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Summary  

Despite extensive efforts to characterize the transcriptional landscape of pancreatic ductal 

adenocarcinoma (PDA), reproducible assessment of subtypes with actionable dependencies 

remains challenging. Systematic, network-based analysis of regulatory protein activity stratified 

PDA tumours into novel functional subtypes that were highly conserved across multiple cohorts, 

including at the single cell level and in laser capture microdissected (LCM) samples. Identified 

subtypes were characterized by activation of master regulator proteins representing either 

gastrointestinal lineage markers or transcriptional effectors of morphogen pathways. Single cell 

analysis confirmed the existence of Lineage and Morphogenic states but also revealed a 

dominant population of more differentiated Oncogenic Precursor (OP) cells , present in all 

sampled patients, yet not apparent from bulk tumor analysis. Master regulators were validated by 

pooled, CRISPR/Cas9 screens, demonstrating both subtype-specific and universal 

dependencies. Conversely, ectopic expression of Lineage MRs, such as OVOL2, was sufficient 

to reprogram Morphogenic cells, thus providing a roadmap for the future targeting of patient-

specific dependencies in PDA. 
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Pancreatic ductal adenocarcinoma (PDA) is the third-leading cause of cancer-related mortality 

and is highly resistant to cytotoxic, targeted, and immune therapies1. Compared to the 

heterogeneous mutational repertoire of other cancers, PDA is remarkable for its relatively uniform 

complement of DNA alterations, with frequent mutations in KRAS, CDKN2A, TP53, and SMAD4. 

Unfortunately, these hallmark events are not currently targetable and other mutations known to 

confer sensitivity to specific drugs are uncommon. Consequently, cytotoxic combinations remain 

the standard of care, with most patients quickly exhibiting primary or secondary chemoresistance. 

Cellular heterogeneity has emerged as a major contributor to cancer chemoresistance, due to 

potential coexistence of malignant subpopulations with distinct transcriptional states (cellular 

subtypes)2 and to the contribution of diverse stromal subpopulations3. The former may present 

with orthogonal drug sensitivity and remarkable plasticity, thus serving as chemoresistance 

reservoirs and frustrating efforts to delineate therapeutic vulnerabilities through bulk tissue 

analysis. Stromal cells further complicate matters as they often represent the dominant 

compartment in bulk PDA samples. Elucidating the repertoire of distinct, yet coexisting malignant 

subpopulations in PDA, independent of stromal contamination, thus represents a critical first step 

toward the rational design of more effective targeted and combination therapies. 

While multiple studies agree on the presence of at least two transcriptional subtypes of PDA, the 

specific molecular signatures of these subtypes remain controversial and non-overlapping4. 

Overall, more differentiated tumors—corresponding to Classical or Progenitor subtypes in prior 

studies—are generally associated with better outcome, compared to poorly differentiated ones—

termed Quasi-mesenchymal, Basal-like, or Squamous 
5-10. However, published classifiers 

produce limited overlap when applied across available cohorts4. While removing stromal 
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contributions from expression signatures helps harmonise discrepancies10, a unifying molecular 

PDA classification schema is still elusive and an important next step for the field. 

Regulatory network analysis can yield highly-multiplexed, tumor-specific gene reporter assays 

that accurately measure the activity of Transcriptional Regulator (TR) proteins—including 

transcription factors, co-factors, and chromatin remodeling enzymes—from gene expression 

profiles (see11 for a comprehensive perspective). Specifically, the VIPER algorithm enables 

genome-wide quantification of TR activity with >80% accuracy. This helps identify the most 

aberrantly activated and repressed TRs between phenotypes as candidate Master Regulator 

(MR) proteins that may mechanistically implement and maintain a tumor cell’s transcriptional 

state12. Protein activity measurement accuracy has been confirmed by silencing assays and 

targeted small-molecule perturbations and has helped identify MR proteins that were extensively 

validated13-16. VIPER calculates a protein’s differential activity from the relative abundance of its 

target genes (regulon), as identified by the ARACNe algorithm17 (see Supplementary Notes). 

More recently, the metaVIPER algorithm, which integrates VIPER predictions from multiple 

networks, was shown to further improve activity inference, including in single cell analyses18, 

where it virtually eliminates gene dropout effects arising from low sequencing depth. The high 

reproducibility of VIPER and metaVIPER has led to NY State CLIA certification for two VIPER-

based algorithms, OncoTarget19 and OncoTreat13 that are now routinely used in multiple clinical 

trials and studies.  

VIPER-based analysis of gene expression profiles from 200 LCM human primary PDA epithelium 

samples identified three clusters, two of which corresponding to highly molecularly-distinct 

subtypes characterized by aberrant activity of either gastrointestinal lineage markers (Lineage 
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subtype) or proteins representing effectors of known morphogen signaling pathways 

(Morphogenic subtype); the third LCM cluster indicated a mixing of these two states. Single cell 

analysis of two independent cohorts confirmed coexistence of cellular subpopulations 

representing Lineage and Morphogenic transcriptional states at widely different ratios between 

individual tumors, and confirmed that the third LCM cluster lacks a corresponding cell state. 

Unexpectedly, single cell analysis revealed a third, molecularly-distinct cellular subtype, termed 

Oncogenic Progenitor (OP) that was less malignant and more differentiated than Lineage or 

Morphogenic cells. OP cells represented a large and relatively constant fraction of PDA sample 

cells, thus impeding their detection through differential analysis of bulk tumor tissues. RNA-

velocity analysis suggested that OP cells may provide a reservoir for the replenishment of Lineage 

and Morphogenic cells, thus contributing to chemoresistance. Pooled, CRISPR/Cas9-mediated 

validation confirmed enrichment of candidate MRs in PDA essential proteins. Furthermore, bulk 

and single-cell based, pooled ectopic expression of candidate MR proteins confirmed the ability 

of subtype-specific MRs, such as OVOL2, to reprogram PDA cell state; the efficiency of 

reprogramming was even higher when OVOL2 was co-expressed with other MRs such as 

HNF1A. Taken together, these results provide a foundation for the development of novel therapies 

targeting the individual epithelial subpopulations that comprise bulk PDA and their molecular 

dependencies. A conceptual workflow of the analysis is depicted in Fig. 1a. 

Regulatory, network-based classification of PDA: Tissue heterogeneity and stromal 

desmoplasia represent major confounding factors in PDA tissue analysis10. We thus generated a 

novel collection of RNASeq profiles from the microdissected epithelium of 200 PDA samples, 26 

low-grade PanINs, and 19 IPMN adenomas (collectively, CUMC-E cohort). ARACNe analysis 

yielded a regulatory network (CUMC–ENet) comprising >250,000 regulatory interactions for 1,795 
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Transcriptional Regulators (TRs). We then used VIPER to transform PDA RNASeq profiles into 

TR activity profiles, using the protein regulons identified by this network. Protein activity based 

clustering, using the Partitioning Around Medoids (PAM) algorithm20, identified a k = 3 cluster 

solution as optimal, by AUC analysis (see Methods and Extended Data Fig.1a).  

Based on functional analysis, we named the first cluster “Lineage Subtype,” due to the presence 

of established gastrointestinal transcription factors (e.g., GATA6, PDX1, HNF1B, SOX9, GATA4, 

HNF1A, and CDX2) among the most aberrantly activated MRs, relative to the other clusters (Fig. 

1b). However, activity of these TFs was even higher in PanIN and IPMN samples, suggesting that 

Lineage tumors may reflect partial loss of GI commitment. In sharp contrast, we named the third 

cluster “Morphogenic Subtype” to highlight inactivation of GI lineage markers, and aberrant 

activation of EMT regulators (e.g., ZBED2, ZEB1, ZEB2, SNAI2) and morphogen pathway 

transcription factors (e.g., GLI2, GLI3, NOTCH2, and SMAD3). This was confirmed by GSEA 

showing enrichment for hallmarks related to of WNT and TGF-β-mediated programs (Extended 

Data Fig.1b). Notably, blinded histopathological analysis of adjacent sections from source tissue 

blocks of CUMC-E samples showed that Morphogenic tumors were more likely to be poorly 

differentiated compared to Lineage tumors (p = 8.9 X 10-3) (Extended Data Fig. 1c), and an 

analysis of curated clinical data showed that the Morphogenic subtype was associated with 

shorter overall survival (p = 9.1 X10-3) (Fig. 1c). Finally, the remaining cluster emerged as an 

Intermediate Subtype state, characterized by tumors showing a milder activation gradient of 

Lineage to Morphogenic MRs (Fig. 1b and Extended Data Fig. 1b). Such a gradient suggests that 

these samples may arise from a heterogeneous mixture of cells representative of the other two 

subtypes. 
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Lineage and Morphogenic transcriptional states are conserved across multiple cohorts: 

We next sought to assess consistency of this regulatory network-based classification in the more 

common and translatable setting of bulk tissue expression profiles, by leveraging two large-scale 

cohorts with available RNASeq profile data profiled by ICGC and TCGA7,8. For the latter, we used 

only samples annotated as “high purity” (n = 76). For this analysis, we leveraged the metaVIPER 

algorithm, which allows the integration of multiple regulatory networks, including those from these 

two cohorts, as well as the CUMC-E network. Network integration was previously shown to 

improve the detection of cancer driver genes in global cancer analyses21. Here we found that 

metaVIPER improved detection of PDA genetic dependencies, while preserving the regulatory 

programs of the epithelial compartment (Extended Data Fig. 2 a-b and Supplementary Notes). 

