mutually exclusive introns at the 3' end of the 

gene do not share an endpoint and therefore could not have been interrogated by other 

methods (Supplementary Figure S4B). Similarly, none of the traditional methods can 

capture variation that results when one isoform's intron chain is entirely subsumed by 

another, where the 'extension' introns do not share endpoints with others. The ZXD 

Family Zinc Finger C (Zxdc) gene illustrates this example with its 3' most terminal 

introns. The GENCODE annotation for this gene lists five isoforms, of which two can be 
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eliminated based on the fact that their unique introns do not appear in any of the 44 

samples. Of the remaining isoforms, two have their intron chains entirely subsumed by 

the longest isoform. In Figure 1C, the distribution and average fold change abundance 

differs significantly between the shared (average 1.03) and isoform specific (average 

1.45) intron sets, which can only be explained by a difference in the proportion of splice 

isoforms in the gene's output. Lastly, further case analyses revealed other intriguing 

scenarios, such as at the Zfp91-Cntf gene locus (Supplementary Figure S4C). The two 

genes have in common the only intron in the Ciliary Neurotrophic Factor (Cntf) gene 

(chr19:12.764.380-12,765,281), which shows a significant six-fold increase in abundance 

in the epileptic mice, whereas all other introns for Zfp91 show a slight decrease within 

statistical error. While the event can be at first sight attributed to the differential 

splicing of Zfp91, careful observation of the expressed introns reveals that the sole 

Zfp91 isoform containing the intron is present at residual levels or not at all in both 

conditions. Therefore, the increase in abundance appears to be due to the change in the 

expression of Cntf, which owing to the special sharing of gene structure was missed by 

DESeq2. Cntf is a survival factor for multiple neuronal cell types, and an increase in its 

levels was shown to be involved in attenuating epilepsy-related brain damage 16,17.  

 

True accuracy cannot be assessed in analyses on real data. However, to evaluate 

robustness and reproducibility in the tools' predictions as an alternative measure of 

performance 9, we divided and analyzed the data into two sets of 10 healthy and 12 

epileptic mouse samples. The graphs in Supplementary Figure S5 show the scatterplots 
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of the estimated difference in percent splicing inclusion (dPSI) between the two 

replicated experiments. MntJULiP has the highest correlation between the runs (0.579), 

followed closely by MAJIQ (0.577) and LeafCutter (0.460), and therefore its results are 

the most robust with the sample set.   

 

Performance on large data sets 

To demonstrate the scalability of MntJULiP and its unique capability to perform 

simultaneous multi-way comparisons, we applied it to four tissue datasets (frontal 

cortex, cortex, cerebellum, and lung; 554 samples total) extracted from the GTEx RNA-

seq collection. We performed pairwise comparisons as well as three-way comparisons 

among tissues. In a first experiment comparing the three brain tissues, the multi-way 

comparison largely recapitulated the individual pairwise comparisons, detecting 99.0% 

(1,070) of the 1,081 genes and 11 additional genes (Supplementary Figure S6A).  The 

test also revealed highly similar splicing profiles between cortex and frontal cortex, with 

only one gene differentiating the samples. The robustness of the method was confirmed 

in a second test, comparing the cortex, cerebellum and lung samples (Figure 1D and 

Supplementary Figure S6C). All but 14, 18 and 21 of the genes reported from the three 

pairwise comparisons were selected by the multi-way test, and 37 genes were unique to 

the three-way comparison, for a 99.3% (5,324 out of 5,364 predicted genes) recovery 

rate. Figure 1D and Supplementary Figure S7 show the heatmaps of PSI values for each 

tissue and comparison, reiterating these observations. Similar results can be observed 

for the DSA test, where the multi-way comparison discovered 97.1% (15,090 out of 
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15,491) of all genes detected by pairwise comparisons, and only 36 (0.02%) unique 

genes among the 15,126 predicted (Supplementary Figure S6D). Importantly, the 

comparisons highlighted thousands of differential splicing events that distinguish among 

the tissues 18. Experiments took between 18-44 minutes per comparison on a 24 CPU 

Intel processor, thereby demonstrating the ability of MntJULiP to handle large-scale 

applications. 

