
Untargeted Metabolomics of the Cavefish
Astyanax mexicanus Reveals the Basis of

Metabolic Strategies in Adaptation to Extreme
Conditions

J Kyle Medley1,:,�, Jenna Persons1,2,:, Robert Peuß1,3, Luke Olsen1,4, Shaolei Xiong1, and Nicolas Rohner1,4,�

1Stowers Institute for Medical Research, Kansas City, Missouri, U.S.A.
2Current Address: Newman University, Wichita, Kansas, Missouri, U.S.A.

3Current Address: University of Münster, Schlossplatz 2, 48149 Münster, Germany
4Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas, U.S.A.

:These authors contributed equally to this work.

The Mexican tetra, Astyanax mexicanus, has undergone re-
markable physiological and behavioral changes in order to col-
onize a number of subterranean caves in the Sierra de El
Abra region of Mexico. A hallmark of cave-adapted popula-
tions is enhanced survival under low-nutrient conditions cou-
pled with hyperglycemia, increased body fat, and insulin resis-
tance, but cavefish appear to avoid the progression of the re-
spective pathologies associated with these conditions and do not
exhibit reduced longevity. The metabolic strategies underlying
these adaptations are not fully understood. Here, we provide an
untargeted metabolomics study of long- and short-term fasting
in two A. mexicanus cave populations and one surface popula-
tion. We find that, although cavefish share many similarities
with metabolic syndrome normally associated with the human
state of obesity, important differences emerge, including choles-
terol esters, urate, intermediates of protein glycation, metabo-
lites associated with hypoxia and longevity, and unexpectedly
elevated levels of ascorbate (vitamin C). This work highlights
the fact that certain metabolic features associated with human
pathologies are not intrinsically harmful in all organisms, and
suggests promising avenues for future investigation into the role
of certain metabolites in evolutionary adaptation and health.
We provide a transparent pipeline for reproducing our analysis
and a Shiny app for other researchers to explore and visualize
our dataset.
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Introduction
Metabolites are the intermediates and end products of bio-
chemical reactions that serve essential roles as energy, sig-
naling, and regulatory molecules (1, 2). The complete set
of metabolites, or ‘metabolome’, is a functional read-out of
interactions between genes, gene products, and the environ-
ment (3). Metabolomics techniques aim to capture a compre-
hensive view of the metabolome of cells, tissues, and organ-
isms in normal and pathogenic states (4).
The enzymes and pathways involved in core processes for
the metabolism of carbohydrates, lipids, amino acids and
nucleotides are remarkably well conserved across taxa (5).

Thus, metabolomics studies in model organisms may have
translative capacity (6). Recent work in invertebrates, ro-
dents, and zebrafish have increased our mechanistic under-
standing of the roles of metabolism in cell cycle, tissue
growth, and aging (7–10). Other studies have character-
ized metabolic responses to environmental and intrinsic chal-
lenges, such as diet and disease (11, 12). Given that cellular
metabolism is highly conserved, profiles in these studies have
confirmed signatures of disease progression, characterized
drug responses, and identified novel metabolites and path-
ways for future exploration (13). Yet, few studies have the
advantage of examining naturally evolved adaptations that
enable animals to overcome environmental challenges (14).

The Mexican tetra, Astyanax mexicanus is an ideal species to
study evolutionary adaptations to environmental challenges
(15). The two morphotypes of Astyanax diverged approxi-
mately 200,000 years ago as flooding forced river fish from
sunny, abundant rivers in Mexico into caves with complete
darkness, and food scarcity (16). Cavefish have evolved a
suite of metabolic phenotypes to cope with the cave envi-
ronment, including lower metabolic rate, increased appetite,
fat storage, and starvation resistance (17–19). Cavefish are
also insulin resistant, hyperglycemic, and exhibit increased
caloric intake (20), a feature often associated with decreased
longevity. Interestingly, cavefish live long, healthy lives with-
out ill-effects of metabolic disease (20). Astyanax may pro-
vide natural solutions to overcome the challenges associated
with modern diseases, like diabetes (21), and are also an
intriguing model for heart regeneration (22). However, the
extent of metabolic adaptations associated with cave-life re-
mains unknown, as neither the cavefish metabolome or their
response to dietary challenges have been comprehensively
described (23).

In this study, we compared the metabolome of surface fish,
and two independently-evolved cave populations using un-
targeted mass spectrometry (MS) of primary metabolites and
lipids. Using these exploratory, hypothesis-generating tech-
niques, we characterized the response of energetically impor-
tant tissues (the liver, muscle, and brain) of each population
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Fig. 1. Experimental setup (A) and PCA for each tissue and metabolite category. Pachón, Tinaja, and surface A. mexicanus fry were raised for 4 months and then separated
evenly into fasted (30–day) and non–fasted groups. At 4 days prior to collection, non–fasted fish were again divided into two groups (6 fish each) and either fasted for the
remaining 4 days (first group) or fasted for 4 days and refed 3 hours prior to collection (second group). Thus, 6 fish were obtained for each of the following conditions: 30–day
fasting, 4–day fasting, and 4–day fasting followed by re–feeding.

in short/long-term fasted, and fed conditions. We demon-
strate that metabolite profiles in Pachón and Tinaja cavefish
are more similar to each other than surface fish in each of the
three feeding states, within tissues. We identify metabolic
signatures of each tissue, population, and feeding state us-
ing O-PLS and a Bayesian generalized linear model (GLM).
We constructed inter-population and inter-feeding compar-
isons and fit separate GLMs to each case (Fig S1) Cavefish
exhibit many similarities with human models of obesity and
metabolic syndrome, but also differ from these conditions in
terms of redox metabolites / by-products and certain classes
of lipids. Our results lay the groundwork to explore the mech-
anistic roles of metabolites and pathways in the adaptation of

cavefish and highlight potential roles for certain molecules in
resistance to nutrient deprivation and maintenance of robust
health under physiological conditions that would be charac-
terized as pathological in humans.
We also provide a shiny app at https://cavefin.
shinyapps.io/shiny to allow others to explore and vi-
sualize our dataset.

Results
Our experimental design aimed to a) characterize the re-
sponse of the A. mexicanus metabolome to different feed-
ing states in energetically expensive tissues and b) utilize
comparisons across populations and feeding states to identify
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Fig. 2. Global trends in lipid and primary metabolite data. To visualize overall patterns in the metabolome of different experimental groups, we performed principal
component analysis (PCA) first on all lipids and primary metabolites (A,B), then on individual categories thereof (C,D). Specifically, PCA of mTIC–normalized log–peak
intensities of combined lipid and primary metabolite data (filtered by peaks matching either a KEGG compound or a valid LIPIDMAPS id): (A) Samples were colored
according to tissue (blue, purple, green) and population (shading of the primary color). (B) Shading by feeding state instead. (C) First (X-axis) and second (Y-axis) PCA
components of primary metabolite data subset by five main categories (see Supplementary Methods) for brain, muscle, and liver of all three populations. (D) PCA of lipid
data subset by LIPIDMAPS categorical designation for brain, muscle, and liver of all three populations. (E) Legend for C and D.

metabolites conserved in cavefish populations. Food scarcity
is one of the cave’s harshest evolutionary pressures. Cave-
fish have specialized feeding strategies and fat metabolism
that helps them thrive in the cave environment (15, 17–19).
We raised age-matched offspring of Surface (river) fish, and
Pachón and Tinaja cavefish morphs originating from two in-
dependent cave colonizations. To understand how the cave-

fish metabolome adapts to ecologically relevant food chal-
lenges, we separated Surface, Pachón and Tinaja populations
into three different groups at 4-months: 30-day fasted, 4-day
fasted, and “Refed” (fed at 3 hours prior to collection after 4-
days without food) (Fig 1). We chose 4-months so that tissue
collection would take place prior to sexual maturity (which
occurs at 6–9 months). We made all efforts to equalize the
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Fig. 3. Common signatures of primary metabolites and lipids in cave populations. In order to determine the degree of agreement between differentially abundant
metabolites in Pachón and Tinaja cave populations, we fit an O-PLS / Bayesian GLM statistical model to filtered peak intensity data. The number of metabolites (primary
metabolites and lipids respectively) significant at the p “ 0.05 level are shown. Metabolites in the intersection of two or more sets are constrained to agree on a directional
basis (i.e. the differential abundance of a given metabolite in both cave populations must be either greater or lesser than surface, not a mixture).

mass and standard length (SL) distributions of fish in each
group prior to separation (Fig S2, Table S1, Initial mass and
Initial SL).
Our untargeted metabolomics study yielded a total of 174
identified metabolites linked to KEGG (24) / HMDB (25)
IDS and 483 identified lipids linked to LIPIDMAPS IDS. We
examined the effect of normalizing identified peak values by
the total sum of peaks (mTIC) and by sample weight (Fig S3
and found that mTIC is more robust to variations in sample
weight. Hence, we employed mTIC-normalized data for the
remainder of the analysis.
Figure 2A/B shows that metabolites cluster primarily by tis-
sue, in line with previous studies in mammals (26). Figure
2C/D shows how clustering patterns depend strongly on the
chemical classification of identified metabolites. Some lipid
and primary metabolite categories show a clear separation be-
tween different populations (e.g. carbohydrates, Fig 2C, and
glycerophospholipids, Fig 2D, across most tissues), whereas
other categories have a less pronounced change (amino acids
in the brain, Fig 2C, and fatty acyls in most tissues). In or-
der to quantify separation of feeding states as a function of
population and metabolite category, we used a supervised
machine learning method based on orthogonal projection of
latent structures (O–PLS, Fig S4). We then used O–PLS to
remove “orthogonal” variation (27) from each metabolite cat-
egory and fit a Bayesian logistic regression model to the de–
noised data (Supplemental Methods).

