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was no statistically significant difference in prevalence between the viruses (X
2
 =3.01, df=3, 203 

p=0.3886) (Fig 3). Interestingly, samples from 7 individuals contained more than one of these 204 

viruses. Two individuals were positive for Sphenifaro virus and Sphenigellan virus, one individual 205 

for Sphenifaro virus and Sphenimaju virus, three individuals were positive for Sphenimaju virus 206 

and Sphenilena virus, finally, one sample contained 3 viruses: Sphenifaro, Spehnigellan, and 207 

Sphenilena virus. 208 

 209 

Sequencing the ~460bp PCR product demonstrated sequence variability for each of the new viruses. 210 

There was an average pairwise identity of 91.6%, 96.5%, 98% and 91% for Sphenifaro, 211 

Sphenigellan, Sphenimaju, and Sphenilena virus, respectively. The pairwise similarity for 212 

Sphenimaju was higher (i.e. less diversity) than that for the other species, despite having a 213 

comparable number of PCR products (n=9) (Fig 4) 214 

 215 

 216 

Table 1: Metadata for the four novel hepato-like viruses revealed in this study 217 

Sample 

Name 

Virus Name Top Blastn 

hit 

Blastn 

percent

age 

identity  

Lengt

h 

Number 

of reads 

in 

sample 

Number of 

reads  

(proportion of 

reads in 

sample) 

is_034_0

16 

Sphenifaro 

virus 

AUW34301 

Picornaviridae 

red crowned 

crane 

37.91% 7201 

bp 

916,871 2,687 (0.29%) 

is_034_0

18 

Sphenigellan 

virus 

YP_00916403

0 Phopivirus 

38.76% 7384 

bp 

1,090,48

9 

1,238 (0.11%) 

is_034_0

15 

Sphenimaju 

virus 

YP_00917921

6 Bat 

hepatovirus 

38.37% 7441 

bp 

2,689,81

3 

1,575,605 

(58.57%) 

is_034_0

16 

Sphenilena 

virus 

YP_00921578

0 Tupaia 

hepatovirus A 

35.83% 7048b

p 

916,871 1,919 (0.21%) 

 218 

 219 
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 220 
Figure 1: Genomic features of the novel picornaviruses revealed in this study (A) Phylogeny of the P1 mature 221 

peptide of select genera of the Picornaviridae. We included members of lineage VI and V, as defined by (32), and the 222 

tree was rooted based on this lineage divergence. In addition to avian genera, we also included members of the 223 

Limnipivirus and Potamipivirus known to infect fishes and Parechoviruses known to include mammals. Viruses 224 

described here are adjacent to a filled circle. Genera and clades dominated by fish viruses have been indicated by a fish 225 
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silhouette downloaded from phylopic.com and distributed by a Creative Commons attribution. Penguin silhouette was 226 

developed by M. Wille. Bootstrap values >70% are shown. The scale bar indicates the number of amino acid 227 

substitutions per site. A tree including all Picornavirus genera found in birds as is presented in Figure S1 (B) Genome 228 

arrangement for the four novel picornaviruses described in this study. Domains we were able to identify are indicated 229 

by filled box and place according to the amino acid position. Domains were identified using InterProScan. Detailed 230 

results of domain searches are presented in Table S3-S6. (B) Amino acid identity (percentage similarity) of the viruses 231 

revealed in this study and select reference sequences of the domains 2CNTPase, 3CPeptidase and 3DRdRp 232 

 233 

 234 

 235 

Figure 2: Diversity of four novel picornaviruses revealed through PCR. (A) Prevalence of each novel virus 236 

revealed in this study across samples collected from Magellanic Penguin individuals. The point estimate is presented as 237 

a filled circle and error bars correspond to 95% confidence intervals (B) Maximum likelihood tree of ~400bp PCR 238 

products sequenced from 20 positive samples. The tree was midpoint rooted for clarity only. Scale bar represents 239 

number of nucleotide substitutions per site. Viruses sequences assembled following metagenomic sequencing are 240 

indicated with a filled circle.  241 

 242 

Discussion 243 

In this study we aimed to reveal the viral diversity of Magellanic Penguins sampled in Chile. By 244 

using high throughput sequencing we found four novel viruses belonging to the family 245 