 

Application to complex and time-series experiments 

All differential splicing methods to date are designed for comparing two conditions, 

typically 'cases' versus 'controls'. This simple framework is inadequate and impractical 

for scenarios that involve time-series or complex multi-condition experiments, which 

seek to determine features that vary across the full range of conditions. As an 

illustration, we applied both LeafCutter and MntJULiP to RNA sequencing data from 

mouse taste organoids) at seven growth stages 19 (Accession: DRA005238; two samples 

each at days 2D, 4D, 6D, 8D, 10D, 12D and 14D, for a total of 14 samples). LeafCutter 

predicted DSR events in 889 genes and MntJULiP in 3,285 genes when combining the 

results from all-against-all pairwise analyses. By comparison, MntJULiP's multi-way test 

predicted 204 differentially spliced genes across all conditions. While true accuracy 

cannot be measured, we deem features (genes) reported by multiple comparisons to 

have higher confidence than those predicted in a single comparison, on the basis that 

features that are differentiated between two stages will likely show variation in other 

comparisons involving one of the original conditions. As Supplementary Figure S8 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 27, 2020. ; https://doi.org/10.1101/2020.10.26.355941doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.26.355941
http://creativecommons.org/licenses/by-nc-nd/4.0/


indicates, the distribution of genes according to the number of comparisons in which 

they are reported is very similar for the LeafCutter and MntJULiP pairwise protocols, 

with 31-36% of the genes found in only one comparison, pointing to potentially large 

numbers of false positives. In contrast, the distribution for MntJULiP multi-way 

predicted genes follows a Bell curve distribution with the mode at 8 comparisons, which 

provides a more realistic reflection of the experiment. Therefore, the multi-way 

comparison more accurately identified differences in splicing across the experimental 

range.   

 

To further examine the landscape of alternative splicing variation during organoid 

differentiation, we generated heatmaps of the introns discovered with the MntJULiP all-

pairwise and the MntJULiP multi-way comparison methods (Figure 1E and 

Supplementary Figure S9). Introns' PSI values show small variation in splicing between 

consecutive stages, but clear distinguishing characteristics when comparing across all 

experimental timepoints. In particular, features detected by the multi-way comparison 

better distinguish between the organoid growth stages, with a significant inflexion point 

between early (days 2D-6D) and late development and differentiation into taste cells 

(days 8D-14D), and facilitate more accurate clustering of samples. Interestingly, the 

visualizations point to distinguishing features separating stage 2D from the other non-

differentiated stages, and the separation becomes even more apparent in the DSA 

visualizations (Supplementary Figure S9B). Importantly, these graphical representations 

highlight the ability of MntJULiP to detect even mild differences between conditions. 
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We also note the ability of MnJULiP to work with very small numbers of samples per 

condition, as low as two samples per organoid stage.  

 

Conclusions 

We developed MntJULiP, a novel method that detects and quantifies alternative splicing 

differences at the level of introns, thus avoiding the pitfalls of short read assembly. A 

variety of methods for differential splicing analysis are currently available, which differ 

in their selection of target features, objective functions, and technical approaches, 

leading to poor consistency among the results they produce 13.  MntJULiP aims to 

provide a comprehensive view of alternative splicing variation, by representing it at the 

most granular level (intron) and by implementing two objective functions, aimed at 

determining differences in the absolute and relative (ratios) intron splicing levels. In 

comparisons on simulated and real data, we demonstrated that MntJULiP identifies 

more alternative splicing variation and more classes of variation than other tools, and 

across a spectrum of experimental conditions, dataset sizes and degrees of variation. 

  

A unique capability of MntJULiP is its ability to perform multi-way comparisons, which is 

desirable when characterizing complex time series or multi-condition experiments, to 

identify a global set of features that distinguish among subgroups or stages.  

 

MntJULIp introduces several technical innovations, including its zero-inflated negative 

binomial and multinomial Dirichlet models to account for low count genes and splice 
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junctions, and the mixture distributions that allow for modeling multiple conditions, 

thus facilitating multi-way differential analyses.  

 

Lastly, MntJULiP is highly efficient and scalable, providing an effective platform for 

comprehensive differential splicing analyses of RNA sequencing data from a wide range 

of experiments and data collections. 

 

Methods 

Algorithm overview 

MntJULiP consists of two components, a 'builder' and a 'quantifier'. The builder extracts 

the splice junctions (introns) and calculates their supporting read counts from the RNA-

seq read alignments, filtering introns with fewer than 3 reads in each sample, as 

potential sequencing and mapping artifacts. (A second filter that removes introns with 

weak support within the gene’s context is embedded in the statistical model below.) 