Common Metabolite Signatures and Adaptive Re-
sponse. In general, the metabolome of all three populations
shows a large degree of similarity within a given tissue (Fig

S5), highlighting the influence of genetic ancestry, even in
subpopulations that show markedly different phenotypes.
To quantify the degree to which the metabolomic signature of
Pachón and Tinaja cave populations is conserved, we com-
puted the directional intersection of metabolites either in-
creased or decreased (but not a mixture of both) in Pachón
and Tinaja with respect to surface according to the GLM (Fig
3). In other words, metabolites in the yellow wedge represent
the intersection of metabolites that have significant differen-
tial abundance in Pachón (red circle) and Tinaja (gold circle)
and are increased in both Pachón and Tinaja or decreased in
both Pachón and Tinaja.
A large convergent signal was displayed between Pachón and
Tinaja cave populations, with the differences between cave
populations typically being fewer than the differences be-
tween each respective cave population and surface. Muscle
displayed the highest degree of common primary metabolites,
and both muscle and brain display a large overlap of differ-
entially abundant lipids. Given that Pachón and Tinaja rep-
resent independent cave populations, adaptive shaping of the
metabolome thus appears to have the strongest effect in mus-
cle, the site of energy expenditure during locomotion, and the
brain, where lipids may play an important role in signaling.
Thus, adaptation appears to play at least a partial role in shap-
ing the metabolome of cave-dwelling A. mexicanus. Adapta-
tion is particularly highlighted in certain classes of metabo-
lites, which display extreme changes in both cave popula-
tions, as described in the following subsections.

Sugar Phosphate Metabolism. Given the overall similar-
ity at the tissue level for most classes of metabolites (Fig
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Fig. 4. Extreme alterations to sugar metabolites in cave vs. surface populations. To show differences in cavefish sugar metabolism, we selected 5- and 6-carbon sugars,
sugar phosphates, and uronic acids (oxidized forms of sugars that form building blocks of proteoglycans). The row axis shows metabolites within each of these classes, and
the column axis shows different populations (short range, labels at bottom), feeding states (medium-range, labels at top) and tissues (long-range, labels at topmost point).
Color indicates the mTIC-normalized peak intensity for the average of 6 biological replicates. Red indicates the maximum value for a given row (i.e. across all populations,
tissues, and feeding states), whereas navy blue (the bottom of the color bar) corresponds to a peak intensity of zero, not to the minimum value. Thus, dark cells correspond
to very little / zero intensity, as opposed to simply corresponding to the minimum intensity within the row. Given that mTIC intensities are “semi–quantitative”, red values thus
correspond to the most abundant group for a given metabolite, and navy blue corresponds to lack of abundance.

S5), phenotypic differences are likely to be linked to a rela-
tively small subset of the metabolome. We sought to identify
metabolites that could be responsible for the drastic change in
phenotype of cave populations. Sugars and sugar phosphates
are important energy metabolites and hence candidates for
adaptations related to resistance to nutrient deprivation. This
class of metabolites displays a dramatic change during short-
and long-term fasting, particularly in the liver (Fig 4). Hep-
atic glucose production is derived from gluconeogenesis and
glycogenolysis, the latter relying on stored glycogen, which
is quickly exhausted during fasting (28), indicating that hep-
atic gluconeogenesis likely plays a role in sustaining sur-
vival under long-term nutrient deprivation in A. mexicanus.
Surprisingly, surface fish also show stable (albeit generally
lower) sugar levels in the liver under different feeding states
(Fig 4), indicating that sugar production in the liver may be
driven by overall demand rather than supply. This may point
to a shift from oxidative to sugar-based metabolism as an en-
ergy source in energetically expensive tissues. Cavefish pos-
sess a larger amount of body fat (17, 19), and hence have
a larger pool of glycerol to serve as a substrate for gluco-
neogenesis. We find that both cave populations exhibit de-
creased levels of glycerol in the 30-day fasted state, particu-
larly in Tinaja (Table S2), indicating increased consumption
of this intermediate as a substrate for gluconeogenesis may
be the source of increased sugar / sugar phosphate abundance
in cave populations.
Regardless of the substrates leading to sugar metabolite ac-

cumulation, it is clear that a large difference exists between
cave and surface populations within this class of metabolites.
However, the specifics of this alteration to sugar metabolism
appear to be population-specific, with Tinaja showing a large
increase in sugar phosphates and Pachón showing an increase
in unphosphorylated sugars respectively in short/long-term
fasted states in comparison to surface (Fig 4).
Other tissues show a mixed response, with muscle display-
ing increased levels of most sugar phosphates in Pachón but
decreased levels of fructose-1-phosphate in both cave popu-
lations with respect to surface. The brain displays low levels
of sugar / sugar phosphate metabolites overall but possesses
increased sugar metabolite abundance in cave populations for
certain metabolites and feeding states (Table S2). In particu-
lar, fructose and fructose phosphates tend to be upregulated in
the brain, suggesting that reliance on glycolytic metabolites
may be a strategy used by cavefish to survive in low nutrient
or hypoxic environments, an adaptation that is also present in
naked mole rats (29).
While the levels of most simple sugars and sugar phosphates
are increased in cavefish with respect to surface, the levels of
gluconic acid and glucoronic acid show the opposite pattern
(Fig 4). Gluconic acid and glucoronic acid belong to uronic
acids, a class of sugar acids that are major building blocks of
proteoglycans. It has previously been observed that A. mex-
icanus cave morphs lack advanced glycation end products
(20), which are a defining feature of diabetes and are nor-
mally associated with chronic hyperglycemia in humans. Al-
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tered metabolism of sugar acids in cavefish may play a role in
inhibiting excessive protein glycation and the adverse health
effects thereof.

Ascorbate. A highly unexpected and unexplained feature of
our analysis is the abundance of vitamin C, particularly in
its oxidized form dehydroascorbic acid (DHAA), across all
tissues in cave populations (Fig 5). Ascorbic acid (AA), the
reduced, active form, is also more prevalent in muscle tissue.
DHAA can be recycled back to AA using reducing cofactors
such as NADH and NADPH, which can in turn be regen-
erated from the pentose phosphate pathway and TCA cycle
using simple sugars, which cavefish have in abundance. For
this reason, vitamin C content in food labeling is usually re-
ported as the sum of AA and DHAA (32). Thus, cavefish
seem to have a larger total ‘pool’ of vitamin C (including in-
terconvertible oxidized and reduced forms, Fig 5).
Many cavefish populations exhibit increased appetite and
carry an allele of the melanocortin 4 receptor that predisposes
them to hyperphagia (17). The increased appetite could cause
cavefish to consume more overall food, which could be re-
sponsible for the AA/DHAA increase in the refed state. How-
ever, this does not pertain to the 30-day fasted state, where
AA/DHAA levels are also elevated across all tissues. There
is widespread consensus that teleosts, like humans, lack the
ability to produce AA endogenously due to the absence of
gulonolactone oxidase, which catalyzes the final step in AA
biosynthesis (33). In humans, this enzyme is a pseudogene,
whereas in teleosts the gene is absent entirely, thought to be
lost in the distant evolutionary past. Thus, the additional
AA/DHAA supply likely comes from selective reuptake in
the kidney, a process that also occurs in humans to conserve
AA/DHAA, or it may be produced by commensal microbiota
in cavefish. Trace amounts of AA/DHAA in the feed used in
the aquatics facility used to house the fish in this experiment
may recirculate throughout the water filtration system and be
redistributed to all tanks, including those housing fish in the
fasted groups. Nevertheless, it remains that even in the case
of circulating trace amounts of AA/DHAA, cavefish appear
to exhibit selective retainment of AA/DHAA in larger quan-
tities.
The advantages of AA conservation in adaptation to an en-
vironment where prolonged starvation is common are self-
evident. AA is involved in collagen formation, and its de-
ficiency leads major loss of integrity of connective tissue.
Thus, the ability to retain what little ascorbate is present in
underground cave environments would confer an enormous
survival advantage to fish.
Another factor that could influence the AA/DHAA ratio is the
effect of insulin resistance and hyperglycemia on the GLUT
family of transporters, particularly GLUT4 in adipose / mus-
cle tissue (32, 34). DHAA competes with glucose for trans-
port across the membrane by GLUT4, whereas AA is taken
up by Na` transporters. GLUT4 activity is dependent on
membrane translocation and this process is dysregulated in
diabetes (35). This combination of elevated blood sugar and
insulin resistance suggests that GLUT4 could be less active
in cavefish and cause DHAA to accumulate in the extracel-

lular space. Finally, Pachón cavefish possess a reduction in
neutrophils, one cell type which are normally involved in the
uptake of AA and reduction to DHAA, compared to surface
(36).

Adaptation to Hypoxic Conditions. Energy metabolism in
most organisms can be viewed as a balance between oxida-
tive processes (cellular respiration via oxidative phosphoryla-
tion and the electron transport chain) and sugar metabolism,
and the relative contributions of these two processes can
have important physiological consequences, as in the well-
known Warburg effect in cancer. A. mexicanus cave morphs
have considerably upregulated sugar metabolism (Fig 4), and
also display decreased levels of several products of oxidative
metabolism. One important metabolite in this category that
displays differences in cave populations is α-ketoglutarate
(α-KG), which has increased abundance in the liver in all
feeding states and in the brain in certain feeding states in both
cave populations. α-KG supplementation has been linked to
lifespan extension in C. elegans (30) and mice (31). Further-
more, uronic acids, the oxidative products of simple sugars,
are significantly reduced in the liver of both cave populations
(Fig 4, Table S2), suggesting that troglomorphs are charac-
terized by decreased reliance on oxidative metabolism and
increased reliance on sugar metabolism. This would enable
cavefish to survive in a hypoxic subterranean environment,
similar to naked mole rats (29).