Picornaviridae.  These viruses are highly divergent and share less than 40% of the amino acid 246 

sequence in the P1 region with members of Hepatovirus and Tremovirus that they most closely 247 

resemble. The vast majority of the viral reads from most libraries mapped to these novel viruses 248 

indicate that these viruses were the dominant species in the faecal virome of the penguins. Further, 249 

through PCR screening we showed that over 20% of the sampled penguins in this study were 250 

shedding at least one of these viruses, and many individuals were co-infected with two or three of 251 

these new viruses. The viruses revealed here, in addition to novel and unassigned viruses from 252 

Antarctic Penguins (14) and Red-crowned Cranes (29) likely constitute at least three novel genera. 253 

This finding of very divergent avian picornaviruses forming one branch together with members of 254 
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 10 

the genera Tremovirus and Hepatovirus shows on the need to further classify the genera with the 255 

Picornaviridae family into subfamilies or lineages, and illuminates that there are many more 256 

picornaviruses to be identified, especially from this part of the Picornaviridae phylogeny. 257 

 258 

The charismatic Sphenisciformes have long been a target for virus surveillance, with early studies 259 

initiated in Antarctic Penguins in the 1970’s (9, 33). These studies were of course limited to 260 

screening for only described viruses, which until recently were viruses of poultry such as influenza 261 

A virus, Newcastle Disease virus, infectious bursal disease virus (e.g. (9, 33-36). As a consequence 262 

of this focus on poultry relevant virus surveillance, until very recently, few viruses had been 263 

described in penguin species, globally. While our viral catalogues are expanding, without detailed 264 

virus ecology studies, it remains unclear the role that penguins may play as hosts to an array of 265 

viruses. This is particularly true for viruses detected in penguins in rehabilitation centres (8). The 266 

high prevalence of the four novel viruses identified in this study, and the high frequency of co-267 

infections identified, indicates that these penguins are likely an important reservoir hosts for these 268 

viruses. To understand the host range of these viruses, we would strongly encourage for the 269 

sampling and surveillance of not only other populations of Magellanic Penguins, but also other 270 

penguin species found in South America, and globally. Evidence for connectivity of penguin 271 

species and populations as hosts for viruses is sparse, however studies from avian avulavirus 272 

provide some clues. First, we have now seen repeated detection of Avian avulavirus 17, 18, 19 in 273 

three Antarctic Penguin species and across a number of colonies along the Antarctic peninsula. 274 

More interesting was the detection of avian avulavirus 10, first in Rockhopper Penguins from the 275 

Falkland/Malvinas Island (15), and more recently in Antarctic Penguins (14). This data suggests 276 

that there is capacity of viruses to be shared across multiple penguin species and locations. How 277 

these viruses may fit into the larger migratory flyways used by other birds in South America, such 278 

as Red Knot (Calidris canutus), is very unclear (37, 38). In addition to ecological questions, of 279 

importance would be to understand the route of transmission of these viruses. Given the detection in 280 

faeces, and the fact that faecal-oral route of transmission is very common in RNA viruses of wild 281 

birds, such as influenza A virus and avian avaulaviruses, we may speculate that these viruses are 282 

transmitted by the faecal oral route. This, however, would need to be confirmed by dedicated 283 

studies. Taken together, we would argue for, not only more sampling and metagenomic studies in 284 

these hosts, but also more consistent and repeated sampling to reveal both virus diversity and virus 285 

ecology. 286 

 287 

Metagenomic tools have rapidly allowed for the expansion of described avian picornaviruses, but 288 