Cluster analysis yielded k = 2 as the optimal cluster number in both cohorts. Yet, differentially 

active proteins between these clusters were strikingly enriched in Lineage and Morphogenic MRs 

(pLCM→ICGC = 9.4 × 10!"# , pLCM→TCGA = 2.0 × 10!$") by 2-tails aREA test 12, as identified from the 

LCM dataset, respectively (Fig. 2a-b). Moreover, there was highly significant overlap between the 

MRs of ICGC and TCGA clusters (pICGC →TCGA ≤ 1.4 × 10!"") (Fig. 2c).  

We have recently shown22 that MR proteins representing the most differentially activated TRs 

form modular structures (Tumor Checkpoints) that canalize23,24 the effect of genetic alterations in 

their upstream pathways25. In PDA, the 50 most activated and inactivated MRs were sufficient to 

account for ~75% of patient-specific alterations in the TCGA cohort. Consistent with this 

observation, a classifier trained on the top 50 MRs for each subtype (i.e., Tumor Checkpoint MRs 

for simplicity), from either ICGC or TCGA samples, produced almost perfect classification in the 

other cohort, as assessed by Area Under the Curve analysis (AUCICGC→TCGA = 0.95 and 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 27, 2020. ; https://doi.org/10.1101/2020.10.27.357269doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.27.357269
http://creativecommons.org/licenses/by-nc-nd/4.0/


   

 

AUCTCGA→ICGC = 0.92, respectively) (Fig. 2d). Similar to previous cross-cohort studies14, we thus 

used the Stouffer’s method26 to integrate the p-value of each MR, as inferred from the two cohorts, 

yielding an integrated TCGA/ICGC MR signature (Fig. 2e). Differential activity of Tumor 

Checkpoint MRs, following integration, was highly conserved in the LCM cohort, as well as in two 

microarray-based cohorts (UNC6 and Collison5) (Extended Data Fig. 2d). Consistently, a Tumor 

Checkpoint MR-based Random Forest classifier trained on TCGA and ICGC samples produced 

almost perfect classification of LCM samples (AUC = 0.97), confirming that bulk-samples analysis 

with ARACNe networks effectively recapitulates MR activity of pure epithelial samples (Fig. 2f). 

Consistent with prior reports5, genetic alterations did not co-segregate with either expression or 

activity-based subtypes (Extended Data Fig. 2e). In contrast, epigenetic analysis of TCGA 

samples revealed a strikingly distinct differential DNA methylation pattern in Lineage vs. 

Morphogenic samples (Fig. 2g-h), including for subtype-specific MRs. For instance, Lineage MRs 

(GATA6 and HNF1A) and Morphogenic MRs (ZEB1 and ZNF423) were differentially methylated 

between subtypes, demonstrating concordance between epigenetic and regulatory states. Of 

note, while clusters corresponding to Lineage and Morphogenic subtypes were consistently 

identified across all previously published PDA cohorts, there was only limited overlap with prior, 

gene expression-based subtypes (Fig. 2i). For instance, Morphogenic samples represented an 

almost equivalent fraction of samples previously classified as immunogenic or progenitor7 (19% 

and 21%, respectively); the same was true for Lineage samples (34% and 43%, respectively). 

Only the squamous subtype7 was found to comprise mostly Morphogenic rather than Lineage 

samples (46% vs. 2%). Taken together, these data demonstrate that the proposed classification, 

as confirmed by LCM epithelial samples analysis, is both distinct from prior ones and largely 
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independent of stromal contamination, owing to the integrative use of regulatory networks that 

recapitulate protein transcriptional targets in an epithelial setting. 

Single-cell analysis identifies three subtypes: To test our earlier hypothesis that Intermediate 

Subtype samples from the CUMC-E cohort comprises an admixture of subtypes, we used 

metaVIPER to measure protein activity from single cell RNASeq profiles (scRNASeq), initially with 

1,900 epithelial cells dissociated from 6 fresh human PDA samples3. Of these, 30 cells were 

removed as non-malignant, based on ploidy analysis27 (see methods). A single-cell epithelial PDA 

network scPDANet was then generated by ARACNe and included in the metaVIPER analysis (see 

methods). Three distinct clusters emerged (Fig. 3a and Extended Data Fig. 3a). Strikingly, 

Lineage and Morphogenic MRs from bulk samples were almost perfectly recapitulated by proteins 

differentially active in two of the single-cell clusters (SC2 and SC3). In contrast, SC1 was not 

enriched in markers of either bulk sample subtype (Fig. 3b), but reflected an entirely novel 

transcriptional state characterized by high relative activity of early pan-GI lineage markers, such 

as NEUROD1 and RFX6 (Fig. 3c), chromatin remodeling enzymes such as PHF2, HOX genes 

such as HOXA2, and a large fraction of poorly characterized zinc-finger factors. We named these 

Oncogenic Precursor (OP) cells in light of the following observations. First, the SLICE 

algorithm28—which uses entropy analysis to infer stemness—assessed OP cells to be more 

differentiated than Lineage and Morphogenic cells (Fig. 3d). Second, we noted that established 

PDA-related stemness markers 29,30   were specifically overexpressed in Lineage (MSI2High) and 

Morphogenic cells (MSI2High and PROM1/CD133High) but not in OP cells. CXCR4, an established 

marker of drug resistance31, was also specifically overexpressed in Morphogenic but not OP cells. 

Finally, RNA Velocity analysis32 suggests that a subset of OP cells occupy a transient rather than 

stable state, consistent with reprogramming towards either a Lineage or Morphogenic states (Fig. 
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3e). These cells were enriched in two of the three probability density peaks for the OP cells (OP-

L and OP-M, Fig. 3a) and exhibited partial activation of either Lineage or Morphogenic markers, 

suggesting that a fraction of OP cells may already be committed to these endpoints. 

Analysis of individual tumors showed a large fraction of OP cells in every sample, ranging from 

39 – 78% of cells (Fig. 3f).  In contrast, the Lineage to Morphogenic cell ratio was highly variable, 

with two out of six samples exhibiting only two dominant cellular states. The OP signature was 

minimally differentially activated between tumors, thus providing a rationale for why it is not 

identified as an independent subtype by bulk-sample analysis. Consistent with this observation, 

synthetic bulk samples—with half of the cells comprising OPCs and the other half comprising a 

variable ratio (0% to 100%) of Lineage vs. Morphogenic cells—recapitulated the three bulk 

subtypes detected in the LCM dataset (methods and Extended Data Fig. 3d) and confirmed the 

Intermediate LCM subtype as the likely byproduct of a heterogeneous mixture of cells in different 

states. 

Analysis of an independent dataset with >8,300 PDA single cells from five PDA patients, 

experimentally enriched for tumor cells (see methods), recapitulated these findings and 

independently confirmed the same three subtypes (Supplementary Notes and Extended Data Fig 

4a-c.). These findings were further recapitulated in single epithelial cells from a PDX model 

(Extended Data Fig. 4d) and from human PDA cell lines classified as Lineage (HPAFII, PATU) 

and Morphogenic (KP4) (Extended Data Fig. 4 e-f).  

Finally, we used previously published PDA subtypes to classify single cells and to assess 

expression of previously reported hallmark genes, (methods and Supplementary Notes). 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 27, 2020. ; https://doi.org/10.1101/2020.10.27.357269doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.27.357269
http://creativecommons.org/licenses/by-nc-nd/4.0/


   

 

Surprisingly, the individual cells were often classified as belonging to mutually exclusive subtypes 

and expressing mutually-exclusive markers—e.g., FAM3D (Classical) vs. LEMD1 (Basal-like)6 

(Extended Data Fig. 5a-d). This suggests that prior classification systems may reflect emergent 

bulk-tissue properties rather than the biology of individual cells. 