Obesity and Inflammation-Related Metabolites. In hu-
mans, chronic inflammation of adipose tissue is a common
feature of obesity and can often lead to insulin resistance and
eventually type 2 diabetes (37). Cave populations of A. mex-
icanus have been previously reported to exhibit pronounced
insulin resistance (20), but do not accumulate advanced gly-
cation end products and do not appear to have diminished
longevity.
In order to compare the metabolome of A. mexicanus cave
populations to the known metabolic signatures of obesity
(38), we calculated changes in lipid categories (the coarsest
abstraction used in LipidMaps; Table S3), classes (a more
detailed partitioning scheme used in LipidMaps; Table S4),
and, within free fatty acids specifically, the degree of sat-
uration (Table S5). Additionally, we also examined a sub-
set of the lipid data corresponding to individual lipid species
with common names (Table S6). The metabolome displays
a remarkable overlap with the proinflammatory signature as-
sociated with obesity that, in humans, leads to insulin resis-
tance. This signature consists of (1) the elevation of saturated
fatty acids (SFAs) in muscle in most feeding states (Table
S5), which have a direct and pronounced proinflammatory
effect in mammals through the recruitment of macrophages
(39) (although the importance of fatty acid release in insulin
resistance is disputed (40, 41)), (2) abundance of ceramides
in muscle in all feeding states (Table S4), which are known
direct mediators of insulin signaling (39). Indeed, the only
feeding state for which skeletal muscle did not display in-
creased SFA abundance was 30-day fasting, which could sim-
ply indicate the exhaustion of free SFA pools. Additionally,
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and brain under 30-day fasting. Alpha-ketoglutarate is a longevity-associated tricarboxylic acid cycle (TCA) intermediate (30, 31). (C) Nicotinamide is a precursor to NAD`

synthesis via a salvage pathway, and exhibits preferential localization to the liver in cavefish. Orotic acid is a metabolite that causes fatty liver disease in rats when added
to a chow diet. (D) RNA-Seq data (unpublished) of CETP, a carrier protein for cholesterol esters and triglycerides between lipoproteins. Values on the abscissa (y–axis) are
counts per million (CPM) for muscle (left) and liver (right) for older fish under normal feeding (“Fed”), 2-month fasting (“Fasted”), and a high-fat diet (“HighFat”).

palmitate, a precursor of ceramide biosynthesis (39), is ele-
vated in muscle in all feeding states (Table S6). Sphingoid
bases are significantly more abundant in muscle in all feed-
ing states (Table S3), suggesting generally upregulated sph-
ingolipid biosynthesis in cave populations.

In contrast to proinflammatory metabolites, omega–3 fatty
acids (ω-3 FAs) such as DHA and EPA have protective effects
against inflammation (37, 39, 42). These molecules bind to
the GRP120 receptor on macrophages and adipocytes, and
the activated receptor then modulates the activity of PPARγ
and ERK (37, 42). ω-3 FAs are less abundant in the liver
under 4–day fasting (Table S6) and are generally not upreg-
ulated in most feeding states and tissues (Table S6). Thus,
ω-3 FAs do not appear to offset for the proinflammatory sig-
nature of cavefish SFA and ceramide signatures, suggesting
that cavefish possess an alternate compensatory mechanism
to prevent chronic tissue inflammation. Overall, cavefish ap-
pear to exhibit many metabolic similarities with obesity and
health conditions associated with it.

However, this is not a universal trend. Cirulli et al. report a
strong association between urate levels and BMI, likely due
to insulin resistance interfering with uric acid secretion in the
kidney (38). In contrast, cavefish appear to have significantly
reduced levels of uric acid in muscle, and in other tissues lev-

els are comparable with surface (except for a small but sig-
nificant increase in Pachón liver during fasted states, Table
S2). Uric acid is increased in humans during prolonged fast-
ing (43), but this trend again does not hold for cavefish, par-
ticularly Tinaja. Mannose, which is associated with obesity
and insulin resistance in humans (38), was abundant in the
Pachón liver in all feeding states, but was reduced in Tinaja
compared to surface fish.

Finally, cholesterol esters (Table S6), but not cholesterol (Ta-
ble S2), were less abundant in cave populations. We inves-
tigated factors that might influence levels of cholesterol es-
ters using a separate RNA-Seq dataset (unpublished) contain-
ing samples from muscle and liver. Cholesteryl ester trans-
fer protein (CETP), which packages cholesterol into lipopro-
teins, is downregulated in both Pachón and Tinaja compared
to surface fish (Fig 5), suggesting that the decreased abun-
dance of cholesterol esters in cave populations may be due
to decreased levels of this important carrier protein. A hu-
man variant of CETP associated with decreased serum levels
of the protein and larger low-density lipoprotein (LDL) and
high-density lipoprotein (HDL) particle sizes has been linked
to exceptional longevity (44). The LDL / HDL cholesterol
ratio, mediated in part by CETP (45), is a major contribu-
tor to risk of atherosclerosis and coronary heart disease (46).
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Given the similarities between A. mexicanus cave population
metabolic signatures and metabolic syndrome, this raises the
question of whether cholesterol ester content and CETP may
contribute to longevity under obesity-like conditions in these
populations.
The presence of free saturated fatty acids, ceramides, and
sphingolipids suggests that the link between these metabo-
lites and pathological conditions is not universal, and that or-
ganism physiology plays a major role in the progression of
metabolic syndrome and diabetes-like pathologies. A. mexi-
canus cavefish do not exhibit shortened lifespan or accumu-
lation of the advanced glycation endproducts (20) normally
associated with diabetes.
Studies in other vertebrates demonstrate that high glu-
cose exposure results in an increased cytokine response of
macrophages upon lipopolysaccharide exposure but reduces
the overall phagocytic rate (47, 48). Our data provides evi-
dence that there is a high glucose concentration in the central
organs (brain and liver) of Pachón cavefish in all treatment
groups (Fig 4), which leads us to the hypothesis that high glu-
cose concentration is the main driver of the hypersensitivity
and reduced phagocytic rate of innate immune cells including
macrophages in Pachón cavefish (36). We found further indi-
cation that changes in the metabolism are a possible driver of
immunological differences between cavefish and surface fish.
We found decreased amounts of arachidonic acid in the brain
of Pachón cavefish upon 30-day fasting. Arachidonic acid
(AraA) provides the basis for the production of membrane
phospholipids in the brain (49). AraA, however, is also the
substrate of the prostaglandin-endoperoxide synthase 2 (cox-
2) that converts AraA to Prostaglandin H2 (PGH2), which
in turn is used to produce important mediators of inflamma-
tion and a main driver of fever initiation in mammals (50).
Cox-2 inhibitors are used to prevent the conversion of AraA
to PGH2 and thereby inhibit the progression of inflammation
and confer analgesia (51). Cavefish show a decreased expres-
sion of cox-2 in the granulocytes and macrophages upon LPS
stimulation (36), which might be indicative for a general de-
pletion of the AraA pool in cavefish. In addition, while fish
do not develop a fever they show behavioral markers for fever
in warmer water for a prolonged time period upon parasite in-
fection (52). Tabin and colleagues (53) showed that cavefish
do not show a behavioral fever upon parasite infection, while
surface fish show the classic behavioral fever response upon
parasite infection. Since conversion of AraA to PGH2 by
cox-2 is driving this fever response in fish (52) we hypoth-
esize that the low food abundance in combination with the
low parasite diversity in the natural habitat of cavefish would
enable the fish reduce the production of AraA, which in turn
leads to the inhibition of inflammatory phenotypes and re-
duced behavioral fever.

Resistance to Nutrient Deprivation. In order to determine
the basis of cavefish adaptation to low-nutrient environments,
we sought a statistical test that would be sensitive to metabo-
lites that change significantly between refed and short/long-
term fasted states and insensitive to metabolites that remain
relatively stable across feeding states. We further hypothe-

sized that certain metabolites may have an important role in
cave adaptation. Pachón and Tinaja represent independently
evolved populations, and we reasoned that a test for parallel
adaptation should be selective for metabolites that show the
same differential feeding state response pattern across cave
populations (e.g. differentially increased in both Pachón and
Tinaja fasted states relative to surface). In order to construct
this test, we fitted a Bayesian GLM to a linear combination
pP `T q{2´S of O-PLS-filtered z-score values (see Supple-
mentary Methods), where P stands for Pachón, T stands for
Tinaja, and S stands for surface. We used this test to identify
metabolites that might have a role in the fasting response of
cavefish, i.e. metabolites that are differentially abundant in
cave populations in the fasted versus refed state (Pachón and
Tinaja are assigned equal weight), and generally show the
opposite pattern in surface. Figure 6 shows the results of this
test for 30-day fasting vs. refeeding (A, which corresponds
to the most extreme experimental groups), and the two other
possible comparisons between feeding states (B/C).

Using this adaptive criterion, we examined which energy
metabolites seem to be specifically correlated with differ-
ent fasting states (Tables S7, S8, and S9 show the results of
different fasting state comparisons). Sugar metabolites do
not appear to exhibit a strong differential feeding state re-
sponse. However, long-chain fatty acids such as palmitate
and stearate (Fig 6C) do show differential abundance between
long- and short-term fasting, suggesting that cavefish may
rely on increased usage of fat stores in long-term fasting. Fur-
thermore, analysis of the 30-day fasting response in cavefish
liver highlights orotic acid (OA, Fig 6A), an intermediate in
pyrimidine synthesis that has been implicated in fatty liver
condition (54). OA is suppressed in all feeding states in cave
populations, but exhibits a sharp spike in refed surface fish
(Fig 5).