Individual introns are the input to the DSA analysis. For the DSR analysis, introns that 

share an endpoint are grouped into 'bunches'. If a reference gene annotation is 

provided, both individual introns and bunches are associated with an annotated gene if 

they share at least one intron coordinate. The quantifier subsequently evaluates 

candidate introns, building a learning model for each intron and bunch and performing 

two statistical tests: i) a test for change in intron abundance (DSA), and ii) a test for 

change in the splicing level of the intron relative to its 'bunch' (DSR). For the DSA 

analysis, MntJULiP uses a mixture zero-inflated negative binomial model to estimate 
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individual introns' abundance levels from the raw read counts. For DSR, it estimates the 

relative splicing ratios with a mixture Dirichlet-multinomial distribution. For both 

models, likelihood ratio tests are used to determine the differential splicing events and 

generate p-values, which are then adjusted for multiple testing using the Benjamini-

Hochberg correction. The framework is described in detail below. 

 

A Bayesian read count model 

We use a Bayesian statistical framework to estimate the splicing levels of introns for 

differential analyses. The framework also provides a second filter for weakly supported 

introns within the context of the gene, by setting a cutoff value for the estimated read 

count mean. To start, we assume that the read count 𝑦 of intron 𝑣 in a given sample 

follows a negative binomial distribution 𝑁𝐵(𝜇, 𝜃). We consider a loose prior with an 

empirical �̂� (the sample mean) modeled by a normal distribution: 𝜇~𝑁(�̂�, √
�̂�

10
) to 

model the variability between conditions and among the individual samples. 

Additionally, we apply a restriction on the dispersion parameter with an inverse Half-

Cauchy distribution: 𝜑−1~𝐻𝐶(0,5). Lastly, to model low expression introns (0 reads in 

most samples), we use a zero inflated enhanced negative binomial Bayesian model 20: 

𝑦~ {
0, 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝜋

 𝑁𝐵(𝜇, 𝜃), 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (1 − 𝜋)
 

 

Let 𝑝(𝑦) denote the probability density function for this model. For 𝑛 samples and 

intron read count 𝑦𝑗 in sample 𝑗, we define the log likelihood: 
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𝐿(𝜃) = log 𝑝(𝑦1, 𝑦2, … , 𝑦𝑛) =  ∑ log 𝑝(𝑦𝑗)

𝑛

𝑗=1

 

We maximize the log likelihood function using the Limited-memory Broyden–Fletcher–

Goldfarb–Shanno (LM-BFGS) optimization method and obtain point estimates for 

parameters 𝜇, 𝜃 over the samples. 

 

The differential splicing abundance (DSA) model 

The previous section established the general Bayesian model to estimate intron 

abundance. Next we describe the framework for modeling individual intron abundance 

and for DSA testing in a multi-condition experiment. Assume that samples are drawn 

from 𝑚 (typically 2) conditions. Given an intron 𝑣 and a sample generated from 

condition 𝑖, the intron’s read count 𝑦 follows a zero-inflated negative binomial 

distribution with the condition specific parameters 𝜇𝑖 , 𝜃𝑖 , 𝜑𝑖 and 𝜋𝑖 , as defined earlier. 

 

Let 𝑝𝑖(𝑦) be the probability density function for the complete model for condition 𝑖 =

1 … 𝑚.  We define a mixture probability model for 𝑦: 

�̅�(𝑦) =  ∏ 𝑝𝑖(𝑦)𝑧𝑖

𝑚

𝑖=1

 

where 𝑧𝑖 is the indicator variable for that sample, equal to 1 iff the sample belongs to 

condition 𝑖 and 0 otherwise. 
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To formulate the problem, given 𝑛 samples, 𝑚 conditions and 𝑦𝑗 the intron read count 

in sample 𝑗 = 1 … 𝑛, we define the log likelihood: 

𝐿(𝜃) = log �̅�(𝑦1, 𝑦2, … 𝑦𝑛) =  ∑ ∑ 𝑧𝑖𝑗
𝑛
𝑗=1

𝑚
𝑖=1 log 𝑝𝑖(𝑦𝑗) , 

with 𝑧𝑖𝑗 ∈ {0,1} the indicator variable for sample 𝑗 and condition 𝑖. 