PDA master regulators are enriched in essential genes: To assess PDA cell dependency on 

VIPER-inferred MRs, we performed long-term (33 day) viability assays by pooled CRISPR/Cas9 

screens in cell lines selected as optimal representatives of Lineage and Morphogenic subtypes. 

Specifically, Cancer Cell Line Encyclopedia (CCLE) analysis revealed two groups of PDA cell 

lines presenting aberrant activity of either Lineage or Morphogenic MRs, leading to selection of 

three Lineage (PATU-8988S, HPAFII, and CAPAN1) and three Morphogenic cells (Panc1, KP4, 

and PK45H) as optimal representatives for the screen. Their identity was confirmed by RNASeq 

profiling and analysis of isolates from each cell line (Extended Data Fig. 6a). 

Pooled CRISPR/Cas9-mediated knockout screens were performed in each cell line, using guide 

RNAs (sgRNAs) targeting 3,179 genes including all TR proteins studied in the VIPER analysis12, 

as well as selected core essential and non-essential genes, as positive and negative controls 33,34 

(Extended Data Fig. 6b). Cells were harvested at 24 hours and 33 days following sgRNA 

transduction and sequenced. sgRNA counts were integrated across technical and biological 

replicates to reveal depletion associated with decreased cell viability (see methods). We first 

assessed subtype-specific dependencies by measuring the enrichment of Lineage and 

Morphogenic MRs among genes essential in the respective cell lines. The top 50 subtype specific 

MRs were significantly enriched in Lineage or Morphogenic cell line essential genes, respectively 

(Fig. 4a) ((%&' = 5.0 × 10!( and ()*+ = 4.0 × 10!#, respectively). This includes, for instance, 
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proteins such as CDX2, GATA6, and HNF1A (Lineage) and MYBL1, ZEB1, RUNX2, and SNAI2 

(Morphogenic).  

To assess essentiality of subtype-independent MRs, we then used VIPER to identify MRs 

regulating a signature of differentially expressed genes between each PDA sample and the 

average of all physiologic samples in GTEx35. MRs were then ranked by integrating their p-values 

across all cohort samples using Stouffer’s method. Enrichment of subtype-independent MRs in 

genes whose essentiality was consistent across all six PDA cell lines (i.e. subtype-independent 

essentiality) produced an even stronger enrichment (( = 9.4 × 10!" ) (Figure 4b). Furthermore, 

Achilles project analysis36 (https://depmap.org/portal/)  showed that subtype-dependent and 

independent MRs do not contain common essential genes (i.e., essential across a majority of the 

739 cell lines) (Extended Data Fig. 6c). Thus, the analysis confirmed that PDA cells present both 

subtype-specific dependencies as well as more universal dependencies. Both may yield novel 

pharmacological targets.  

Ectopic Lineage MR Expression Reprograms Morphogenic Cells: Based on these results, 

we then tested whether ectopic expression of Lineage MRs in Morphogenic cells would reprogram 

them towards a Lineage state. To test this hypothesis, we used lentiviral transduction to 

overexpress each of the top 8 Lineage MRs (ELF3, ESSRA, ETV4, FOXA2, FOXA3, HNF1A, 

NR2F6, and OVOL2) in the Morphogenic KP4 cell line, via the tetracycline inducible M2rtTA 

system37. Strikingly, while most Lineage MRs were effective in inducing activation of positive 

Lineage MRs, only OVOL2 overexpression also repressed negative Lineage MRs, resulted in a 

near-complete recapitulation of the full Lineage MR signature (( = 4.3 × 10!$,); this included 

downregulation of universal essential genes, such as UHRF1, and key regulators of proliferation, 
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such as PTTG1, FOXM1, and TOP2A (Fig. 4c and Extended data Fig. 7a-b). We next assessed 

whether overexpression of MR combinations could more effectively induce reprogramming than 

individual MRs. For this, we performed ectopic cDNAs expression in single cells at MOI = 1, 

followed by single-cell RNASeq profiling. At this MOI, most cells received either one or two cDNAs 

and there were 11 MR pairs, 9 triplets, 4 quadruplets and 1 quintuplet that were co-ectopically 

expressed in n ≥ 30 cells, thus allowing faithful assessment of gene expression signature. As 

shown in Figure 4d, and in line with the results obtained by ectopic expression individual TF in 

bulk data (Figure 4c), the top combinations included OVOL2. However, co-expression of OVOL2 

and HNF1A significantly improved reprogramming efficiency by >13% (from 48% to 61.2%). 

These data provide functional confirmation of the mechanistic role of specific MRs in determining 

PDA cell state through regulation of their transcriptional targets. Finally, we assessed OVOL2’s 

cDNA-mediated activation by WB assays of known OVOL2 downstream repressed targets 

representing EMT effectors, a hallmark of the Morphogenic subtype. Indeed, OVOL2 ectopic 

expression inhibited protein expression of ZEB1 and Vimentin38,39, while inducing expression of 

the established epithelial marker E-cadherin (Extended Data Fig.7c). While OVOL2 was 

previously reported as a Mesenchymal To Epithelial (MET) transition inducer, when silenced in 

specific tissues40-44, its ability to reprogram cells from a Morphogenic to a Lineage state in PDA 

when activated was not previously reported.  

Discussion  

The molecular classification of PDA has remained a stubbornly complex challenge, exacerbated 

by the contributions of dozens of stromal cell types intermixed with a minor fraction of 

heterogenous malignant epithelial cells. We navigated this complexity through both experimental 
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isolation of the PDA epithelial compartment and the application of regulatory network algorithms 

that confer key advantages over traditional gene expression profiling by allowing accurate protein 

activity measurements from mRNA profiles. A key limitation of gene expression analysis includes 

high measurement noise on an individual gene basis, which, combined with the high 

dimensionality of these data and the assumption of independence between each gene, can 

produce highly variable gene signatures, even when identical phenotypes are considered. In 

contrast, use of regulatory protein activity measurements, each of which is based on the 

expression of tens of target genes, dramatically increases measurement reproducibility45. By 

incorporating PDA epithelium-enriched networks using metaVIPER, these methodologies also 

mitigate the effects of stromal cell infiltration. These advantages are especially relevant in single-

cell analyses, where the approach allows accurate quantification of regulatory protein activity 

independent of the number of reads of their encoding genes18,46, including in PDA3,18. Most 

critically, mechanism-based insight is directly built into these approaches because prediction of 

regulatory protein activity is directly related to the genetic signature they physically regulate, thus 

supporting identification of transcriptional regulators that drive phenotypic states through physical 

regulation of their targets (see for instance13,15,16,47 and recent reviews10,11).  

 

The application of regulatory network analysis to bulk, microdissected, and single cell samples 

brings new insights to the molecular subtypes of PDA. Three clearly distinct cellular states 

(cellular subtypes) emerged from single cell analysis of PDA samples, whose coexistence within 

individual tumors and with other non-epithelial populations can produce inconsistent bulk-level 

subtype inference. Two of these (Lineage and Morphogenic) exhibit highly variable contributions 

across patients whereas the third (Oncogenic Precursor) appears to contribute in roughly similar 

proportions to all PDA tumors. Consequently, rather than six different potential combinations of 
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the three cell types, PDA resolves into either two predominant groups at the bulk tissue level, 

depending on the relative abundance of Lineage versus Morphogenic cells. In the most highly 

epithelial cohorts, such as our LCM dataset, it is also possible to resolve an intermediate group 

of tumors with roughly equal contributions of Lineage and Morphogenic cells, whereas higher 

stromal content obscures this third group. Intrinsically, classification schemes built solely from 

bulk or even microdissected PDA samples will reflect an averaging of the expression contributions 

across different cellular subtypes. Indeed, the intermediate subtype could be effectively 

recapitulated by creating synthetic epithelial bulk samples where about half of the cells were OP 

cells and the remaining ones had a relatively similar composition of Lineage and Morphogenic 

cells. This is also well illustrated by the fact that mutually exclusive hallmark genes from prior, 

bulk-tissue classifiers were expressed in the same individual single cells (Extended Data Fig. 6). 

In contrast, the regulatory protein activity subtypes mapped uniquely to individual cells across two 

independent scRNAseq datasets.  

