New Results
DOUBLER: Unified Representation Learning of Biological Entities and Documents for Predicting Protein–Disease Relationships
View ORCID ProfileTimo Sztyler, View ORCID ProfileBrandon Malone
doi: https://doi.org/10.1101/2020.10.27.357202
Timo Sztyler
1NEC Laboratories Europe, Heidelberg, 69115, Germany
Brandon Malone
1NEC Laboratories Europe, Heidelberg, 69115, Germany
Posted October 27, 2020.
DOUBLER: Unified Representation Learning of Biological Entities and Documents for Predicting Protein–Disease Relationships
Timo Sztyler, Brandon Malone
bioRxiv 2020.10.27.357202; doi: https://doi.org/10.1101/2020.10.27.357202
Subject Area
Subject Areas
- Biochemistry (4757)
- Bioengineering (3299)
- Bioinformatics (14579)
- Biophysics (6588)
- Cancer Biology (5129)
- Cell Biology (7376)
- Clinical Trials (138)
- Developmental Biology (4315)
- Ecology (6822)
- Epidemiology (2057)
- Evolutionary Biology (9838)
- Genetics (7308)
- Genomics (9467)
- Immunology (4506)
- Microbiology (12587)
- Molecular Biology (4901)
- Neuroscience (28097)
- Paleontology (198)
- Pathology (799)
- Pharmacology and Toxicology (1372)
- Physiology (1993)
- Plant Biology (4450)
- Synthetic Biology (1293)
- Systems Biology (3892)
- Zoology (717)