 

Having these two Bayesian models, we establish a hypothesis test for differential intron 

abundance given the data: the null hypothesis is that samples are generated from the 

same condition, and the alternative hypothesis is that the samples belong to different 

conditions, and apply a likelihood-ratio test: 

𝐿𝑅 = −2[𝐿(𝜃0) − 𝐿(𝜃1)] 

where 𝐿(𝜃𝑜), 𝐿(𝜃1) are the log likelihoods of the null and alternative hypothesis models, 

respectively, with parameters 𝜃0 and 𝜃1. 

 

Lastly, since the parameter 𝜇𝑗 of the alternative hypothesis model is the expected read 

count (mean) of the intron in condition 𝑗, we can establish an additional intron filter by 

setting a threshold for 𝜇𝑗 (e.g., 𝜇𝑗 ≥ 1), to separate a 'true' intron from ‘noise’. 

 

The differential splicing ratio (DSR) model 

We next formulate the framework to test for differences in splicing ratios of introns 

within a 'bunch', or group of introns sharing an endpoint. For simplicity, we start by 

assuming that all samples belong to the same condition and the read counts 
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𝑦1, 𝑦2, … , 𝑦𝑘 in a bundle with 𝑘 introns follow a Dirichlet-multinomial distribution with 

priors 𝛼1, 𝛼2, … , 𝛼𝑘  : 𝑦1, 𝑦2, … 𝑦𝑘~𝐷𝑀(𝛼1, 𝛼2, … , 𝛼𝑘). 

 

Let 𝑝(𝑦1, 𝑦2, … , 𝑦𝑘) be the probability density function of the Dirchlet-mutinomial 

distribution. For intron read counts 𝑦𝑗 = (𝑦1𝑗 , 𝑦2𝑗 , … , 𝑦𝑘𝑗) in sample 𝑗 = 1 … 𝑛, we 

define the log likelihood function: 

𝐿(𝜃) = log 𝑝(𝑦1, 𝑦2, … , 𝑦𝑛) = ∑ log 𝑝(𝑦𝑗)

𝑛

𝑗=1

 

Similar to the discussion in the previous subsection, to extend to the case where 

samples belong to multiple conditions, we define a Dirichlet-multinomial distribution 

with prior 𝛼𝑖1, 𝛼𝑖2, … , 𝛼𝑖𝑘 for each condition 𝑖 = 1 … 𝑚: 

𝑦1
𝑖 , 𝑦2

𝑖 , … , 𝑦𝑘
𝑖 ~ 𝐷𝑀(𝛼𝑖1, 𝛼𝑖2, … , 𝛼𝑖𝑘) 

 

Let 𝑝𝑖 = (𝑦1, 𝑦2, … , 𝑦𝑘) be the probability density function for condition 𝑖. We define 

the log likelihood function: 

𝐿(𝜃) = log 𝑝(𝑦1, 𝑦2, … , 𝑦𝑛) =  ∑ ∑ 𝑧𝑖𝑗

𝑛

𝑗=1

𝑚

𝑖=1
log 𝑝𝑖 (𝑦𝑗) 

where 𝑦𝑗 = (𝑦1𝑗 , 𝑦2𝑗 , … , 𝑦𝑘𝑗) are the read counts of introns in this bunch in sample 𝑗, 

𝑧𝑖𝑗  ∈ {0,1} indicates whether sample 𝑗 belongs to condition 𝑖 or not, and 𝜃 represents 

the parameter set of the model. 

 

With the two Bayesian models above, we formulate a log-likelihood ratio test as before: 

the null hypothesis assumes all samples belong to the same condition, and the 
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alternative hypothesis assumes multiple conditions. Under the alternative hypothesis, 

the parameters 𝛼𝑖1, 𝛼𝑖2, … , 𝛼𝑖𝑘  for condition 𝑖 can be used to define the splicing ratio, 

similar to Percent Splicing Inclusion (PSI) 8,21, Ψ𝑖𝑙 for intron 𝑙 = 1 … 𝑘 under condition 𝑖, 

as: 

Ψ𝑖𝑙 =  
𝛼𝑖𝑙

∑ 𝛼𝑖𝑙′
𝑘
𝑙′=1

 

 

Sequences and Materials 

Simulated data. We generated 25 control and 25 perturbed RNA-seq samples with ~86 

million 101 bp paired-end reads each, using the software Polyester with human 

GENCODE v.22 as reference annotation. For the control samples, we used a model of 

gene and transcript abundance inferred from lung fibroblasts (GenBank Accession: 

