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 2 

Abstract  23 

Recent advances in single-cell RNA sequencing (scRNA-seq) methods have enabled high-24 

resolution profiling and quantification of cellular expression and transcriptional states. Here we 25 

incorporate automated cell labeling, pseudotemporal ordering, ligand-receptor evaluation, and 26 

drug-gene interaction analysis into an enhanced and reproducible scRNA-seq analysis 27 

workflow. We applied this analysis method to a recently published human coronary artery 28 

scRNA dataset and revealed distinct derivations of chondrocyte-like and fibroblast-like cells 29 

from smooth muscle cells (SMCs). We highlighted several key ligand-receptor interactions 30 

within the atherosclerotic environment through functional expression profiling and revealed 31 

several attractive avenues for future pharmacological repurposing. This publicly available 32 

workflow will also allow for more systematic and user-friendly analysis of scRNA datasets in 33 

other disease systems. 34 
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Abbreviations 39 

C7- complement component C7 40 

CAD- coronary artery disease 41 

CH- chondrocytes 42 

CMP- common myeloid progenitor cells 43 

DCN- decorin 44 

DGIdb- drug-gene interaction database 45 

EC- endothelial cells 46 

EGFR- epidermal growth factor receptor 47 

FB- fibroblasts 48 

FBLN1- fibulin 1 49 

GMP- granulocyte-monocyte progenitor cells.  50 

Mø- macrophages 51 

MYH11- myosin heavy chain 11 52 

SC- stem cells 53 

sc/snATAC-seq - single cell/single nucleus assay for transposase-accessible chromatin 54 

sequencing 55 

sc/snRNA-seq- single cell/single nucleus RNA sequencing 56 

SMC- smooth muscle cells 57 

UMAP- uniform manifold approximation and projection 58 
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Background  60 

Atherosclerosis is a complex process involving chronic inflammation and hardening of the 61 

vessel wall and represents one of the major causes of coronary artery disease (CAD), 62 

peripheral artery disease, and stroke (Basatemur et al., 2019). Rupture of an unstable 63 

atherosclerotic lesion can lead to the formation of a thrombus, causing complete or partial 64 

occlusion of a coronary artery (Argraves et al., 2009). The contribution of smooth muscle cells 65 

(SMCs) to both lesion stability and progression has recently been established by numerous 66 

groups, but the exact mechanisms in which SMCs modulate the atherosclerotic 67 

microenvironment and whether pharmacological agents can be used to selectively counter 68 

SMC-related deleterious mechanisms are still under investigation (Bennett et al., 2016; Pan et 69 

al., 2020; Wirka et al., 2019).  70 

 71 

The recent advances in single-cell RNA-sequencing (scRNA-seq) have allowed for ultra-fine 72 

gene expression profiling of many diseases at the cellular level, including coronary artery 73 

disease (Wirka et al., 2019). As sequencing costs continue to decline, there has also been a 74 

consistent growth in scRNA datasets, analysis tools and applications. Currently, a major 75 

challenge with scRNA-seq analysis is the inherent bias introduced during manual cell labeling, 76 

in which cells are grouped by cluster and their identities called collectively based on their overall 77 

differential gene expression profiles (Aran et al., 2019). Another draw-back inherent to 78 

commonly used scRNA-seq protocols is their destructive nature to the cells, making time-series 79 

analyses of the same samples impossible. Instead, these studies must rely on time-points from 80 

separate libraries to monitor processes such as clonal expansion and cell differentiation 81 

(DiRenzo et al., 2017; Wang et al., 2020).  82 
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Recently, new approaches have been developed to compensate for both of these shortcomings, 84 

namely automatic cell labeling and pseudotemporal analysis. Tools such as ‘SingleR’ and 85 

‘Garnett’ have been used to assign unbiased identities to individual cells using reference-based 86 

and machine learning algorithms, respectively (Aran et al., 2019; Pliner et al., 2019). On the 87 

other hand, tools such as ‘Monocle3’ and ‘scVelo’ align and project cells onto a pseudotemporal 88 

space where each cell becomes a snapshot within the single-cell time continuum (Bergen et al., 89 