 

Nevertheless, some features are shared with prior classification systems, particularly an 

association of some subtypes with tumour differentiation, as well as a role for certain 

gastrointestinal lineage transcription factors. However, it is important to note that while high GI 

transcription factor activity relative to other PDA cells led to their designation as Lineage cells, the 

activity of these MRs is in fact lower than in low-grade PanINs and IPMNs. As such, Lineage cells 

are perhaps best defined by their incomplete loss of GI identity. By contrast, Morphogenic cells 

have completely shed their GI epithelial identity and have acquired new mesenchymal features 

based on the activity of MRs such as SNAI1, ZEB1, and ZEB2.  
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Oncogenic Precursor cells are of particular interest for their commonality across tumors. Based 

on the results of RNA Velocity analysis, one can postulate their potential role in repopulating the 

Lineage and Morphogenic compartments. However, they also bear features that defy the 

traditional concept of a “cancer stem cell”. Indeed, entropy analysis suggests that OP cells are 

more differentiated than Lineage and Morphogenic cells and they express comparatively low 

levels of the stemness markers MSI2, PROM1, and CXCR4. Curiously, OP cells exhibit relative 

activation of RFX6, NEUROD1, and other early GI/neuroendocrine transcription factors, which 

are understudied in the context of PDAC. One interpretation of these varied data points is that OP 

cells may occupy of stable equilibrium point within the GI committed program that is both rapidly 

proliferating and plastic, much in the way that early pancreatic bud cells both proliferate and 

differentiate. Lack of a pure OP cell line currently prevents direct assessment of MR essentiality 

in this population, though we infer from their distinct MR profile that they will present distinct drug 

sensitivities. However, the presence of a small fraction of OP cells in Lineage and Morphogenic 

cell lines suggests that once appropriate techniques for their isolation are available, such studies 

should be possible.  

 

The intermixing of multiple cellular subtypes with distinct regulatory states provides a 

straightforward mechanism for chemoresistance, a phenomenon that has been demonstrated in 

multiple other tumor types48,49. This concept is emphasized by the distinct genetic dependencies 

observed in Lineage versus Morphogenic cell lines in both loss of function and overexpression 

studies. Critically, the overexpression of a few or even just one subtype MR was sufficient to 

reprogram Morphogenic cells towards a Lineage state, an intriguing result given the reduced 

survival of patients with Morphogenic tumours. Notably, cellular subtype heterogeneity was 

apparent even in long-established cell lines, a finding that has widespread implications for the 
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interpretation of drug perturbation and other in vitro studies. The core PDA dependencies 

comprising the experimentally validated MR proteins identified in our analyses represent attractive 

targets for future therapeutic development using protein activity reversal based methods, such as 

OncoTarget19 and OncoTreat13.  
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Figure legends 

Figure 1: (a) Schematic workflow of the analysis. (b) Heatmap showing the activity of 1795 TRs 

(rows) across 200 PDA samples (columns) in the three clusters. (c) Kaplan Meier showing the 

difference in survival between the three clusters. The p-value was computed using the log-rank 

test. 

 

Figure 2: (a-b) GSEA plots showing enrichment of Tumor Checkpoint MRs in TCGA and ICGC 

(i.e., top 25 most activated and inactivated) in the CUMC protein activity signature (reference). P-

values and normalized enriched scores (NES) were computed by aREA algorithm. (c) GSEA plot 

showing enrichment of TCGA Tumor Checkpoint MRs in ICGC differentially active proteins 

(reference). (d) ROC-curve showing the performance of a random forest classifier, based on 

Tumor Checkpoint MRs, trained on each ICCG clusters and tested on the corresponding TCGA 

clusters (red curve) or vice-versa (black curve). (e) Heatmaps showing most differentially active 

Tumor Checkpoint MRs for the Lineage and Morphogenic subtypes, following integration of the 

ICGC and TCGA analyses. (f) ROC-curves for a random forest classifier based on the most 

differentially active Lineage and Morphogenic Tumor Checkpoint MRs, following integration of 

ICGC and TCGA analyses, and tested on: (i) CUMC lineage and morphogenic clusters (green 

curve); (ii) UNC viper- based clusters (brown curve); and (iii) Collison viper-based clusters (gold 

curve). For UNC and Collisson cohorts (microarray data sets) the performance was evaluated on 

109/125 samples and on 23/27 samples that clustered with a significant Silhouette Score >0.25. 

(g) Heatmap showing differentially methylated sites between Linage and Morphogenic TCGA 
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samples. (h) Scatterplot showing correlation between differential methylation and differential 

activation of HNF1A. (i) PieDonuts plots showing the overlap between the VIPER-based clusters 

corresponding to Lineage and Morphogenic subtypes and previously published classification 

schemes. 

Figure3: (a) Diffusion map of the PDA epithelial cells (n=1900), showing the three different 

clusters identified by fuzzy clustering. Cells with a membership probability lower than 0.5, 

computed by Fuzzy clustering, across the three clusters are shown in grey. The black line 

indicates the psudo-trajectory computed by principal curve analysis. (b) GSEA plots showing the 

enrichments of the top 50 activate MRs inferred by VIPER SC1, SC2 and SC3 on the bulk linage-

morphogenic protein activity signature. The p-values and the NES were estimated by GSEA with 

1000 permutations. (c) Heatmap showing the differential activity of the top 200 MRs of each 

single-cell cluster sorted by their median activity. Bottom annotation shows the expression of 

CD133, MSI2 and CXCR4 computed by metacell integration. (d) Scatterplot showing the single 

cell entropy computed on protein activity using the SLICE algorithm (y-axis) in single cells ordered 

according to the pseudo trajectory computed by principal curve. (e) PCA of the PDA epithelial 

cells showing the transitions predicted by RNA-velocity analysis. Large arrows were manually 

added to highlight the major transitions compute by velocity analysis (small arrows) (f) Pie charts 

showing the distribution of PDA epithelial subtypes in each patient. 

Figure 4: (a) Scatter plot showing the differential essentiality signature between lineage and 

morphogenic cell lines (L/MEss). Genes are ranked according to the differential essentiality score 

(z-score) from the top lineage essential genes (left) to the top morphogenic essential genes (right). 

Representative lineage and morphogenic MRs are shown in red and blue, respectively. The p-
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values and the NES were estimated by GSEA (1-tail) with 1000 permutations. (b) Scatter plot 

showing all the essential genes ranked according to their essentiality score (z-score) computed 

across all the PDA cell lines. The p-value and the NES were estimated by GSEA (1-tail) with 1000 

permutations. (c) Heatmap showing the activity of the lineage and morphogenic TRs in the 

morphogenic cell line (KP4) after the ectopic expression of individual top Lineage TFs (n=8) The 

barplots represent the -log10 p-value relative to the Morphogenic-To-Lineage reprogramming 

score (NES) computed by the aREA algorithm. (d) Left, box plots showing the distributions of the 

reprogramming scores generated for each single-cell upon the ectopic expression of individual or 

combinations of the top 8 lineage TF. The p-values were computed using the aREA algorithm. 

Right, Heatmap showing the median activity of the lineage and morphogenic TRs in the 

morphogenic single cells (KP4) after the ectopic expression (individual or combinations) of the 

top 8 lineage TFs. 

 

Extended Data Figure 1: (a) Scatter plot showing the optimal number of clusters based on 

conservation of master regulators evaluated by AUC analysis. (b) Heatmap showing the top 

biological hallmarks enriched in each cluster. Columns represent samples and rows represent 

hallmarks. The purple color represents the Normalized Enrichment Score estimated by GSEA 

with 200 permutations. (c) Confusion matrix showing the overlap of the poor differentiated and 

well differentiated tumors with Lineage and Morphogenic subtypes. The p-values were computed 

using the X2 test.  
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Extended Data Figure 2: (a) Plot showing the enrichment for PDA essential genes in the PDA 

TRs computed using either LCM EPDA-NET only or metaVIPER. The x-axis represents the TFs 

ranked according to their differential activity between PDA epithelial samples and the pool of all 

physiologic tissues in GTEx. The y-axis represents the -log10 p-values relative to the enrichment 

of the TRs in PDA essential genes. The p-values were estimated by GSEA with 1000 

permutations. (b) Enrichment plot showing the conservation of the PDA epithelial regulons in the 

3 PDA bulk-derived networks used in this study and in 8 non PDA tumor networks. All the 

networks were inferred by ARACNe algorithm. The top bar represents the activity of the LCM 

EPDA-NET regulons computed by VIPER on the differential gene expression signature of the 

Lineage subtype. The regulons are ranked from the most inactivated (blue) to the most activated 

(red). The other bars represent the rank of the top 100 most differentially activated regulons (top 

50 activated and top 50 inactivated) of each bulk network computed on the same differential 

expression signature (i.e. the signature of Lineage subtype). Red vertical lines indicate regulon 

activation, blue vertical lines indicate regulon inactivation. The conservation of the epithelial 

regulons for each network was assessed by performing a two-tails enrichment analysis using the 

LCM EPDA-NET regulons as reference. The p-values were computed by aREA algorithm. 