SRR493366). To simulate the perturbed condition, we randomly selected 2,000 

annotated protein coding genes with two or more expressed isoforms and assigned 

them to four groups as follows 10,22: i) 500 genes were left unperturbed (NONE); ii) 500 

genes had only expression changes (DE), where genes were randomly assigned one half 

or double the original FPKM value; ii) 500 genes had only splicing differences (DS), 

obtained by swapping the expression values of the top two isoforms; and iv) 500 genes 

had both expression and splicing changes (DE-DS). Thus, 1,500 genes underwent 

changes in splicing abundance, and 1,000 had differences in splicing, and were used as 

the gold reference for evaluating the tools under the DSA and DSR models, respectively. 
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Real data. Reads for 44 mouse hippocampus samples (24 cases and 20 controls) were 

obtained from GenBank (Project ID: PRJEB18790). Tissue RNA-seq samples for 

comparative analyses (121 cortex, 105 frontal cortex, 132 cerebellum, and 196 lung 

samples) were obtained from the GTEx collection 23.  Lastly, RNA-seq data from 

differentiating mouse taste organoids 19 (14 samples, 7 stages) were obtained from the 

Sequence Read Archive (Accession: DRA005238). Listings of the sample IDs are provided 

in the Supplementary Source Data. 

 

Performance evaluation  

Reads were mapped with the program STAR v.2.4.2a 24 to the human genome GRCh38 

or mouse genome GRCm38 (mm10), as applicable. Alignments were analyzed with the 

programs MntJULiP v1.0, LeafCutter v0.2.8, MAJIQ v1.1.7a, rMATS v3.2.5 and Cuffdiff2 

v2.2.1 to determine changes in alternative splicing profiles. For the simulated tests, 

transcripts were reconstructed across each sample with StringTie v2.1.4 then merged 

across samples with StringTie(ST)-merge and the GENCODE transcripts as reference, to 

create a set of gene annotations to be used with all programs. To evaluate the 

programs' accuracy in predicting differentially spliced genes from the simulated data, 

the 1000 (DS, DE-DS) gene set and the 1,500 (DS, DE, DE-DS) gene set were used as the 

gold standard for DSR and DSA prediction, respectively. Any other program predictions 

were deemed false positives. Standard sensitivity (Sn = TP/(TP+FN)), precision (Pr = 

TP/(TP+SP)), and the F1 = Sn*Pr/(Sn+Pr) value were used to measure accuracy. To assess 

the programs' fidelity in quantifying alternative splicing for the DSR test, reference 
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Percent Splice Inclusion (PSI) values for all reference introns were calculated from the 

simulated data, as the ratio between the intron abundance and that of its bunch. 

Similarly, for the DSA test, reference log fold change values were calculated for each 

intron as the log fold change of the cumulative expression levels of all splice isoforms 

containing that intron.  
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FIGURE LEGENDS 

Figure 1. Performance evaluation of MntJULiP on simulated and real data. (A) 

Comparative evaluation of several methods on 25 control and 25 perturbed simulated 

RNA-seq data sets. (B) Venn diagram of methods’ gene-level DSR predictions on 24 

healthy and 20 epileptic mice. (C) Differential splicing at the Zxdc gene locus discovered 

in the mouse hippocampus data by MntJULiP(DSA); no two introns share an endpoint, 

therefore the gene could not have been discovered by other tools. Introns are 

annotated with the fold change values in the comparison of healthy and epileptic mice. 

(D) Venn diagram of DSR genes, and heatmap of DSR introns discovered with MntJULiP 

in a multi-way comparison of cerebellum, cortex and lung GTEx RNA-seq samples. (E) 

Heatmap of DSR introns discovered from the multi-way comparison of 7-stage taste 

organoid RNA-seq data. Heatmaps show PSI values of differentially spliced introns. 

Clustering was performed with the Bray-Curtis distance and simple averaging.   
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Figure 1A. 
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Figure 1B. 
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Figure 1C. 

 

 

  

1.47*	1.50	1.32	1.52	

1.03	0.93	0.99	1.08	1.21	 *p-val<0.05	

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 27, 2020. ; https://doi.org/10.1101/2020.10.26.355941doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.26.355941
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 1D. 
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Figure 1E.  
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