2019; Cao et al., 2019). In essence, the single scRNA-seq dataset is transformed into a time 90 

series (Bergen et al., 2019; Cao et al., 2019; Manno et al., 2018). Although the pseudotemporal 91 

scale does not reflect the actual time scale, it is a reliable approximation to characterize cell fate 92 

and differentiation events, e.g., during organogenesis, disease states, or in response to SARS-93 

CoV-2 infection (Cao et al., 2019; Chua et al., 2020). 94 

 95 

In this study, we present the application of an enhanced, scalable, and user-friendly scRNA-seq 96 

analysis workflow on an existing human coronary artery scRNA-seq dataset. We performed 97 

unbiased automatic cell identification at the single-cell level, pseudotemporal analysis, ligand-98 

receptor expression profiling, and drug repurposing analysis. Our results demonstrate potential 99 

new mechanisms by which SMCs contribute to the atherosclerotic phenotype and signaling 100 

within the lesion microenvironment. More importantly, we reveal attractive candidates for future 101 

pre-clinical drug interventional studies. This reproducible analysis workflow can also be easily 102 

modified and extended to incorporate different tissue data sources and single-cell modalities 103 

such as snATAC-seq (Smith and Sheffield, 2020). 104 

 105 

Results and Discussion 106 

Unbiased automatic cell labeling reveals abundant cells with chondrocyte and fibroblast 107 

characteristics.  108 
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Recently, automatic cell identifications tools have been introduced to compensate the 109 

shortcomings of manual, cluster-based cell labeling (Aran et al., 2019). For example, ‘SingleR’ 110 

and ‘Garnett’ uses reference-based and machine learning algorithms, respectively, to call 111 

individual cell identities (Aran et al., 2019; Pliner et al., 2019). Using ‘SingleR,’ which uses 112 

known purified cell expression data as references, we found that endothelial cells (ECs) make 113 

up the highest proportion of cells in this dataset (16.21%, Fig. 1), followed by smooth muscle 114 

cells (SMCs, 13.8%) and stem cells (SCs, 14.06%), where the latter could be so-called 115 

“atherosclerotic stem cells” or normal stromal stem cells but cannot be distinguished until 116 

specific expression profile references are developed in the future (Wang et al., 2020). 117 

Consistent with recent scRNA-seq studies in atherosclerotic models, we identified abundant 118 

fibroblast (FB) and chondrocyte-like (CH) cells, as well as cells with an osteoblast-like (OS) 119 

expression profile (Fig. 1) (Pan et al., 2020). In the UMAP clusters reflecting single-cell 120 

identities, there was a substantial presence of SMC and FB cells in the OS and SC cluster. 121 

Such heterogeneity in cell clusters would have been overlooked in manual cluster-based cell 122 

labeling.  123 

 124 

Pseudotemporal ordering identifies distinct chondrocyte and fibroblast-like cell 125 

differentiation states from smooth muscle cells.  126 

To evaluate putative cell fate decisions or differentiation events (e.g., SMC phenotypic transition 127 

states), we performed pseudotemporal analysis and ultra-fine clustering using ‘Monocle3’, a 128 

method previously applied to normal and diseased states, e.g. embryo organogenesis and 129 

response to COVID19 infection, respectively (Cao et al., 2019; Chua et al., 2020). We found 130 

evidence of SMCs giving rise to CH and FB-like cells (Fig. 2A). This corroborates earlier 131 

findings showing that SMCs may transition or de-differentiate into ‘fibromyocytes’—SMCs that 132 

have undergone a phenotypic modulation within the atherosclerotic lesions (Wang et al., 2020; 133 
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Wirka et al., 2019). Genes associated with healthy SMC phenotypes, such as MYH11 (a 134 

canonical marker of SMC), IGFBP2 (associated with decreased visceral fat), and PPP1R14A 135 

(which enhances smooth muscle contractions), are decreased by approximately 50-75% along 136 

the SMC trajectory as these cells become more FB-like (Table 1, Fig. 2, p < 0.1E-297) (Bennett 137 

et al., 2016; Carter et al., 2018). Similar results were found by another group using mouse 138 

lineage-traced models where MYH11 expression was decreased in SMC-derived modulated 139 