(c) Plots showing the optimal number of clusters based on conservation of master regulators 

evaluated by AUC analysis (methods). For Collisson et al., 2011, given the limited sample size 

(n=27) only two clusters solutions (k=2 and k=3) were tested as optimal. (d) Oncoprint plot 

showing the genetic alterations in TCGA Lineage and Morphogenic samples. (e) Heatmaps 

showing activated Tumor Checkpoint MRs for the Lineage and Morphogenic subtypes obtained 

by the integration of ICGC and TCGA, in the UNC and in Collisson et al cohorts. 
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Extended Data Figure 3: (a) Scatter plot showing the optimal number of clusters based on 

conservation of master regulators evaluated by AUC analysis in PDA epithelial single cells. 

(b) PCA based on chromosomal expression (ploidy analysis) of PDA epithelial single cells. 

(c) Differentially expressed genes between the two groups of epithelial cells predicted by PCA on 

chromosomal expression. (d) Dot plot showing the classification of pseudo bulk samples based 

on neural network classifier trained on the CUMC epithelial clusters. 

 

Extended Data Figure 4: (a) Diffusion maps showing the PDA epithelial single cells (n=8304) 

from an independent cohort of 5 PDA patients (second cohort). Cells are colored according to the 

3 clusters identified by Fuzzy clustering analysis. (b) Roc curve showing the performance of a 

random forest classifier trained on the 3 single cell subtypes (OP, scLineage and scMorphogenic) 

of the first cohort and tested on the 3 clusters of second cohort. The AUC was computed on >80% 

of the cells (n=6653/8304) with a membership probability >0.51 computed by fuzzy clustering. 

(c) Diffusion maps showing the activity of TRs associated to OP, Lineage and Morphogenic 

subtypes. Red indicates activation, blue indicates inactivation. (d) Diffusion map showing the 

clusters of PDA epithelial cells identified in the PDX model and the activity f TRs associated to 

OP, Lineage and Morphogenic subtypes. (e) Diffusion maps of single cells derived from 

morphogenic (KP4) and lineage (PATU and HPAFII) PDA cancer cell lines. Top left, annotation 

showing the cell line from which each single cell was derived. Top right, cluster annotation. 

Bottom, diffusion maps showing the activity of lineage and morphogenic TRs . (f) Diffusion maps 

showing the activity of TRs associated to OP in single cell derived from PDA cell lines. 
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Extended Data Figure 5: (a-c) Diffusion maps showing the enrichment of previously published 

the gene expression signatures associated to 3 main PDA classification schemes. The 

enrichment was evaluated by GSEA on the single-cell differential gene expression signatures 

computed using the robust z-score method on metacells gene expression profiles. (d) Diffusion 

maps showing the co-expression in the lineage cells (without meta-cell integration) of a basal-like 

and a classical gene in both single cell cohorts. 

 

Extended Data Figure 6: (a) Heatmap showing the enrichment for top 50 (top 25 activate and 

top 25 inactivate) Lineage and Morphogenic in PDA cell lines. Cell lines labeled in red represent 

the profiles of Lineage cell lines selected for the CRISPRcas9 pool screening re-sequenced at 

CUMC. Cell lines labeled in blue represent the profiles of morphogenic cell lines selected for the 

CRISPRcas9 pool screening re-sequenced at CUMC. (b) ECDF plot showing distributions of z-

scores the core-essential genes (positive controls) , non-core essential genes ( negative controls) 

and the all the other TRs profiled by CRISPRcas9 pool screening. (c) Violin plots showing the 

distribution of essentiality scores of the top essential master regulators associated to Lineage 

subtype, Morphogenic subtype and universal PDA reported in Achilles data base 

(https://depmap.org/portal/achilles/)  computed by CrisprCas9 across 739 cell lines. The red 

dashed line corresponds to the threshold below of which a gene is considered a common 

essential. 

Extended Data Figure 7: (a) GSEA plot showing the activation of the top 50 lineage TRs and 

inactivation of the top 50 morphogenic TRs in KP4 cells by OVOL2. The NES and p.value were 
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estimated by GSEA with 1000 permutations. (b) GSEA plot showing the upregulation of the top 

200 lineage gene and down-regulation of the top 200 morphogenic genes in KP4 cells by OVOL2. 

The NES and p.value were estimated by GSEA with 1000 permutations. (c)  Western blot showing 

the inhibition of mesenchymal markers (ZEB1 and Vimentin) and the induced  expression of the 

E-cadherin (Epithelial marker) in KP4 cells overexpressing either mCherry or OVOL2 (+/- 

transcriptional activator M2RTTA). 
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Methods 
 
LCM-RNAseq 
Freshly frozen tissue samples were obtained from patients who underwent surgical resection at 
the Pancreas Center at Columbia University Medical Center as described previously1.Prior to 
surgery, all patients had given surgical informed consent, which was approved by the institutional 
review board. Immediately after surgical removal, the specimens were cryopreserved, sectioned 
and microscopically evaluated by the Columbia University Tumor Bank (IRB AAAB2667). Suitable 
samples were transferred into OCT medium (Tissue Tek) and snap frozen in a 2-methylbutane 
dry ice slurry. The tissue blocks were stored at -80°C until further processing. H&E stained 
sections of frozen PDA samples from the Tumor Bank were initially screened to confirm diagnosis 
and overall sample RNA quality was assessed by the Pancreas Center supported Next 
Generation Tumor Banking program using gel electrophoresis, with samples exhibiting high RNA 
quality utilized for subsequent analyses. Laser Capture Microdissection (LCM), RNA sequencing 
and gene expression quantification. LCM-RNA-Seq was performed as described previously1,2. 
Briefly, Cryosections of OCT-embedded tissue blocks were transferred to PEN membrane glass 
slides and stained with cresyl violet acetate. Adjacent sections were H&E stained for pathology 
review. Laser capture microdissection was performed on a PALM MicroBeam microscope (Zeiss), 
collecting at least 1000 cells per compartment. RNA was extracted and libraries prepared using 
the Ovation RNA-Seq System V2 kit (NuGEN). Libraries were sequenced to a depth of 30 million, 
100bp, single-end reads on an Illumina HiSeq 2000 platform. 
 
VIPER analysis of LCM and Bulk RNA-seq cohorts 
Network-based protein activity inference was performed by applying either VIPER3 or metaVIPER 
4 algorithms using context-specific pancreatic cancer (PDA) transcriptional networks.  
PDA transcriptional networks were generated from CUMC, ICGC and UNC cohorts by the 
ARACNe algorithm5 with 100 bootstrap iterations and MI (mutual information)  P-value threshold  
of 10-8. TCGA networks, including PDA TCGA network, were downloaded from the 
aracne.networks package 6.  ARACNe networks included TF, co-TFs and signaling molecules. A 
subset of transcriptional regulators enriched for TFs, co-TFs and chromatin regulators were 
considered in this study (Supplementary Table1).  
RNAseq  gene counts  from CUMC, ICGC (Bailey et al., 7) and TCGA 
(https://www.cancer.gov/tcga) cohorts were normalized using the variance stabilization 
transformation  (VST) procedure as implemented in DESeq2 package 8.  
From TCGA  we selected  only samples annotated as “high purity”. 
Microarray data from Collisson et al.,9 and Moffitt et al.,10 were downloaded  as normalized gene 
expression profiles. Single sample differential gene expression signatures were generated 
independently for each cohort from the normalized gene expression profiles using the “scale” 
method (z-score) implemented in the viper package3.  
CUMC-LCM epithelial differential gene expression signatures were transformed  into protein 
activity profiles by the VIPER algorithm3 using the LCM-PDAnet epithelial network. Differential 
gene expression signatures  from  the other PDA cohorts and PDA cell lines, were transformed 
into protein activity profiles  using the metaVIPER algorithm4 by integrating  the four  PDA 
networks (LCM-PDAnet, ICGC-net, TCGA-net, UNC-net).  
Cluster analysis was performed independently in each cohort by applying  the Partitioning Around 
Medoids  algorithm (PAM)11 on the viper-distance matrix, computed using reciprocal enrichment 
analysis12 of the top 25 most activated and top 25 most inactivated proteins in each signature, as 
implemented by the viperSimilarity function in the viper package3.   
The optimal number of clusters (K)  was identified by assessing the conservation of cluster-
specific master regulators using the Area Under the Curve (AUC)  metric13. 
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Briefly, for each value of K we assessed the conservation of the top 50 cluster-specific regulators 
(top 25 over-activated and top 25 under-activated) in each sample using a leaving one out cross 
validation procedure (LOOCV). The cluster-specific regulator signatures were computed by 
integrating the activity score (NES) of the samples in the same cluster  using the Stouffer’s 
method, excluding the test sample used for the LOOCV.   The conservation of the cluster-specific 
master regulators was assessed by performing a two tails GSEA.  Each sample  was  then 
assigned to a given cluster based on the highest NES computed by GSEA. This generated a 
membership vector predicted by GSEA. Finally, we compared memberships predicted  by GSEA 
with the memberships computed by PAM algorithm and computed the ROC-AUC using the 
multiclass AUC approach13 as implemented in the pROC package14 (see Supplementary Notes 
for more details).  
After cluster analysis, subtype-specific protein activity signatures were computed by VIPER 
comparing the samples of each cluster against all the other samples (one vs. the rest). 
Specifically, we first computed a differential gene expression signature for each cluster (one vs. 
the rest) using a bootstrap Student’s t-test with 100 bootstraps iterations; then, we applied either 
VIPER  or MetaVIPER on the subtype-specific differential expression signatures.  For the CUMC 
cohort we applied VIPER using the LCM network only;  for all  the other cohorts we applied 
metaviper4, with the integration of  the four PDA networks.  For the CUMC cohort a Lineage vs. 
Morphogenic signature was computed through a direct comparison between the Lineage and 
Morphogenic samples, excluding the samples in the  intermediate cluster. 
 