also redefined our understanding of the impact that these viruses have on their hosts. Prior to 2010, 289 
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almost all described avian picornaviruses caused disease in their hosts. This includes duck hepatitis 290 

virus (genus Avihepatovirus) (39), turkey hepatitis virus (genus Megrivirus) (40) and avian 291 

sapelovirus (genus Sapelovirus) (41) which cause hepatitis in domestic ducks and turkeys, avian 292 

encephalomyelitis virus (genus Tremovirus) causing a neural disorder encephalomyelitis (42) in 293 

domestic gallinaceous birds, and a number of viral genera causing gastroenteritis in domestic 294 

galliforms (31). Indeed, a recent metagenomic study revealed that a chicken with gastroenteritis was 295 

shedding 6 picornaviruses, simultaneously, although it is unclear which, if any, of these viruses was 296 

causing the disease (31). There is no doubt that the viruses isolated from poultry cause disease, 297 

however metagenomic studies have now revealed more than 20 novel picornavirus species in wild 298 

birds, and on all occasions the sampled birds had no signs of disease (10, 13, 24-29), with the 299 

exception of Poecevirus causing avian keratin disorder (43). In this study, we demonstrated not only 300 

a high viral load (large proportion of reads), but also that a number of penguins were co-infected 301 

with at least two of the new picornaviruses described here without any obvious signs of disease.  302 

Similarly, in a metagenomic study, Wille et al. (2018) found Red-necked Avocets (Recurvirostra 303 

novaehollandiae) to be co-infected with nine different viruses, including 3 highly divergent 304 

picornaviruses. This suggests that wild birds are able to tolerate high viral loads and diversity in the 305 

absence of overt disease (44, 45). One hypothesis for the discordance in disease signs in wild birds 306 

as compared to poultry is that wild birds have a long history of host-pathogen co-evolution (24, 46). 307 

Mass produced chickens and ducks, which suffer from disease when infected with an array of virus 308 

species, are a relatively new host niche in evolutionary time (47, 48).  309 

 310 

With more viral metagenomic studies being undertaken in under sampled hosts, such as fishes, 311 

many viral families once thought to exclusively infected birds and mammals now include members 312 

infecting fish and amphibians (49). Indeed, a number of picornaviruses have now been described in 313 

fish, and these viruses belong to genera falling within lineages previously dominated by viruses of 314 

mammmals and birds. The Limnipvirus and Potamipivirus genera are a case in point; these viruses 315 

fall within lineage IV (as defined by (32)) which includes a number of mammalian and avian 316 

infecting viral genera such as Avihepatovirus and Parechovirus (49-51). Shi et al. further described 317 

a number of fish viruses falling sister to established lineage IV viruses (Hepatovirus and 318 

Tremovirus) (49). Given that the viruses we characterized in this study were all identified in birds 319 

and are not in clades comprising fish viruses strongly suggests that we have detected avian viruses, 320 

rather than viruses of the diet of penguins. This distinction is especially important to clarify in 321 

samples collected from cloacae or faeces. These viruses of fish further demonstrate important 322 

evolutionary patterns in the lineage V viruses. That the phylogeny of the Hepatovirus, Tremovirus, 323 

and unassigned avian viruses and fish viruses generally follows the phylogeny of the hosts from 324 
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which they are sampled suggests that there has been a process of virus-host co-divergence, that 325 

likely extends hundreds of millions of years. It further suggests that we may expect to find 326 

numerous avian picornaviruses that fall sister to the Hepatovirus and Tremovirus genera. It has been 327 

estimated that over 99% of viruses are still to be described (52), and therefore we anticipate a large 328 

number of picornaviruses are yet to be identified particularly from the incredible diversity of wild 329 

birds.  330 

 331 

Material and Methods 332 

 333 

Ethics Statement 334 

The project was ethically approved by the Chilean National Forestry Corporation (CONAF) for the 335 

region of Magallanes, Chile (RESOLUCIÓN No :517/2015). 336 

 337 

Study site 338 

Sampling was carried out on the Magellanic penguin colony situated on the Magdalena Island in the 339 