“intermediate cell states” (Pan et al., 2020). More importantly, specific inflammatory markers 140 

and proteins associated with thrombotic events during CAD, including C7 and FBLN1, are 141 

increased along the same trajectory (Argraves et al., 2009; Carter, 2012)(Fig. 2B). Together, 142 

and in corroboration of recent studies, our pseudotemporal analysis demonstrates that SMCs 143 

could be a source of FB and CH-like cells, with the former associated with an intermediate 144 

atherosclerotic cell phenotype, and the latter expresses genes associated with a more 145 

advanced atherosclerotic phenotype (Pan et al., 2020; Wirka et al., 2019). This is further 146 

supported by the recent study where blocking of SMC-derived intermediate cells coincides with 147 

less severe atherosclerotic lesions (Pan et al., 2020). Precisely how these cells might influence 148 

the overall stability of the atherosclerotic lesion and patient survival requires additional 149 

longitudinal studies using genetic models (Bennett et al., 2016; Pan et al., 2020; Wang et al., 150 

2020). 151 

 152 

Comprehensive ligand-receptor analysis shows complex intercellular communications in 153 

the human coronary micro-environment and reveals potential drug targets.  154 

To examine the potential cross-talk between different cell types using scRNA-seq data, we 155 

compared the ligand and receptor expression profiles of each cell type with experimentally-156 

validated interactions using ‘scTalk’ (Farbehi et al., 2019). We found that there is an intricate 157 

network of signaling pathways connecting different cell types; some cell types, such as OS, 158 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 27, 2020. ; https://doi.org/10.1101/2020.10.27.357715doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.27.357715


 8 

have stronger and more frequent outgoing signals, whereas other cell types such as 159 

Macrophages (Mø) have fewer and weaker incoming and outgoing signals (Fig. 3A). SMCs, 160 

OSs, and neurons also exhibit a high degree of autocrine signaling profiles (Fig. 3A). 161 

Specifically, SMCs are shown to have the highest number of outgoing signals and are among 162 

those with the least number of incoming signal weights (Fig. 3B). This suggests that SMCs play 163 

an important role in regulating the coronary microenvironment by transducing signals to 164 

neighboring cells in the lesion.  165 

 166 

Specifically, we identified three significant ligand-receptor interactions between SMCs and FBs, 167 

FBLN1-ITGB1, APOD-LEPR, and DCN-EGFR (Fig. 4). We searched for potentially druggable 168 

targets to interrupt SMC-FB communication by performing an integrative analysis of the 169 

identified ligand-receptor interactions with known drug-gene interactions using the DGIdb 3.0 170 

database (Cotto et al., 2017). Interestingly, anti-EGFR (epidermal growth factor receptor)-based 171 

cancer treatments such as erlotinib, cetuximab, and gefitinib were shown as potential key 172 

mediators of signaling pathways between SMC and FB via DCN (decorin) and EGFR (Fig. 4). It 173 

has been shown that decorin overexpression increases SMC aggregation and SMC-induced 174 

calcification at the atherosclerotic plaque (Fischer et al., 2004). Although the overlap between 175 

CAD and cancer has been previously noted, the efficacy and mechanisms of chemotherapy, 176 

such as erlotinib, in the pathogenesis and stability of CAD or their adjuvant use in cancer 177 

patients to treat CAD continues to hold promise for future translational studies (Camaré et al., 178 

2017; DiRenzo et al., 2017; Tapia-Vieyra et al., 2017).  179 

 180 

Conclusions 181 

Our findings show that an enhanced, reproducible pipeline for scRNA-seq analysis improve on 182 

current standard scRNA-seq bioinformatics protocols. We provide new insights into intricate 183 
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cellular differentiation and communication pathways while providing actionable and testable 184 

targets for future studies (Fig. 5). In our combined analysis, we found that SMCs give rise to 185 

substantial proportions of CH and FB, with the latter associated with worse prognostic markers 186 

(Argraves et al., 2009; Carter, 2012; Carter et al., 2018; Pan et al., 2020). Several FDA-187 

approved drugs (e.g., erlotinib, cetuximab, and gefitinib) were shown as potential effectors of 188 