Steatosis, or non-alcoholic fatty liver condition, can be
caused by reduced FA oxidation / secretion, or increased FA
update or lipogenesis (55), with the majority of fat accumu-
lation in the liver coming from uptake of non-esterified fatty
acids in humans (56). Lipidomics data indicate that free fatty
acid content in the 30-day fasted state is lower for both cave
populations with respect to surface (Table S3). The higher
body fat of cave populations may be due to increased fatty
acid synthesis in the liver under conditions of nutrient avail-
ability. Increased lipid accumulation from this process could
render cave populations vulnerable to steatosis / fatty liver
condition. Given the role of OA in fatty liver condition, OA
suppression may therefore have a potential role in preventing
excessive lipid accumulation in the liver of cave populations.

Starvation has detrimental effects on an organism in many
ways. One detrimental effect is the depletion of antioxidant
substances and the resulting oxidative stress through increas-
ing levels of reactive oxygen species (ROS) (57). Studies that
focus on the impact of food deprivation on oxidative stress
in fish show that prolonged starvation decreases the capac-
ity of fish to ameliorate oxidative stress (57). Glutathione
is a major antioxidant that detoxifies ROS and thereby pre-
vents cellular damage from oxidative stress (58). Cavefish
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Fig. 6. Adaptive metabolic signature in response to food deprivation in cave populations. To identify metabolites linked to adaptations promoting survival in a nutrient-
limited environment shared between cave populations, we fit an O–PLS / GLM statistical model to the response to fasting, i.e. the difference between 30-day fasting and
refeeding for Pachón, Tinaja, and surface populations. Specifically, we fitted a Bayesian GLM (see Supplementary Methods) to the linear combination pP `T q{2´S, with
P , T , and S referring to the normalized z-scores for each Pachón, Tinaja, and surface sample respectively. Coloring in the figure indicates metabolites increased (red) or
decreased (blue) in both cave populations in 30–day fasting (i.e. “up” refers to metabolites that are increased in Pachón and Tinaja in the 30–day fasted state with respect
to surface), and color intensity corresponds to log10 p-value, with lighter colors indicating less significant p-values and darker colors indicating more significance. The most
significant 20 differentially abundant metabolites (regardless of direction) in each tissue for both cave populations with respect to surface are displayed. An asterisk (*)
indicates significance at the 0.05 level.

face prolonged periods of nutrient deprivation in their natural
environment (17). Adaptation to the cave environment may
have led to changes in glutathione metabolism in cavefish to
protect against oxidative stress under prolonged fasting. In-
deed, in an earlier study we were able to demonstrate that
cavefish show an increased expression of genes that are in-
volved in the metabolism of glutathione, which is indicative
of an increased stress level compared to surface fish in their
natural habitat (59). Here we can confirm the ability of cave-
fish to respond towards fasting mediated oxidative stress by
elevation of reduced glutathione in the liver and brain (Fig 5,
Table S2). We did not observe a significant increase of glu-
tathione in the surface fish in the fasted states (Fig 5, Table
S2). Given the remarkable differences in glutathione regu-
lation between cavefish and surface fish, A. mexicanus is an
ideal model to study the oxidative stress response upon states
of low nutrient availability.

Discussion
A. mexicanus has been advanced as a model of resilience
under ostensibly pathological conditions including hyper-
glycemia, diabetes (21), and insulin resistance (20). Here, we
have provided a large, untargeted study of the metabolome of

A. mexicanus surface fish and two cave populations in order
to investigate the molecular underpinnings of these adapta-
tions.

We were particularly interested in the role of metabolism in
cave adaptation of the two A. mexicanus cavefish populations
in this study: Pachón and Tinaja. We found evidence of cave-
mediated positive selection in the form of overlap of changes
in metabolite levels (particularly lipids) in certain tissues un-
der all feeding conditions (Fig 3). This suggests that paral-
lel adaptation to cave environments requires satisfying cer-
tain common metabolic needs that are an inherent part of
the niche. The obvious candidate for this evolutionary con-
flux is adaptation to a low-nutrient environment. However,
metabolic strategies for survival in such environments are not
currently well-understood. We found that drastic alterations
in energy metabolism, together with shifts in mediators of re-
dox metabolism and ascorbate, an essential vitamin which is
lacking in the cave environment, constitute a major feature of
cave adaptation in these populations.

Cavefish appear to have substantially altered sugar
metabolism, and exhibit higher levels of sugars and sugar
phosphates. However, the opposite trend occurs for uronic
acids, which are the oxidized forms of simple reducing sug-
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ars and can be formed enzymatically or non-enzymatically.
This incongruency can be resolved by noting the overall
trend to decreased reliance on oxidative metabolism (and
enzymes that catalyze oxidative processes) and increased
reliance on sugar metabolism. This trend stems from sugars
and sugar phosphates, antioxidants such as ascorbate and
glutathione, and α-KG (which has been shown to inhibit the
electron transport chain in C. elegans). Due to drastic fluctu-
ation in oxygen level in the subterranean niche, cavefish may
rely on a shift from oxidative to predominantly sugar-derived
energy metabolism, as compared to their surface-dwelling
cousins. Reduction in uronic acids, which are derived from
sugars using oxidative processes, can thus be seen as part of
this trend. However, the specific reduction of uronic acids
in particular may have an additional survival benefit for
cavefish by inhibiting protein glycation and thus preventing
accumulation of advanced glycation end products. Further
investigation is required to fully understand the evolutionary
and physiological implications of these metabolic changes.

The altered sugar metabolism of cavefish may be indicative
of a shift from oxidative to sugar-based energy metabolism,
similar to certain metabolic adaptations in naked mole rats
(29). Further work is required to establish the extent of hy-
poxic conditions an A. mexicanus evolution. However, we
also find that certain redox-related metabolites, including α-
KG, glutathione, and ascorbate, all exhibit distinctive abun-
dance patterns in cavefish. These patterns may be in response
to hypoxia, poor nutrient conditions, differences in metabolic
rate, or some other aspect of the cave niche.

Our data indicate that upregulation of glucose and long-
chain fatty acid production is a common feature shared by
Pachón and Tinaja cave populations, suggesting that cer-
tain cave habitats do require considerable changes in energy
metabolism. Pachón and Tinaja likely have a greater reliance
on fat stores for locomotion, as evidenced by increased SFA
content in muscle in fasting and refeeding. The decrease of
ω-3 FAs during fasting (Table S6) coupled with the increase
of palmitate (Table S9) in long- vs short-term fasting sug-
gests that cavefish metabolism may be preferentially biased
towards storing caloric intake as energy-rich saturated fatty
acids. Whether cavefish possess adaptations to counteract the
deleterious effects of high body fat, such as suppression of
orotic acid (a metabolite implicated in steatosis in the liver),
requires further investigation.

In summary, A. mexicanus troglomorphic populations share
many metabolic similarities with human obesity and diabetes
mellitus, but also display important differences which may
help to explain their resistance to diabetes-like pathologies.
We found considerable overlap between the human metabolic
signature of obesity and cavefish metabolism. However,
we also found important differences in ascorbate, which is
known to serve diverse physiological roles, nicotinamide,
which is a precursor to NAD` synthesis and hence is re-
lated to oxidative metabolism, α-ketoglutarate, which has
been implicated in longevity in C. elegans (30). Unexpect-
edly, ω-3 FAs and niacin, compounds with anti-inflammatory
properties, were not increased in cave populations. The ele-

vated presence of α-ketoglutarate and redistribution of nicoti-
namide, as well as overall trends toward increased sugar
metabolism, suggests decreased overall reliance on oxidative
metabolism, which could extend lifespan and reduce the cel-
lular damage associated with inflammation.

Conclusion
Our goals for this study were (1) to provide a comprehen-
sive untargeted study of primary metabolites and lipids in
A. mexicanus, an extreme-adapted organism with important
connections to human health, (2) examine the molecular ba-
sis for low-nutrient adaptation in cave-dwelling subpopula-
tions, and (3) identify metabolic changes that might explain
A. mexicanus longevity in the face of a phenotype with prop-
erties linked to obesity and diabetes.
Our findings show that the adaptation to a low nutrient en-
vironment in A. mexicanus is linked to extreme changes in
sugar and fat metabolism, and that increased reliance on
these energy sources in the liver insulates other tissues from
catabolism under long-term fasting.
All in all, our results highlight the role of A. mexicanus as
an evolutionary example of extreme metabolism and a model
of human obesity, and suggest important roles for certain
metabolites in fish and other species.

Acknowledgments
JKM, JP, LO, SX, and NR were supported by institutional
funding from the Stowers Institute for Medical Research.
Additionally, NR is supported by the Edward Mallinckrodt
Foundation, NIH Grant R01 GM127872, DP2AG071466,
NSF IOS-1933428, and EDGE award 1923372.
We are deeply grateful to Zachary Zakibe, Andrew Ingalls,
Alba Aparicio Fernandez, David Jewell, and Molly Miller for
their tireless efforts in maintaining the large fish fish popula-
tion of the SIMR Cavefish Facility and providing invaluable
assistance for this study and others. We would also like to
thank Elizabeth Evans, Diana Baumann, M. Shane Merry-
man, and the SIMR Reptile and Aquatics facility for coordi-
nating and supporting animal research at Stowers and in the
Rohner lab in particular. We are grateful to the West Coast
Metabolomics Center for providing data acquisition and anal-
ysis for this study. Finally, we would like to thank Jaya Krish-
nan for helpful discussions relating to the manuscript. This
pre-print manuscript is based on a LATEXtemplate kindly pro-
vided by Ricardo Henriques.