Survival analysis 
Survival analysis was performed  by comparing  patients between protein activity-based clusters 
using the Kaplan-Meier method as implemented in the “survival” software package for R15 . The 
p-values were computed using the log-rank test.  The Kaplan-Meier curve were generated using 
the “survminer” software package16  
 
Cross-cohorts analysis of bulk samples 
Cross-cohorts conservation analysis of master regulators was performed by assessing the 
enrichment for the top Lineage (n=25) and top Morphogenic (n=25) master regulator proteins in 
the cluster-specific protein activity signatures of the other cohorts. The normalized enrichment 
scores and the p-values were computed using the aREA algorithm3.  
The random forest classification was performed using the top 50 candidate master regulators (top 
25 Lineage and top 25 morphogenic) with RandomForest  package17. 
The integration between TCGA and ICGC protein activity signatures was performed by integrating 
activity scores (NES)  of each regulon using the Stouffer’s  method. Previous to applying the RF 
classifier and performing the integration of the ICGC and TCGA results, we assessed the 
distribution of the activity scores of each regulator between the two cohorts by performing a 
Kolmogorov-Smirnov’s test. This analysis revealed 99.95% (1834/1835) of the regulators showed 
no significant differences in their distribution between the cohorts. We report that one regulator, 
“SCX”, showed significantly different distributions (Bonferroni adjusted p-value<0.05) between the 
two datasets. SCX was not identified among differentially activated proteins between Lineage and 
Morphogenic subtypes and was not used for the random forest classifier.   
The same procedure based on the Kolmogorov-Smirnov’s test was applied for all the cross-
cohorts comparisons and all the regulators showing significantly different distributions (Bonferroni 
adjusted p-value<0.05) between the train set and test set were excluded for the random forest 
classification procedures. For the microarray-based cohorts, the AUC scores were computed on 
the samples that clustered with a silhouette score > 0.25. Specifically, the AUC for Collisson et 
al.,9 was computed on 23/27 (85%) of samples and the AUC for UNC10 was computed 102/125 
(82%) of the samples. 
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DNA methylation analysis 
450K DNA methylation profiles were downloaded from TCGA using TCGAbiolinks package 18. 
The beta values were converted to M-values using the “beta2m” function implemented in the Minfi 
package19. Differential methylation analysis between Lineage and Morphogenic samples  was 
performed on M-values using the limma package20. All probes with a FDR<0.05 were considered 
differentially methylated. Cluster analysis was performed using the PAM algorithm11. 
 
Single-cell analysis of Elyada et al.21 
Single cell UMI-count matrix from Elyada et al.21 was filtered to remove low quality cells with less 
than 1000 UMI-counts and genes with zero counts across all the cells. UMI counts were then 
normalized to counts per million (CPM). Epithelial cells were computationally selected for each 
patient using a GSEA clustering procedure (see Supplementary Notes) based on the enrichment 
of  cell type specific markers used in  Elyada et al.21,  including  markers for epithelial, endothelial,  
immune, fibroblasts and pericytes cells ( see Supplementary Methods). A total of 1900 cells were 
predicted as epithelial across all the six patients. A subset of 500 cells randomly selected from 
the predicted PDA epithelial cells (n=1,900) were used to build a single-cell ARACNe network 
(scNET). ARACNe was applied to CPM normalized counts with 100 bootstrap iterations and MI 
P-value threshold of 10-8. ARACNe  inferred 506/1,835 regulons from single-cell data. The activity 
of the remaining transcriptional regulators (n = 1,329) was then inferred by metaVIPER through 
the integration four PDA networks (CUMC-net, TCGA-net, ICGC-net and UNC-net). All the 
ARACNe regulons were pruned to the top 50 targets before metaVIPER analysis and protein 
activity inference.  
metaVIPER was applied on single-cell differential gene expression signatures computed  using  
the “mad”  method, equivalent to a robust z-score22, implemented by  the VIPER package on rank 
normalized single-cell gene expression profiles. Cluster analysis was performed using the  fuzzy 
clustering algorithm implemented in the cluster package11 The optimal number of clusters was 
estimated based on the conservation of cluster-specific master regulators as previously described 
for bulk analysis. Unlike bulk analysis, for single-cell data sets the conservation of the cluster-
specific master regulators was assessed by Monte Carlo Cross Validation instead of leave-one-
out cross validation. The protein activity signature of each cluster was computed by performing a 
bootstrap Student’s t-test between the single cell clusters (one vs the rest)  on 1,870 putative 
malignant cells identified by aneuploidy analysis (see chromosome expression analysis). 
 
 
 
Single-cell analysis of PDX model  
PDA tumors from PDX mice were dissociated using the protocol described in Peng et al.,23. 
Briefly, a digestion buffer that contained trypsin, DNAse and enzymatic cocktail and the 
gentleMACS Octo Dissociator (Milteny Biotec, Cat. No. 130-095-937) were made for initial tumor 
disruption using manufacture’s protocol. Cell suspensions were then filtered using a 40 μm cell 
strainer (Falcon, Cat. No. 352340) and red blood cells (RBC) were removed by RBC lysis buffer 
(Invitrogen, Cat. No. 1966634). Dissociated cells were washed twice with PBS with step by step 
descending centrifuging speed and increasing time. Finally, cells were stained with 0.4% Trypan 
blue (Invitrogen, Cat. No. T10282) to check the viability, and  diluted with PBS to about 1 × 106 
cells/ml for single cell sequencing. 
Cell Ranger pipeline (v3.3, 10X Genomics)  was used  to process single-cell sequencing data, 
align the FASTQ files on GRCh38-3.0.0 transcriptome reference and produce the UMI count 
matrix.  The count matrix was then filtered for low quality cells by removing cells with more than 
10% of UMIs in the mitochondrial genes and cells with less 1 X 103 counts or more than 1 X 105 

counts. We also removed genes with zero counts across all the cells. Putative epithelial cells were 
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selected based on the enrichment for epithelial genes using the GSEA clustering procedure  as 
previously described of Elyada et al21  (see Supplementary Notes for details). A total of  900 cells  
were predicted as epithelial. Gene expression profiles of predicted epithelial cells (n = 900) were 
transformed into differential gene expression signatures using “mad” method  and  the median 
expression of the 1,900 predicted epithelial cells from Elyada et al.21  as reference. Differential 
gene expression signatures were transformed into protein activity profiles with metaVIPER using 
the scNET  and  four bulk networks. 
 