Strait of Magellan in Chilean Patagonia (-52°55′10″S 70°34′34″W), from 19 - 21 November 2015. 340 

The colony comprises approximately 63,000 breeding pairs of penguins as the last count in 2007 341 

(53).  342 

 343 

Freshly deposited faecal samples (n=107) were collected from birds comprising 72 Magellanic 344 

penguins, 1 Southern Rockhopper penguin and, 3 Kelp Gulls. Some penguin faeces (n=30) were 345 

sampled on more than once. An additional 2 samples were collected from the soil around the 346 

colony. All samples were collected using sterile plastic tools and placed in 1 ml RNAlater 347 

(ThermoFisher) and stored at room temperature for up to 72h prior to storage in -80 °C. For eight 348 

penguins, a duplicate sample was stored dry in sterile tubes without RNAlater for approximately 5h 349 

at 8 °C prior to storage in -80 °C. Samples remained at -80 °C until processing. 350 

 351 

Sample preparation 352 

An initial 12 faecal samples from Magellanic penguins were prepared for viral metagenomic 353 

sequencing. Eight of the samples had been stored in RNAlater (ID:s 1,11,34,36,51,81,87,88) and 4 354 

samples were stored in dry tubes without RNAlater (NR2, NR4, NR5, NR6). Dry samples were 355 

treated with 20 U RNase I (Epicentre) prior to RNA extraction.  356 

 357 

All samples were homogenized in 800μl PBS using OmniTip Homogenizer (Omni International 358 

Inc) for 15 sec and then placed on ice for 30 sec followed by 15 sec homogenization. The 359 
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homogenate was centrifuged at 4,000 rpm for 10 minutes, thereafter the supernatant was transferred 360 

to a 0.65μm filter (Millipore) and centrifuged at 12,200 rpm for 4 minutes. The filtrate was further 361 

transferred to a Ultrafree-CL GV 0.22 μm Sterile filter column and centrifuged at 4,800 rpm for 4 362 

minutes. Thereafter RNA was extracted using Trizol and choloroform and the RNA was cleaned up 363 

using RNAeasy (Qiagen) according to protocol. Qubit HS RNA assay was used for quantification.   364 

 365 

The extracted RNA was amplified using Ovation RNA-Seq v2 (NuGEN) according to the 366 

manufacturer’s recommendations. The final product was purified with GeneJET PCR purification 367 

kit (ThermoFisher) followed by Qubit HS DNA assay for quantification. 368 

 369 

A negative PBS control samples was included throughout the laboratory workflow.  370 

 371 

Library preparation and sequencing 372 

Sequencing libraries were constructed using the AB Library Builder System (Ion Xpress™ Plus and 373 

Ion Plus Library Preparation for the AB Library Builder™ System protocol, ThermoFisher) and 374 

size selected on the Blue PippinTM (Sage Science). Library size and concentration were assessed 375 

by a Bioanalyzer High Sensitivity Chip (Agilent Technologies) and by the Fragment Analyzer 376 

system (Advanced Analytical). Template preparation was performed on the Ion Chef™ System 377 

using the Ion 520 & Ion 530 Kit-Chef (ThermoFisher). Samples were sequenced on 530 chips using 378 

the Ion S5™ XL System (ThermoFisher). 379 

 380 

Bioinformatics analysis 381 

The obtained reads were trimmed by quality in 5’ and 3’ and filtered by mean quality using 382 

PRINSEQ (v 0.20.4) with a PHRED quality score of 20 (54). The good quality reads were used to 383 

produce de-novo assemblies with Megahit version 1.1.1 (55). A taxonomic classification of the 384 

obtained contigs was performed by running Diamond (v 0.9.6) (56) against the non-redundant 385 

protein database (release April 2019) and using the LCA algorithm from Megan 6 (v6.11.7) (57) to 386 

visualise the classification of each contig. A taxonomic classification at the read level was also 387 

performed using Diamond (blastx + LCA, using the output format 102). The classified output table 388 

was converted into a Kraken report to allow visualisation with the R package Pavian (58). 389 