Methods

Experimental Model and Subject Details
Surface morphs of Astyanax mexicanus were reared from off-
spring of Mexican surface fish collected in the Río Choy.
Pachón and Tinaja morphs were reared from fish originat-
ing from the Pachón and Tinaja caves. A total of 18 fish
from each population were used in experiments. Sex was
not determined due to difficulties in determining sex in juve-
nile A. mexicanus fish. This study was approved by the In-
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stitutional Animal Care and Use Committee (IACUC) of the
Stowers Institute for Medical Research under protocol 2019-
084. Animals were euthanized according to an IACUC–
approved euthanasia protocols based on American Veterinary
Medical Association (AVMA) guidelines using Tricaine me-
sylate. The method currently in use has been updated to re-
flect 2020 AVMA guidelines and uses 30 minutes of oper-
cular movement cessation unless a secondary method is em-
ployed.

Method Details
Fish husbandry. All Astyanax are housed in glass fish tanks
on recirculating aquaculture racks (Pentair, Apopka, FL) with
a 14:10 LD photoperiod. Each rack system is equipped with
mechanical, chemical and biological filtration and UV disin-
fection. Water quality parameters are monitored and main-
tained daily as described in previous studies (19, 36). Fish
were fed once per day with mysis shrimp and twice per
day with Gemma diet. Gemma feed is Protein 59%; Lipids
14%; Fiber 0.2%; Ash 14%; Phosphorus 1.3%; Calcium
1.5%; Sodium 0.7%; Vitamin A 23000 IU/kg; Vitamin D3
2800 IU/kg; Vitamin C 1000 mg/kg; Vitamin E 400 mg/kg.
Health examinations of all fish were conducted by aquatics
staff twice daily. Astyanax colonies are screened biannually
for ectoparasites and endoparasites and no pathogens were
present at the time of this study. Fish treatment and care was
approved by the Institutional Animal Care and Use Commit-
tee (IACUC) of the Stowers Institute for Medical Research.
NR’s institutional authorization for use of Astyanax mexi-
canus in research is 2019-084.

Feeding regimen and tissue collection. Age-matched
offspring of Surface, Pachón, and Tinaja populations were
reared in similar densities at 23°C in 14:10LD cycles as de-
scribed previously. Fish were the result of a group mating
event within populations. Fish were housed only with mem-
bers of their population for their entire lives. At 4-months
(Tinaja), 4 months and 1 day (Pachón), 4 months and 2 days
(Surface), fish of each population were separated into two
tanks. 12 fish were separated and starved for 30-days un-
til tissue collection. The 12 fish were maintained on regu-
lar feeding schedules until 4-days prior to tissue collection
when food was withheld from each population’s regular feed-
ing tank. The mass (g) and length (cm) of each fish was
recorded at separation. All efforts were made to equalize
mass and length distributions in each cohort. On the evening
before tissue collection, 6 fish from the 4-day starved tank
were separated and placed into three, 3L-tanks. Tanks were
divided down the middle such that all 6 fish (2 in each tank)
were housed individually. Singly housed fish were refed for
3-hours with 10mg of Gemma 500 on the morning of the
dissection day for each population. Dissection occurred at
5 months (October 5th, 2019; Tinaja), 5 months and 1 day
(October 6th, 2019; Pachón), 5 months and 2 days (Octo-
ber 7th, 2019; Surface). Fish were re-fed in intervals be-
tween 8:30am-12:00pm. At each 3-hour time point, a re-fed
fish, a 4-day starved fish, and a 30-day starved fish was eu-

thanized in MS-222. To reduce variability between popula-
tions dissected on subsequent days, all dissections took place
between 11:30-3pm and were handled identically. Prior to
dissection, the final mass and length were recorded for each
fish. The liver, muscle, and brain were dissected and placed
in 1.5mL plastic tubes. Tissues were flash frozen on liquid
nitrogen, transferred to dry ice and stored at -80C. Samples
were shipped to West Coast Metabolomics Center on dry ice
overnight for analysis.

Sample Preparation. Samples were prepared using the
Matyash protocol (60). This procedure allows efficient
extraction of lipids in a non-polar methyl tert-butyl ether
(MTBE) layer, and extraction of primary metabolites in the
polar water/methanol layer (61, 62). From each sample, 4.1
mg of frozen liver or brain tissue (+/- 0.3 mg) or 10.1 mg of
muscle tissues (+/- 0.3mg) was weighed and placed into 1.5
mL Eppendorf tubes. Samples were ground prior to extrac-
tion using beads with a Spex Sample Prep GenoGrinder with
stainless steel 2–3 mm beads for 30 s. 975 µL of ice cold,
3:10 (v/v) MeOH/MTBE + QC mix/CE (22:1) extraction sol-
vent was added to each homogenized sample. Samples were
vortexed for 10 sec and shaken for 5 min at 4°C. 188uL room
temperature LC/MS water was added and samples vortexed
for 20 sec, then centrifuged for 2 min at 14,000 rcf. The up-
per organic phase was transferred to two separate tubes (350
µL each) for lipidomics (CSH) analysis. The bottom aque-
ous phase was transferred to two additional tubes (110 µL
each) for primary metabolism (GC-TOF) analysis. One tube
from each phase was reserved as a backup, the other tube was
dried down completely using centrivap. Both were kept at -
20°C until ready for analysis. As an additional step prior to
GC-TOF analysis, samples were resuspended in 500 µL of
degassed, ´20°C mixture of acetonitrile (ACN): isopropanol
(IPA): water (H2O) (3:3:2, v/v/v). Samples were vortexed
for 10 sec and then centrifuged at 14,000 rcf for 2 min. 450
µL of supernatant was transferred to a new tube and concen-
trated to complete dryness using a Labconco Centruvap cold
concentrator.

Primary Metabolite Data Acquisition. Metabolite abun-
dances were quantified by gas-chromatography, time-of-
flight mass spectrometry (GC-TOF/MS) using previously es-
tablished methods (63). Briefly, an Agilent 6890 gas chro-
matograph (Santa Clara, CA) equipped with a Gerstel au-
tomatic linear exchange systems (ALEX) which included a
multipurpose sample dual rail and a Gerstel cold injection
system (CIS) was used with a Leco Pagasus IV time-of-flight
mass spectrometer running Leco ChromaTOF software. The
injection temperature was ramped from 50°C to a final tem-
perature of 275°C at a rate of 12°C/s and held for 3 minutes.
Injection volume was 0.5 µl with 10 µl/s injection speed on a
splitless injector with a purge time of 25 seconds. The liner
(Gerstel # 011711-010-00) was changed automatically every
10 samples to reduce sample carryover. The injection sy-
ringe was washed three times with 10 µL ethyl acetate before
and after each injection. For gas chromatography, a Rtx-5Sil
MS column (30 m long, 0.25 mm i.d.) with 0.25 µm 95%
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dimethyl 5% diphenyl polysiloxane film was used (Restek,
Bellefonte PA). The GC column was equipped with an addi-
tional 10 m integrated guard column. 99.9999% pure Helium
with a built-in purifier was set at a flow rate of 1mL/minute.
The oven temperature was held constant at 50°C for 1minute,
ramped at 20°C/minute to 330°C, and then held constant for
5 minutes. The transfer line temperature between gas chro-
matograph and mass spectrometer was set to 280°C. The
mass spectra were acquired at a rate of 17 spectra/second,
with a scan mass range of 80–500 Da at an ionization energy
of -70 eV, 1800 V detector voltage, and 250°C ion source.

Primary Metabolite Data Processing. Raw GC-TOF MS
data files were preprocessed using ChromaTOF version 4.0
without smoothing, a 3 s peak width, baseline subtraction just
above the noise level, and automatic mass spectral deconvo-
lution and peak detection at signal/noise (s/n) levels of 5:1
throughout the chromatogram. Results were exported with
absolute spectra intensities and further processed by a fil-
tering algorithm implemented in the metabolomics BinBase
database (64). The BinBase algorithm (rtx5) used the fol-
lowing settings: validity of chromatogram (107 counts/s),
unbiased retention index marker detection (MS similarity >
800, validity of intensity range for high m/z marker ions), re-
tention index calculation by 5th order polynomial regression.
Spectra were cut to 5% base peak abundance and matched to
database entries from most to least abundant spectra using the
following matching filters: retention index window ±2000
units (equivalent to about ±2 s retention time), validation of
unique ions and apex masses (unique ion must be included in
apexing masses and present at >3% of base peak abundance),
mass spectrum similarity must fit criteria dependent on peak
purity and signal/noise ratios and a final isomer filter. Failed
spectra were automatically entered as new database entries if
signal/noise ratios were larger than 25 and mass spectral pu-
rity better than 80%. Data was reported as peak height using
the unique quantification ion at the specific retention index,
unless a different quantification ion was manually set in the
BinBase administration software BinView.

Lipid Data Acquisition. Lipid abundances were determined
by charged-surface hybrid column-electrospray ionization
quadrupole time-of-flight tandem mass spectrometry (CSH-
ESI QTOF MS/MS). For positively charged lipids, an Agi-
lent 6530 QTOF mass spectrometer with resolution 10,000
was used and for negatively charged lipids, an Agilent
6550 QTOF mass spectrometer with resolution 20,000 was
used. Electrospray ionization was used to ionize col-
umn elutants in both positive and negative modes. Com-
pounds were separated using a Waters Acquity ultra-high-
pressure, liquid-chromatography charged surface hybrid col-
umn (UPLC CSH) C18 (100 mm length ˆ 2.1 mm internal
diameter; 1.7 um particles). The conditions in positive mode
were as follows: mobile phase A (60:40 acetonitrile:water
+ 10 mM ammonium formiate + 0.1% formic acid, mobile
phase B (90 : 10 isopropanol:acetonitrile + 10 mM ammo-
nium formiate + 0.1% formic acid). The conditions in neg-
ative mode were as follows: mobile phase A (60:40 ace-

tonitrile:water + 10 mM ammonium acetate), mobile phase
B (90:10 isopropanol:acetonitrile + 10 mM ammonium ac-
etate). 5 µL of each brain, liver and muscle sample was in-
jected in negative mode. 0.5 uL of each brain and liver, and
0.25 uL of muscle samples was injected in positive mode. In
both modes, the column temperature was 65°C, at a flow rate
of 0.6 mL/minute, an injection temperature of 4 °C, and a
gradient of 0 minutes 15%, 0–2 minutes 30%, 2–2.5 minutes
48%, 2.5–11 minutes 82%, 11–11.5 minutes 99%, 11.5–12
minutes 99%, 12–12.1 minutes 15%, and 12.1–15 minutes
15%. The ESI capillary voltage was set to + 3.5 and -3.5
kV, and the collision energy to 25 for positive and negative
modes. Mass–to–charge ratios (m/z) were scanned from 60
to 1200 Da and spectra acquired every 2 seconds. Automatic
valve switching was used after each injection to reduce sam-
ple carryover for highly lipophilic compounds.