 
Single-cell analysis of a second cohort of PDA epithelial cells  
 
Single cells samples were processed as described in Chan-Seng-Yue et al.,24.  
Briefly, freshly resected tumors or fresh core biopsies were minced finely then dissociated at 4°C 
overnight. Tumour cells were enriched through depletion of CD45+/CD90+/GlyA+ populations 
using MS columns (Miltenyi Biotec). Enriched tumour cells were loaded and separated into droplet 
emulsion using the Chromium Single Cell 3′ v.2 kit (10x Genomics) and subsequent libraries were 
sequenced on the Illumina HiSeq 2500 platform. Single-cell sequencing data were processed 
using CellRanger v.2.1.1 (10x Genomics), aligned to hg19. 
Single-cell UMI count matrices from five different patients were filtered for low quality cells, of 
these 8,900 cells passed quality controls. 596/8,900 (~6%) cells showing no expression for 
EPCAM were  also removed. A total of 8,304 cells were used for the downstream analysis. The 
aneuploidy analysis based on chromosome expression performed on the 8,304 epithelial cells did 
not show separate clusters of cells as putative non-transformed cells (see chromosome 
expression analysis). All the 8,304 cells were then considered “bona fide” tumor cells. 
Single cell gene expression profiles were transformed into differential gene expression profiles 
using the “mad” method implemented in the VIPER package.  The single-cell epithelial network 
integrated by metaVIPER with the four PDA bulk networks was applied to transform differential 
gene expression signatures to protein activity profiles. Cluster analysis and cluster-specific protein 
activity signatures were computed as previously described in the single-cell analysis of Elyada et 
al., 2019. The optimal number of clusters was estimated on a representative subset of 1,000 cells 
randomly selected from the 8,304 PDA epithelial cells. 
Cross cohort analysis with Elyada et al., 2019 was performed by applying   random forest classifier 
trained on the single-cell subtypes identified in Elyada et al  cohort.  The random forest classifier 
was trained on the 218 proteins showing no significant differences in the distribution between the 
two single-cell cohorts by Kolmogorov-Smirnov test. The AUC was computed on 6,653/8,304 
(>80%) cells with a membership probability >0.51 computed by fuzzy cluster analysis. 
 
 
Chromosome expression analysis  
Chromosome expression analysis was performed to identify putatively non transformed cells 
similar to Yuan et al.25 Single cell gene expression matrix was rank normalized and scaled  using 
the robust z-score procedure22.  
The scaled matrix was used to compute the average chromosomal expression in each cell. A 
principal component analysis (PCA) was applied the chromosomal expression matrix to identify  
clusters of putatively transformed and untransformed cells.  
The differential expression analysis between putatively transformed and untransformed cells was 
performed by applying the Scanpy toolkit26.    
 
Single-cell entropy analysis and RNA velocity analysis 
Single cell entropy  analysis was performed on protein activity profiles using the SLICE algorithm 
27. Velocity analysis was performed on 1840/1900 cells using velocyto pipeline28. At level of  bam 
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files showed we noticed that  60/1900 cells were assigned to the same barcode, these cells were 
removed from this analysis. Bam files were converted to loom files using a genome annotation 
and repeat masker file. The input bam file was sorted by mapping position, representing either a 
single sample or a single cell, containing error corrected cell barcodes as a TAG named CB or 
XC and error corrected molecular barcodes as a TAG named UB or XM. Moreover, the masker 
file was needed to mask expressed repetitive elements, as those counts constitute a confounding 
factor. The masker file required for this conversion was downloaded from UCSC genome 
browser  website29. The output of this analysis generated a 4-layered loom file, which is an HDF5 
file containing specific groups representing the main matrix as well as rows and columns 
attributes. The conversion from .bam to .loom was performed on each patient  independently. 
Finally, all the loom files were merged in a single loom file for the downstream pseudo-time 
analysis that  was  performed with scVelo software package30. 
 
 
Metacell inference 
Single cells gene expression profiles  were transformed into  Metacells gene expression profiles  
by integrating the UMI counts of the 50 nearest cells identified by applying a KNN algorithm31 on 
the normalized gene expression profiles. Metacell counts were then normalized to CPM and used 
for downstream analysis. The transformation of single cell gene expression profiles to Metacell  
profiles is a smoothing procedure aimed at  mitigating  the severe dropout effects that affects 
single cell gene expression. Similar procedures have been extensively and successfully used in 
single cell studies 32-35. In this work we use metacell profiles  only to  estimate the expression of  
CD133, MSI2 and CXCR4 and to evaluate the gene expression signatures related to bulk 
classification schemes. Metacell integration was  not used to show the co-expression of single 
basal-like and classic marker genes in the same Lineage cells. 
 
 
Pathology and Immunohistochemistry 
Tissue samples were fixed in 10% formalin, paraffin-embedded and cut in 5 μm sections on a 
Leica RM 2235, which were mounted in superfrost plus microscope slides and dried. Tissues 
were deparaffinized in xylene and re-hydrated through a series of graded ethanol until water. For 
histopathological analysis, sections were stained with hematoxylin and eosin using the standard 
protocols. For immunohistochemistry staining, paraffin sections were first subjected to standard 
rehydration and antigen retrieval was carried out for five minutes in boiling 10 mM sodium citrate 
buffer pH 6, .05% Tween-20 using a pressure cooker. They were then blocked by endogenous 
peroxidase and incubated in blocking solution (2% animal-free blocker – Vector Laboratories, 
#SP5030 -, and 1.5% horse serum – Vector Laboratories, #S-2000-, in PBS .1% Tween). Using 
the following antibodies, primary incubation was carried out overnight at 4C: CDX2 (Cell Signaling 
Technology, #12306S, 1:1000), YBX2 (Abcam, #ab33164, 1:100). After that, all slides were 
incubated with appropriate secondary antibodies for 60 minutes at room temperature and then 
developed using the DAB reagent (Vector Labs, VV-93951085). Finally, slides were dehydrated, 
cleared and mounted with a permanent mounting medium. 
 
Cell culture:    
All the cells used in this study were obtained from the American Type Culture Collection (ATCC) 
and cultured at 37 °C in a humidified incubator (5% CO2) with the following medias:  
HEK293T: DMEM + 10% FBS,  
CAPAN1: Iscove's Modified Dulbecco's Medium + 20% FBS,  
HPAFII: EMEM + 10% FBS,  
KP4: Iscove's Modified Dulbecco's Medium + 20% FBS,  
PANC1: DMEM + 10% FBS,  
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PATU8988S: DMEM + 5% FBS + 5% horse serum,  
PK45H: RPMI-1640 + 10%FBS. 
1% L-Glutamine and 1% Penicillin/Streptomycin was used with all the cell lines. 
All the cell lines used were tested for mycoplasma status before and during the screening 
 
 
 
 
CRISPR/cas9 screening 
sgRNA containing lentiviruses were transduced into Cas9 expressing PDA cell lines in duplicates 
(in presence of 8ug/ml polybrene) with estimated MOI 0.2 - 0.3. Next day the lentivirus containing 
media was removed, cells washed with PBS and puromycin containing media (2ug/ml) was added 
to the cells for 48-72h until the control cells (no virus) were dead. The first timepoint of the screen 
was done immediately after this. At all times the cells were maintained at >1500 cells per guide 
through the 33-day screens (see Supplementary methods for more details).  
 
 
Computational analysis of CRISPR/cas9 data 
FASTQ files were counted and analyzed using MAGeCK version 0.5.636 , using RRA and total 
read count normalization, with default settings. 
Each replicate was analyzed independently by comparing the 33 days (late time point)  against 
day 0 (first time point). 
A CRISPR/cas9 essentiality signature for each replicate was computed by transforming the p-
value  of each gene to z-score and multiplied for the sign of the fold change. Lineage and a 
morphogenic essentiality signatures were computed by integrating the z-scores using the 
Stouffer’s method of lineage and morphogenic  cell lines, respectively. 
A differential  essentiality signature  between lineage and morphogenic  cell lines was computed 
by subtracting the morphogenic  essentiality signature  from the lineage signature. 
To define the PDA subtype-independent  essentiality signature  we  integrated the essentiality 
signatures across all the cell lines, including lineage and morphogenic, using the Stouffer ‘s z-
score method 37. 
 
 
RNA extractions and RNA sequencing of PDA cell lines 
RNA extractions and RNA sequencing 
At the time of RNA extractions PDA cells were cultured in 6 well plates so that the cell confluency 
was < 50% and cells were seeded to the well at least 48-72h ago. Total RNA was extracted by 
using RNeasy Plus mini kit (Qiagen) and samples were sequenced by using NovaSeq 6000 (PE 
20million reads). 
Reads were processed with Kallisto pipeline using GRCh38 as reference. RNASeq counts were 
VST normalized. Single sample differential gene expression signatures were generated from  the 
normalized gene expression profiles with the scale method (z-score)  using the centroid  of all 
CCLE as reference. Differential gene expression signatures were transformed to protein activity 
profiles using metaVIPER with the four bulk PDA networks. The selection of the lineage and 
morphogenic cell lines was performed by assessing the enrichment of the top 25 lineage and top 
25 morphogenic differentially activated proteins in the protein activity profile of each cell line.  The 
enrichment analysis was performed using the aREA algorithm. 
 