 390 

Comparative genomics and phylogenetic 391 

We interrogated the 4 contigs representing near full length picornavirus genomes (>6000bp).  Gene 392 

prediction was performed using ORFfinder (https://www.ncbi.nlm.nih.gov/orffinder/) and protein 393 
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domains prediction using InterProScan (59).  Reads were subsequently mapped back to viral 394 

contigs using the Burrows Wheeler Aligner BWA-MEM (60). 395 

 396 

Amino acid sequences of the polyprotein were aligned using MAFFT with the E-INS-I algorithm 397 

(61). Reference genomes for the Picornaviridae tree were limited to those genera containing avian 398 

(and mammalian) genera as per Wille et al. 2019b. Gaps and ambiguously aligned regions were 399 

stripped using trimAL (62). The most appropriate amino acid substitution model was then 400 

determined for each data set, and maximum likelihood trees were estimated using IQ-TREE (63).  401 

 402 

Annotation and file conversion for submission of annotated viral genome to ENA 403 

For generating EMBL flat files to submit the annotated viral genome to ENA, we have used several 404 

tools. First, we used Prokka (64), for generating a GFF file with the polyprotein coding sequence 405 

(CDS) with some manual modification if required. 406 

Using scripts from AGAT (Another Gff Analysis Toolkit; https://github.com/NBISweden/AGAT, 407 

version v0.5.0), the corrected GFF files were standardised with ‘agat_convert_sp_gxf2gxf.pl’ and 408 

proteins were extracted using ‘agat_sp_extract_sequences.pl’. The extracted polyproteins were then 409 

run through InterProScan online and TSV files containing the domain annotations were 410 

downloaded. The InterProScan annotation could be integrated into the GFF file using 411 

‘agat_sp_manage_functional_annotation.pl’. In order to submit the annotated viral genomes to 412 

ENA, the GFF files were converted into EMBL file using EMBLmyGFF3 (65). 413 

 414 

Ascertaining the prevalence of four novel picornaviruses  415 

RNA was extracted from the 107 faecal samples using QIAamp Fast DNA Stool mini kit (Qiagen), 416 

followed by cDNA synthesis using the High-Capacity cDNA Reverse Transcription (Applied 417 

Biosystems). Custom primers were designed for each of the four hepato-like viruses revealed 418 

(Table S7). For Sphenifaro and Sphenigellan viruses a nested PCR approach was employed, and for 419 

Sphenimaju and Sphenilena viruses a semi-nested approach was employed. The 50 μl PCR reaction 420 

mix contained 1xTaq Buffer, 2.25mM of MgCl2 (Applied Biosystems), 0.2mM of dNTP (Roche), 1 421 

U of Taq Polymerase (Roche), 1.5mM of each primer and 5μl of cDNA. The same reaction mix 422 

was used in the nested PCRs with 5μl of the first PCR product as template. The PCR reactions were 423 

run with primary denaturation at 94°C for 4 minutes followed by 40 cycles of denaturation at 94°C 424 

for 20 seconds, annealing at 54°C for 30 seconds followed by polymerization at 72°C for 90 425 

seconds. The PCR products were visualized on 1.5% agarose gel electrophoresis and amplified 426 

products were purified using QIAquick PCR purification kit (Qiagen) according to manufacturer’s 427 

protocol. Purified amplicons were sent to Eurofins Genomics (Germany) for Sanger sequencing. 428 
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 429 

Viral prevalence was calculated using the bioconf() package and statistically evaluated using a Chi 430 

squared test in R v 3.5.3 integrated into RStudio 1.1.463. 431 
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