A. Lipid Data Processing. Raw lipidomic data were pro-
cessed using MS-DIAL (65) followed by blank subtractions
in Microsoft Excel and data cleanup using MS-FLO (66).
Briefly, data were converted to files using Abf Converter.
All default parameters were used for processing of MS-DIAL
data, except for minimum peak height and width which were
adjusted to the instrument. Results are exported from MS-
DIAL and a blank reduction is performed for all features
which are found in at least one sample. Blank reduction
takes the maximum peak height relative to the blank average
height and the average of all non-zero peak heights for sam-
ples. Duplicates and isotopes are examined using MS-FLO
and deleted if confirmed. Peaks were annotated by manually
comparing the MS/MS spectra and the accurate masses of
precursor ions to spectra in the Fiehn laboratory LipidBlast
spectral library (67). Additional peaks are manually curated
from sample chromatograms. Manually curation was con-
firmed by using MassHunter Quant software to verify peak
candidates based on peak shape and height reproducibility,
and retention time reproducibility in replicate samples. The
data were reported as peak heights for the specific quantifica-
tion ion at the specific retention time.

Quantification and Statistical Analysis

B. Weight change and K-factor calculations. Percent
weight change for each fish was calculated using formula 1.
Mass and length measurements were recorded at the begin-
ning and end of feeding regimens.

∆Wtp%q “ pmfinal´minitialq{mfinalˆ100, (1)

where m is mass. K-factor is a metric that represents both
the mass and length of individuals and is frequently used in
aquaculture research to assess an animal’s physical condition
(68). K-factor for each fish was calculated at the beginning
of feeding regimens (app. 4 months) and on the day of dis-
section (30-days later) using the formula (c) below. Percent
K-factor change was calculated using formula (d).

K “ pm{x3qˆ100, (2)
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B Weight change and K-factor calculations

where x is the standard length.

∆Kp%q “ pKfinal´Kinitialq{Kfinalˆ100 (3)

Data in Supplemental Fig S2 and Table S1 were analyzed
and graphically represented using Prism software (GraphPad,
Prism version 8.3.0 for Mac, GraphPad Software, San Diego,
California USA). Data was first analyzed for normality using
four independent methods: D’Agostino-Pearson, Shapiro-
Wilk, Kolmogorov-Smirnov, Anderson-Darling. When com-
paring between more than two groups, data that passed
three of four normality tests were analyzed using One-way
ANOVA with Tukey correction for multiple comparisons be-
tween all groups. Data which failed more than one normality
test, was analyzed with Kruskal-Wallis test using Dunn’s for
multiple comparison correction. The tests used in each fig-
ure are reported in the figure legends. p-values less than 0.05
are reported and the level of significance is indicated using
the * system (ns, p ą 0.05; *, p ď 0.05; **, p ď 0.01; ***,
pď 0.001; ****, pď 0.0001).

Further Data Processing. Processed primary metabolite
data were vector normalized using mTIC. First, the sum
of all peak heights for all identified metabolites, excluding
the unknowns, for each sample was calculated. Such peak
sums are called “mTIC” and represent the sum of genuine
metabolites (identified compounds) in each sample. This
method avoids unidentified peaks that could represent poten-
tially non-biological artifacts such as column bleed, contam-
inants, or routine machine maintenance. mTIC averages for
each sample were compared to determine if the variance be-
tween samples was significantly different (p < 0.05). Samples
were then normalized to the average mTIC “mTICaverage”
within populations (Surface, Pachón, or Tinaja) and within
organs (brain, muscle, or liver). For example, each biological
replicate of the Tinaja brain group was normalized to the av-
erage mTIC of all Tinaja brain replicates regardless of feed-
ing state. The equation (a) below was then used to normalize
each metabolite (i) of a sample (j). After normalization, data
are reported as ‘relative semi-quantifications’ or normalized
peak heights.

yij (normalized)“ pxij,raw{mTICjqˆmTIC, (4)

where xij is the raw peak intensity for metabolite i in sample
j, mTICj is the average identified peak intensity in sample j,
mTIC is the global average identified peak intensity, and yij
is the mTIC-normalized intensity of metabolite i in sample j.

Metabolite Categorization. Metabolites were categorized
according to their respective subclass classification in the hu-
man metabolite database (25) (if the subclass was absent,
we instead used the superclass of the respective metabolite).
Metabolite classes with low membership were manually re-
assigned to arrive at five broad metabolite categories:

• Carbohydrates and central carbon metabolites
(CCM). Simple sugars such as glucose, fructose, and
various phosphates thereof, as well as core metabolites

in glycolysis, gluconeogenesis, the TCA cycle, and the
pentose phosphate pathway.

• Amino acids. All amino acids and intermediates in
amino acid biosynthesis and degradation.

• Fatty acids. All free fatty acids, intermediates, and
metabolites involved in lipogenesis and β-oxidation.

• Miscellaneous / secondary metabolites. Metabolites
that do not fall in any of the other categories.

• Nucleotides. All nucleotides, nucleosides, nucle-
obases, and byproducts / intermediates of nucleotide
metabolism.

Within each of metabolite category, we further normalized
log10 peak intensities using z–score normalization prior to
performing PCA, O–PLS (described below) or any super-
vised classification or statistical modeling.

O–PLS. In order to remove sources of variation not useful in
discriminating the feeding state of different samples, we used
O–PLS (27), a technique commonly used in spectroscopy to
correct for systematic variation (27). O–PLS is often applied
to raw spectra in order to eliminate the influence of back-
ground signals, but here we apply it instead to mTIC normal-
ized peak intensities. Our main use of O–PLS is to remove
biological noise that is uncorrelated with feeding state, such
as baseline differences or trends among different populations.
While z–score normalization already removes many of these
artifacts, we observed that O–PLS generally enhanced the
predictive accuracy of our PLS classifier. Given an input ma-
trix X of n samples and m spectral features (metabolite peak
intensities in our study), and a target matrix Y of classes or
measured values (here, the feeding state), the final output of
O–PLS (referred to here as X 1) is again an m by n matrix
consisting of X with the systematic variation orthogonal to
Y removed.

Characterization of Feeding State Responses. In order to
determine which tissues and metabolite categories are most
strongly implicated in (1) the starvation response within a
given population, (2) differences in metabolite levels between
different populations for a given feeding state, we used a sim-
ple 1–component PLS classifier trained on the output X 1 of
O–PLS.
The discriminant Q2 value is a metric of PLS model accuracy
and is given by

Q2 “ 1´
ř

k pyk´ ŷkq
2

ř

k pyk´ ŷkq
2

However, we use a truncated version DQ2 (69), where yk
is replaced by y1k “ maxpminpyk,1q,´1q and y1k is used in
place of yk. This metric does not penalize the PLS model for
correct predictions that overshoot the target class label.
Using this framework, we employed a two–step model com-
prised of a O–PLS model followed by a single–component
PLS model to discriminate refed versus long term-starved
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samples. We trained this combined model on z score-
normalized log-transformed data for primary metabolites
subdivided into categories. The output of the initial-stage
O–PLS model consists of the original data with a PLS com-
ponent representing ‘orthogonal’ noise removed. This de-
noised data was then used to train a one-component PLS
classifier on labels representing feeding state. This results
in a DQ2 value for the ability to discriminate refed versus
starved states. Finally, an iterative scheme was used to ran-
domly permute the label indices of the input data, resulting
in a distribution of DQ2 values. The significance level of the
original predictive DQ2 value was calculated using a two–
tailed survival function of a normal distribution fitted to the
DQ2 values.

Identification of Significant Metabolites. We employed
a logistic regression model to identify important features
(metabolites, lipids and classes thereof). We were specif-
ically interested in marginal p-values of each individual
metabolite, hence we constructed separate single-covariate
models for each metabolite or lipid. Models were further
based on different types of comparisons: (1) we compared
different feeding states within a given population and (2)
different populations within a given feeding state. Logis-
tic regression models (and GLMs in general) tend to suf-
fer from complete separation of observed covariates (70).
This renders maximum–likelihood estimates of the model
parameters impossible. We therefore used the bayesglm
function of the arm R package (71) to obtain estimates for
model coefficients, even in the case of complete separation.
The bayesglm requires specifying a prior distribution. We
found that the highly conservative default prior (correspond-
ing to a an assumption that the response to a change in input
should typically not exceed roughly ˘5 on the logistic scale,
or, equivalently, no typical change in input should cause a
shift in probability from 0.01 to 0.50, or 0.50 to 0.99(71))
was sufficient to identify important metabolic changes in our
comparisons. However, given the conservative nature of this
prior distribution, we did not perform FDR correction.
Fig S1 shows the procedure for training the GLM. We first
split the input dataset into two matrices: one containing pop-
ulations as category labels (bottom left), and one containing
feeding states as category labels (upper right). We then sub-
set each of these into the three possible pairwise comparisons
from each group, compute z-score-normalized values within
the comparison, filter the resulting matrix using O-PLS to re-
move orthogonal noise, and use the bayesglm function to
fit a model to the respective comparison for discriminating
either populations (within a given feeding state) or feeding
states (within a given population). In each case, the GLM
consists of a single covariant corresponding to metabolite /
lipid peak heights (for individual metabolites) or classes of
metabolites / lipids (for Table S4 and S3).