SMCs’ signaling to FB, and may be used to treat CAD in cancer patients to simplify or augment 189 

drug regiments (Camaré et al., 2017). This is consistent with recent reports showing beneficial 190 

effects of the acute promyelocytic drug all-trans-retinoic acid (ATRA) in atherosclerosis mouse 191 

models (Pan et al., 2020). 192 

 193 

Although the utilization of this workflow can compensate for many of the shortcomings of current 194 

scRNA-seq analyses, we are still unable to perform cell-lineage tracing that reflects actual 195 

timescale without additional molecular experiments. However, leveraging mitochondrial DNA 196 

variants in snATAC-seq data has enabled lineage tracing analysis in human cells (Lareau et al., 197 

2020; Xu et al., 2019). Likewise, these analyses can ultimately be extended to integrate spatial 198 

data and other multi-modal data (Stuart et al., 2019). In the future as spatial transcriptomics and 199 

snATAC-seq data become more widely available, this workflow can be modified to discover 200 

signaling pathways or differentiation events at specific tissue locations and time, allowing for 201 

more disease-relevant drug-gene interaction analyses (Fig. 5). Nonetheless, this pipeline can be 202 

applied immediately to datasets from other tissues/diseases to generate informative directions 203 

for follow-up studies, and is more user-friendly and reproducible compared to standard scRNA 204 

analyses. 205 

 206 

Methods 207 

Data retrieval and pre-processing  208 
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Human coronary artery scRNA data read count matrix was retrieved from the Gene Expression 209 

Omnibus (GEO) using #GSE131780 and loaded into R 4.0, and was preprocessed using 210 

standard parameters of the R packages ‘Seurat’ v.3, and ‘Monocle3’ as required (Satija et al., 211 

2015; Team, 2020; Trapnell et al., 2014; Wirka et al., 2019). Uniform manifold approximation 212 

projections (UMAP) clusters from ‘Seurat’ were imported into ‘Monocle3’ before pseudotemporal 213 

analysis. 214 

 215 

Automatic cell Identification and pseudotemporal ordering 216 

scRNA read matrices were read into SingleR as previously described for cell labeling (Aran et 217 

al., 2019). Briefly, SingleR compares each cell’s gene expression profile with known human 218 

primary cell atlas data and gives the most likely cell identity independently. SingleR first corrects 219 

for batch effects, then calculates the expression correlation scores for each test cell to each cell 220 

type in the reference, and the cell identity is called based on reference cell type exhibiting the 221 

highest correlation. Then, pseudotemporal analyses were performed as previously described in 222 

the analysis of embryo organogenesis (Cao et al., 2019; Trapnell et al., 2014). Briefly, the 223 

UMAP clusters were passed into Monocle3 and then the ‘learn_graph()’ and ‘order_cells()’ 224 

functions. The SMCs and related clusters were then subsetted for detailed subclustering and 225 

analysis. For each cluster, Moran’s I statistics were calculated, which identify genes that are 226 

differentially expressed along their trajectories. Detailed codes to reproduce the figures in this 227 

publication can be found at the Miller Lab Github (see Availability of data and materials). 228 

 229 

Ligand-receptor cell communication analysis 230 

We analyzed candidate ligand-receptor interactions to infer cell communication using the R 231 

package ‘scTalk’, as previously described in the analysis of glial cells (Farbehi et al., 2019). 232 

Briefly, this method is based on permutation testing of random networks, where ligand-receptor 233 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 27, 2020. ; https://doi.org/10.1101/2020.10.27.357715doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.27.357715


 11 

interactions are derived from experimentally derived interactions from the STRING database. 234 

We exported statistically significant differentially expressed genes from ‘Seurat’ using the 235 

‘FindMarkers()’ function and imported the preprocessed data into ‘scTalk’. Then, overall edges 236 

of the cellular communication network were calculated using the ‘GenerateNetworkPaths()’ 237 

function, which reflects the overall ligand-receptor interaction strength between each cell type. 238 

Then, the cell types of interest were specified and treeplots were generated using the 239 

‘NetworkTreePlot()’ function. 240 

 241 

Gene-drug interaction analysis  242 

The above identified ligand and receptor interaction pairs were fed into the Drug-Gene 243 