 
 
Transcription factor overexpression assay (Bulk RNAseq) 
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The full-length  open reading frame clones  of the top 8 PDA lineage MR (full length ORFs) were 
ordered from CloneID (Harvard Medical School), and cloned into modified Tet-O-FUW lentiviral 
expression plasmid (addgene #30130), which included the puromycin resistance gene. mCherry 
and EGFP ORFs were also used for negative controls for the assay. All the clones were sequence 
verified. For each ORF we introduced a unique 20 bp barcode sequence located 200 bp upstream 
of the lentiviral 3’-long terminal repeat (LTR) region, similarly as in Parekh, U., et al 38. This results 
a polyadenylated transcript including the barcode close to the 3’ end. 
All the viruses were produced and viral titers were measured individually for each virus. For the 
assay, each ORF containing lentivirus was transduced to KP4 morphogenic cell line with MOI 2 
in triplicates (6 well format in the presence of polybrene). In another set of triplicates lentiviral 
ORFs were co-transduced with M2rtTA (FUW-M2rtTA, addgene #20342), which acts as 
transcriptional amplifier in tetracyclin inducible systems, enabling us to monitor each MR 
overexpression in higher and lower levels. The following day after the viral transductions, the 
media was changed and puromycin (2.5ug/ml) and doxocycline (0.6ug/ml) was added to the cells. 
Cells were incubated in total 5 days before total RNA was collected by Direct-zol RNA MiniPrep 
Plus kit (Zymo Research).  
A total of 69 RNAseq profiles corresponding to 23 different conditions were generated by 
PlateSeq39   using 100ng of total RNA as template in each well. 
Single-end PLATE-Seq reads were pseudoaligned to the GRCh38 transcriptome (mRNA and 
ncRNA) and quantified using kallisto version 0.44.0 40 with sequence-specific bias correction. 
Transcript-level counts were collapsed to entrez-id gene-level counts using the tximport package 
in R41. The biomaRt package in R42,43 was used to map transcript-level Ensembl-ids to gene-level 
entrez-ids.  
To measure the effect of the TFs ectopic expression we first computed the protein activity 
signature between the unperturbed lineage cell lines (PATU and HPAFII) against the unperturbed 
morphogenic cell lines (KP4) and compared this signature with the Lineage-Morhpogenic 
signature inferred from patients. This was done by first computing a differential gene expression 
signature between the two lineage an morphogenic cell lines using a Student’s t.test as 
implemented in the VIPER package, and then by applying metaVIPER  to compute the protein 
activity signature between  unperturbed lineage and unperturbed  morphogenic cell lines. After 
confirmed the conservation of the Lineage-Morphogenic signature in the unperturbed cell lines 
we then measured the effect of each perturbation.  
We then computed the reprogramming effect of induced by each TF.  
This was done by computing a differential gene expression signature for each experimental 
condition (perturbation) using the assay of negative controls in the same experimental 
background as reference.  Specifically, the  cell lines transduced with mCherry and EGFP  only 
(negative controls without M2rtTA)  were  used as reference for the cell  lines transduced with the 
TFs only (without M2rtTA).  The cell lines  transduced with mCherry and EGFP  together with 
M2rtTA (negative controls with M2rtTA, i.e. mCherry+ M2rtTA and EGFP + M2rtTA) were used 
as reference for  the  cell lines transduced with the TFs together with M2rtTA.  Differential gene 
expression signatures were then transformed into protein activity signatures by metaVIPER. 
The reprogramming effect induced by the over expression of each TF and negative controls  was 
computed using the aREA algorithm by comparing the top 100 differentially activated proteins 
(top 50 activate and top 50 inactivate) of each experimental condition with the Lineage-
Morphogenic protein activity signature computed between lineage (HPAFII and PATU) and 
morphogenic (KP4) cell lines.  
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Pooled TFs overexpression assay (single-cell RNAseq) 
The same barcoded top 8 lineage MRs (and mCherry as neg. control), used  in  plate-seq  over-
expression assay , were used in the single cell over expression assay. All the ORF viruses were 
pooled into two viral pools so that on average 2-3 ORFs enter each cell (MOI 0.288 / each virus) 
in a random fashion. M2rtTA was added to the other pool to increase the transcriptional output of 
the ORFs in that pool. KP4 cells were transduced with these two viral pools in 6 well format with 
the presence of polybrene. The following day media was changed and puromycin (2.5ug/ml) and 
doxocycline (0.6ug/ml) was added to the cells. 
The cells were incubated in total 11 days, before trypsinization, addition Multiseq barcodes44 and 
chromium-run. Non-transduced KP4, HPAFII and PATU8988S cells were also included into this 
stage of the protocol to act as assay starting population (morphogenic cell line KP4) and assay 
target end point population (lineage cell lines HPAFII and PATU8988S). All the cell lines (normal 
KP4, HPAFII, PATU8988S and KP4 assay pools +/- M2rtTA were MultiSeq barcoded and mixed 
prior the Chromium-run. 
 
 
 
Single-cells Demultiplexing Analysis 
Single-cell bam files  were generated with the cell ranger pipeline (version 3.0.2) using  the 
GRCh38  as reference genome. 
Variant calling  was performed with SamTools45 and generate a .vcf file containing the genomic 
variations of three pancreatic cell lines processed by  RNASeq (HP, KP4 and PATU). 
Bam files and vcf files  were used as input  for Demuxlet46 for demuxlet analysis . 
 
Protein activity analysis of Pooled TFs overexpression assay (single-cell RNAseq) 
Single-cells UMI-counts were filtered using the standard QC-filtering steps as previously 
described and normalized to CPM. A differential gene expression signature was computed 
between lineage (PATU and HPAFII) and morphogenic (KP4) unperturbed single cells.  This 
differential gene expression signature was transformed into a protein activity signature using 
metaVIPER approach by integrating the single-cell epithelial network and the 4 bulk PDA  
networks.  This protein activity signature was compared with the bulk, patient-derived,  lineage 
and morphogenic protein activity signature  to confirm the conservation of the PDA subtypes in 
the unperturbed  lineage  and morphogenic single cells. Single-cells were grouped based on 
perturbation (i.e. the ectopic expression of individual TFs or combinations of TFs). 
In order to robustly asses the perturbation effect, group of perturbed cells with less than n=30 
cells were not considered for downstream analyses. 
To  compute the reprogramming effect induced by each TF, or combination of TFs  in each single-
cell, we computed the differential gene expression signature of each  perturbed single cell against 
the negative controls (mCherry  +/- M2rtTA and EGFP  +/- M2rtTA) and  applied MetaVIPER 
(using the scNET and the bulk PDA networks) to transform the single-cell  differential gene 
expression signatures in to protein activity signatures. 
The reprogramming effect in each single cell was assessed using the aREA algorithm by 
comparing the top 100 differentially activated proteins (top 50 activate and top 50 inactivate) with 
the Lineage-Morphogenic protein activity signature computed  between lineage (HPAFII and 
PATU) and morphogenic (KP4) unperturbed single-cells. The groups of all the perturbed cells 
were sorted based on the fraction of cells significantly reprogrammed  (FDR<0.05, 2 tails aREA 
test). 
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Western Blots 
The constructs of OVOL2 or mCherry (+/- M2RTTA)  used for the overexpression assay were 
used for Western Blots.  OVOL2 or mCherry (+/- M2RTTA) were lentivirally transduced in 
triplicates with MOI2 to KP4 cells followed by puromycin selection and 5 days incubation in the 
presence of doxocycline (0.6ug/ml)to maximize the effect of potential PDA lineage transitions. 
After 5 days incubation, the cells were lysed, total protein levels were measured with BCA Protein 
Assay Kit (Pierce) and samples were Western Blotted with following antibodies: 
OVOL2 #PA5-31665 (Thermo Fisher) 
mCherry ab167453 (Abcam) 
ZEB1 ab203829 (Abcam) 
Vimentin PIMA511880 (Thermo Fisher) 
E-Cadherin 3195S (Cell Signaling Technology) 
Beta-Actin sc-47778 (Santa Cruz Biotechnology) 
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Figure 4
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Extended Data Figure 5
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Extended Data Figure 7
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