Differences between Feeding States and Shared Metabo-
lites. To identify metabolites that might play a role in cave
adaptation, we sought to fit logistic regression to an input
capturing the difference between refed and and starved sam-

ples and differences between cave and surface populations
simultaneous. We implemented this using the following for-
mula:

x“ pP `T q{2´S, (5)

where P , T , and S are z-score normalized mTIC peak inten-
sities for starved vs. refed samples. In general, these vectors
have length 12 (6 refed and 6 starved samples). A Bayesian
logistic regression model was then fitted to the x vector for
each metabolite as before, with each element of the response
vector labelled accordingly (starved or refed).

Additional Resources
The Shiny App for this study may be accessed at https:
//cavefin.shinyapps.io/shiny.
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Fig. S1. Schematic depiction of comparisons used for fitting GLM parameters. A Bayesian logistic regression model was used to
identify significant features (metabolites and categories) among different groups. To train the model, we first split the entire dataset
(upper-left matrix) into two components of pairwise comparisons: a matrix containing category labels for every pairwise comparison
of the three populations in our study (lower-left, for example the PvS comparison contains category labels for Pachón and surface
and excludes data from Tinaja), and a separate matrix containing category labels for every pairwise comparison of feeding conditions.
We then trained a Bayesian logistic regression model using the bayesglm R package using the appropriate category labels for each
comparison. Predictors were either O–PLS–filtered metabolite peaks or metabolite classes (e.g. fatty acids, nucleotides, etc.).
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Fig. S2. Percent change of weight and K-factor during fasting regimen.
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Fig. S3. Effect of normalization scheme on peak intensity distribution. In comparing the mass of the different tissue samples used
in this study (A), we observed that liver samples exhibited more variability than muscle or brain. In particular, some liver samples of
Pachón and surface fish had a mass of less than 2 mg. In order to adjust for this effect, we compared three different normalization
schemes: mTIC normalization (B), wherein each peak is normalized to the sum total of all identified peaks in a given sample (see
Methods), (C) sample weight-based normalization, where each peak is normalized according to the physical weight of its sample,
and (D) unnormalized peaks. By examining the change in median peak intensity for identified compounds in each method (E), we
found that mTIC normalization exhibits slightly better correction for low-weight (<2mg) median peak intensities compared to weight-
based normalization and both are superior to unnormalized data. We therefore employed mTIC normalization for the remainder of the
analysis.
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Fig. S4. Classifier performance shows which categories of primary metabolites are most salient in the starvation response.
This figure shows ´log10p values of an O–PLS / PLS classifier trained to discriminate 30-day fasted vs refed samples for different
tissues, populations, and categories. O–PLS is used to produce de–noised data, which was then fitted to a single–component PLS
model. The figure shows´log10p values for each classifier trained on different subsets of the data corresponding to different categories
of primary metabolites. Red indicates the most robust classifiers and blue indicates the least robust. P–values were obtained by
randomly permuting the feeding state indices for 2000 iterations and computing the two–tailed survival function of a normal distribution
fitted to the DQ2 values of the resulting permuted samples. P–values were adjusted for FDR using the BH method.
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Fig. S5. Relative composition for primary metabolites and lipid classes shows metabolome profile for different tissues, pop-
ulations, and feeding states. To determine overall composition of the metabolome for different experimental groups, category infor-
mation for primary metabolites was computed based on five main categories (Supplementary Methods). Lipid data consists of the five
most abundant lipid categories: ceramides, fatty acids and conjugates, glycerophosphocholines, and glycerophosphoethanolamines.
Some metabolites, such as palmitate, were detected in both primary and lipid data. The peak intensities for all detected metabolites in
these respective categories were summed across all replicates and across positive and negative modes to obtain total peak intensities
for each population / condition combination. Total peak intensities were then plotted as a fraction of total peak intensity for all identified
metabolites within a given experimental group.
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e

30d S30.1 0.47 0.35 2.8 2.9 2.14 1.44 -34.3 -49.2
30d S30.2 1.00 0.84 3.4 3.6 2.54 1.80 -19.0 -41.3
30d S30.3 0.89 0.48 3.4 3.4 2.26 1.22 -85.4 -85.4
30d S30.4 0.86 0.64 3.2 3.3 2.62 1.78 -34.4 -47.4
30d S30.5 0.83 0.66 3.3 3.3 2.31 1.84 -25.8 -25.8
30d S30.6 1.72 1.29 4.2 4.2 2.32 1.74 -33.3 -33.3

4d S4.1 0.43 0.43 2.7 2.8 2.18 1.96 0.0 -11.5
4d S4.2 1.01 0.88 3.4 3.9 2.57 1.48 -14.8 -73.2
4d S4.3 0.60 0.53 3.1 3.2 2.01 1.62 -13.2 -24.5
4d S4.4 0.86 0.8 3.3 3.7 2.39 1.58 -7.5 -51.5
4d S4.5 1.71 1.9 4.1 4.5 2.48 2.18 14.1 -13.6
4d S4.6 0.51 0.48 2.9 3.0 2.09 1.78 -6.3 -17.6

Ref SR.1 0.46 0.4 2.7 2.9 2.34 1.64 -15.0 -42.5
Ref SR.2 0.56 0.48 3.0 3.1 2.07 1.61 -16.7 -28.7
Ref SR.3 0.40 0.43 2.7 2.8 2.03 1.96 7.0 -3.7
Ref SR.4 0.75 0.62 3.1 3.2 2.52 1.89 -21.0 -33.1
Ref SR.5 0.77 0.75 3.3 3.5 2.14 1.75 -2.7 -22.5
Ref SR.6 0.86 0.97 3.3 3.6 2.39 2.08 11.3 -15.1

Pa
ch

ón

30d P30.1 1.03 0.96 3.7 3.7 2.03 1.90 -7.3 -7.3
30d P30.2 1.12 0.83 3.6 3.5 2.40 1.94 -34.9 -24.0
30d P30.3 1.17 0.99 3.6 3.5 2.51 2.31 -18.2 -8.6
30d P30.4 1.29 1.06 3.7 3.8 2.55 1.93 -21.7 -31.8
30d P30.5 1.02 0.81 3.5 3.5 2.38 1.89 -25.9 -25.9
30d P30.6 0.73 0.55 3.3 3.4 2.03 1.40 -32.7 -45.2

4d P4.1 0.82 0.81 3.3 3.5 2.28 1.89 -1.2 -20.8
4d P4.2 1.00 1.01 3.5 3.5 2.33 2.36 1.0 1.0
4d P4.3 1.34 1.53 3.8 4.1 2.44 2.22 12.4 -10.0
4d P4.4 0.32 0.37 2.6 2.8 1.82 1.69 13.5 -8.0
4d P4.5 1.05 1.16 3.7 3.7 2.07 2.29 9.5 9.5
4d P4.6 1.09 1.12 3.6 3.7 2.24 2.21 2.7 -1.4

Ref PR.1 1.06 0.93 3.7 3.9 2.09 1.57 -14.0 -33.5
Ref PR.2 0.97 1.00 3.6 3.7 2.08 1.97 3.0 -5.3
Ref PR.3 0.89 0.94 3.4 3.5 2.26 2.19 5.3 -3.3
Ref PR.4 0.75 0.74 3.1 3.4 2.52 1.88 -1.4 -33.7
Ref PR.5 1.18 1.23 3.7 3.7 2.33 2.43 4.1 4.1
Ref PR.6 0.66 0.67 3.0 3.3 2.44 1.86 1.5 -31.1

Ti
na

ja

30d T30.1 0.99 0.70 3.5 3.7 2.31 1.38 -41.4 -67.1
30d T30.2 1.37 1.12 3.9 4.0 2.31 1.75 -22.3 -32.0
30d T30.3 1.64 1.37 4.0 4.3 2.56 1.72 -19.7 -48.7
30d T30.4 1.08 0.93 3.7 3.7 2.13 1.84 -16.1 -16.1
30d T30.5 0.94 1.02 3.5 3.5 2.19 2.38 7.8 7.8
30d T30.6 0.72 0.75 3.5 3.5 1.68 1.75 4.0 4.0

4d T4.1 1.60 1.82 4.1 4.3 2.32 2.29 12.1 -1.4
4d T4.2 0.86 0.84 3.2 3.4 2.62 2.14 -2.4 -22.8
4d T4.3 0.96 0.78 3.4 3.6 2.44 1.67 -23.1 -46.1
4d T4.4 1.22 1.10 3.7 3.8 2.41 2.00 -10.9 -20.1
4d T4.5 1.56 1.68 4.1 4.3 2.26 2.11 7.1 -7.1
4d T4.6 1.15 1.01 3.6 3.7 2.46 1.99 -13.9 -23.6

Ref TR.1 1.23 1.36 3.7 3.9 2.43 2.29 9.6 -5.9
Ref TR.2 0.74 1.06 3.3 3.4 2.06 2.70 30.2 23.6
Ref TR.3 1.31 1.58 3.8 4.1 2.39 2.29 17.1 -4.1
Ref TR.4 0.66 0.83 3.2 3.3 2.01 2.31 20.5 12.8
Ref TR.5 0.98 1.08 3.6 3.6 2.10 2.31 9.3 9.3
Ref TR.6 1.48 1.48 4.0 4.2 2.31 2.00 0.0 -15.8

Table S1. Weight and K-factor measurements of all samples.
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B Weight change and K-factor calculations

Table S2. An Excel file containing the results of the O–PLS / GLM feature identification pipeline for primary metabolites divided into
categories. Columns represent different population and feeding condition combinations.