Interaction database (DGIdb 3.0) to reveal candidate drug-gene interactions (Cotto et al., 2017). 244 

Briefly, ligands and receptors that were deemed significant from ‘scTalk’ were evaluated using 245 

the ‘queryDGIdb()’ function of the ‘rDGIdb’ R package (Cotto et al., 2017). We included all top 246 

FDA-approved drugs produced with verified inhibitory or antagonistic activities. Figure 4 and 5 247 

were modified using BioRender for clarity. 248 
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 374 

Figures and Figure Legends 375 

Figure 1 376 

 377 

Fig. 1. Unbiased automatic cell labeling of human coronary scRNA data using ‘SingleR’ 378 

reveals abundant cells with chondrocyte (CH) and fibroblast (FB) gene expression 379 

patterns. (A) UMAP clustering of 9798 cells derived from human coronary artery explants. (B) 380 

Population breakdown by percentage. SMC: smooth muscle cells, EC: endothelial cells, CH: 381 

chondrocytes, FB: fibroblasts, Mø: macrophages, SC: stem cells, CMP: common myeloid 382 

progenitor cells, GMP: granulocyte-monocyte progenitor cells. 383 
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Figure 2 384 

 385 

Fig. 2. Pseudotemporal and ultra-fine clustering reveals derivation of CH and FB-like 386 

cells from SMCs. (A) Left, RNA trajectory (line) shows path two direct paths from the SMC 387 

starting nodes (grey circles). Middle, ultra-fine clustering shows the logical transition stages 388 

from SMC to CH and FB. Right, pseudotemporal analysis confirms that the cell and clusters 389 

existing along a logical single-cell continuum. (B) Selected genes that were shown to vary over 390 

pseudotime by Moran’s I test were visualized.  391 
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Figure 3 393 

 394 

Fig. 3. Comprehensive ligand-receptor analysis reveals intricate intracellular 395 

communications in the coronary environment. (A) circle plot representation of the inferred 396 

intercellular communications within the coronary artery environment. (B) Incoming and outgoing 397 

signal summed weights by cell type. 398 
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Figure 4  400 

 401 

Fig. 4. Fine ligand-receptor analysis coupled with automatic DGIdb analysis reveals 402 

potential drug therapies could interrupt SMC to CH and FB communication. ‘scTalk’ shows 403 

that SMCs interacts with FB through three pairs of experimentally verified interactions. Of these 404 

three, DCN-EGFR signaling is the most druggable as revealed by DGIdb 3.0. 405 
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Figure 5 407 

 408 

Fig. 5. Roadmap of enhanced scRNA-seq analysis process. Instead of cluster-based 409 

grouping, our pipeline uses automatic cell labeling, coupled with pseudotime trajectory, cellular 410 

network interaction and drug targeting, and provides a reproducible process for scRNA 411 

datasets. From this roadmap, it is easy to add additional analysis tools as each cell has its own 412 

identity and can be re-projected into different spaces such as t-SNE or 3D spaces. 413 

414 
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Tables 415 

Table 1. 416 

 417 

Table 1.  Selected Moran’s I statistics for genes listed in Figure 2. Moran’s I statistics was 418 

used to identify spatial correlations within the single-cell trajectory. +1 indicates that nearby cells 419 

are perfectly similar, 0 indicates no similarity or pattern, and -1 indicates total dissimilarity (Cao 420 

et al., 2019)421 

p_value morans_test_statistic morans_I
MYH11 <1E-297 169.0285919 0.66505236
IGFBP2 <1E-297 129.2299117 0.50844307
PPP1R14A <1E-297 169.4172149 0.66663148
FBLN1 <1E-297 154.3399713 0.60730135
C7 <1E-297 156.2248703 0.61472417
LUM <1E-297 170.4635813 0.67075391
RAMP1 <1E-297 161.486949 0.63531256
TCF21 <1E-297 75.75779399 0.29798686

SERPINF1 <1E-297 157.9946249 0.62168635
FN1 <1E-297 125.4354275 0.49354242
CNN1 <1E-297 170.9288702 0.67251583

TNFRSF11B <1E-297 97.66515083 0.38400709
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