Pachon vs. Surface Tinaja vs. Surface Pachon vs. Tinaja
Brain Muscle Liver Brain Muscle Liver Brain Muscle Liver

4 30 R 4 30 R 4 30 R 4 30 R 4 30 R 4 30 R 4 30 R 4 30 R 4 30 R
Fatty Acyls ´ ´ ´ `

Glycerolipids ` ` ` ` `

Glycerophospholipids ´ ´ ´ ´ ´ ´

Sphingolipids ` ` ` ` ` ` ´ ´ ´ ` ` `

Sterol Lipids ´ ´ ´ ´

Table S3. Interpopulation Differences in Abundance of Lipid Categories Peak intensities for all lipids in a given category (determined from
the LipidMaps “CATEGORY” attribute) were summed to yield a total intensity for each category which is either significantly (at the pă 0.05 level)
up– (`) or down–regulated (´) in a given cave population with respect to surface (Pachón versus surface and Tinaja versus surface, top row)
or the Pachón cave population with respect to the Tinaja cave population (last comparison, top row). The sample set for each tissue / feeding
state combination consists of six individuals from each population as shown in Fig 1. P–values were obtained from the OPLS / GLM approach
described in Methods. Coloring (�) indicates a class that agrees in significance and directionality between both cave populations and is thus
may be related to cave adaptation. Columns corresponding to muscle are highlighted to help distinguish the different tissues. Compare Table
S4 based on the “MAIN_CLASS” attribute.

Pachon vs. Surface Tinaja vs. Surface Pachon vs. Tinaja
Brain Muscle Liver Brain Muscle Liver Brain Muscle Liver

4 30 R 4 30 R 4 30 R 4 30 R 4 30 R 4 30 R 4 30 R 4 30 R 4 30 R
Ceramides ` ` ` ` ` ` ` ` ´ ´ ´ ´ ` ` `

Diradyl-glycerols `

Docosanoids ´ ` ´ ` ` `

Fatty Acids ´ ´ ´ `

Fatty esters ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ` ´

Glycerophospho-cholines ´ ´ ´ ´ ´

Glycerophospho-ethanolamines ´ ´ ´ ´ ´ ´ ` ´ ´

Glycerophospho-glycerols ´ ´ ´ ´ ´ ` ` ` `

Glycerophospho-glycerophospho-glycerols ´ ´

Glycerophospho-inositols ´ ´ ´ ` ´ ´ ´ ` ` ` ´ ´ ´

Glycerophospho-serines ´ ´ ´

Glycosyldiradyl-glycerols ` `

Monoradylglycerols ` ` ` ´ ` ` ` ´

Neutral glycosphingolipids ` ` ´ ` ´

Oxidized glycerophospho-lipids ´ ´ ∅ ∅ ∅ ´ ∅ ∅ ∅ ∅ ∅ ∅
Phosphosphingo-lipids ´ ´

Sphingoid bases ´ ` ` ` ` ` ` ` ´

Sterols ´ ´ ´ ´

Triradylglycerols ` ` ` `

Table S4. Interpopulation Differences in Abundance of Lipid Classes Significant increased (`) or decreased (´) lipid classes based on
summed peak intensities for every lipid species belonging to a given LipidMaps “MAIN_CLASS” label. ∅ denotes classes which were not
detected in a given sample set. LipidMaps also possesses a “CATEGORY” attribute that provides a more coarse–grained classification of lipid
species, which is used as a basis for a similar analysis shown in Table S3.

Pachon vs. Surface Tinaja vs. Surface Pachon vs. Tinaja
Brain Muscle Liver Brain Muscle Liver Brain Muscle Liver

4 30 R 4 30 R 4 30 R 4 30 R 4 30 R 4 30 R 4 30 R 4 30 R 4 30 R
Monounsat. FAs ` ` `

Polyunsat. FAs ´ ´ ´ `

Saturated FAs ` ` ` ` `

Table S5. Intra–population Differences in Fatty Acid Saturation For lipids corresponding to free fatty acids, sauturation was calculated
based on the presence of double bonds in LipidMaps structural data and used to classify each LMID as either saturated, monounsaturated, or
polyunsaturated. Significance values were again calculated using an OPLS / Bayesian GLM workflow. Coloring and markings as before.

Medley et al. | Cavefish Metabolomics bioRχiv | 21

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 31, 2020. ; https://doi.org/10.1101/2020.10.27.358077doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.27.358077
http://creativecommons.org/licenses/by-nd/4.0/


Pachon vs. Surface Tinaja vs. Surface Pachon vs. Tinaja
Brain Muscle Liver Brain Muscle Liver Brain Muscle Liver

4 30 R 4 30 R 4 30 R 4 30 R 4 30 R 4 30 R 4 30 R 4 30 R 4 30 R
13,16-docosadienoic acid ´ ´

20:5 Cholesterol ester ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´

22:1 Cholesterol ester ´

22:6 Cholesterol ester ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ `

9,12-Hexadecadienylcarnitine ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ` `

Acylcarnitine C18:0 ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ` ` ´

Arachidonic acid ` ´ ´ ` `

Behenic acid `

Bishomo-alpha-linolenic acid ´ ´ ´ ´ ´ ´ ´ ´ `

C17 Sphingosine ´ ` ` ` ` ` ` ` ` ` ´

Capric acid ´ ´ ´ ´ ´

Cholesterol ´ ´ ´ ´ ´ ´ ´ ´ ´ ` ` `

DHA ´ ´ ´ `

DPA ´ ` ´ ´ ` ` `

Dihomolinoleic acid ´ ´ ´ ´ ´ ´ `

EPA ´ ´ ´ ´ `

Lauric acid ´ ´ ´ ´ ´

Mangold’s acid ´ ´ ´ `

Myristic acid ´ ´

Nervonic acid ´ ´ `

Oleic acid ` ` ` ` ` ` `

Palmitic acid ` ` ` ´ ` ` ` ` ` ´

Palmitoylcarnitine ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ` `

Pentadecylic acid ´ ´ ´ ´ ´ `

Physeteric acid ´ ´ ´ ´ ´ `

Stearidonic acid ´ ´ ´ ´ ´ `

alpha-Linolenic acid ´ ´ ´ ` ´ ´ ´ ´ ´ ´ ` `

bishomo-gamma-linolenic acid ´ ´ ` ´ ´ ´ ´ ´ ` `

cis-9-palmitoleic acid ` `

cis-erucic acid ´ ´ ´ ´ ´ ´ ´ `

cis-gondoic acid ´ ´ ´ ´ ´ ` `

tetracosapentaenoic acid ` ` ` ` ` `

Table S6. Common lipids Lipids with common names were selected from the set of 447 identified lipids and analyzed using the O–PLS / GLM
scheme. Many lipids exhibit a strongly conserved pattern between Pachón and Tinaja, and these are highlighted in blue. Of note, omega–3
fatty acids appear to exhibit lower abundance in the 4-day fasted state in liver. Some metabolites, such as palmitate and oleic acid, overlap
with primary metabolomics data.
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B Weight change and K-factor calculations

Category Brain log2 fc Muscle log2 fc Liver log2 fc

Amino
acids

N-acetylputrescine -0.53 N-
carbamoylaspartate

2.93

threonine 0.55
proline 1.66
isoleucine 0.52
alanine -1.01
2-ketoadipic acid -1.50

Carbo-
hydrates /
CCM

galactinol -2.67 myo-inositol 1.09 malic acid 1.54
ribose -0.51 ribose-5-phosphate -1.21 fumaric acid 1.49

digalacturonic acid -1.06 myo-inositol 1.63
ribulose-5-phosphate -1.42 lyxitol -1.95
glyceraldehyde-3-
phosphate

-0.60 1,5-anhydroglucitol -3.27

glyceric acid -3.07
xylitol -1.85
lactic acid -4.11

Fatty acids behenic acid -0.25 oleamide 0.52
lignoceric acid -0.02 glutaric acid 0.34

Misc.
phosphoethanolamine 0.72 2-hydroxyglutaric

acid
-1.87 isothreonic acid 0.54

isothreonic acid -0.74 ciliatine 1.68
phosphate -1.43 xanthurenic acid 2.72

Nucleotides

guanosine -1.02 orotic acid 3.13
UDP-N-
acetylglucosamine

-0.54 adenine 0.91

uracil 0.63
hypoxanthine -0.99
nicotinamide -0.86

Table S7. Adaptive Response in 30-day Fasting. Differentially significant metabolites in 30-day fasted states which are similar
in both cave populations. This table shows p–values associated with a logistic regression model using OPLS–filtered z–scores for
30-day tasted and refed fish as input. To identify metabolites conserved between both cave populations, we implemented the test
0.5 ¨ pPS´PR`TS´TRq´pSS´SRq where PS refers to Pachón 30-day fasted, PR refers to Pachón refed, etc. Tables S8 and S9
show conserved metabolites in cave populations versus surface for 4-day fasted versus refed and 30-day fasted versus 4-day fasted
respectively. log2 fc values are also based on this formula. Outliers were excluded for this analysis (Fig ??).
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Category Brain log2 fc Muscle log2 fc Liver log2 fc

Amino
acids

N-acetylaspartic acid -0.23 shikimic acid -0.75 tryptophan 0.69
glutamic acid -0.73 proline 1.01

N-
carbamoylaspartate

3.03

Carbo-
hydrates /
CCM

sucrose 1.49 ribose-5-phosphate -2.01
glucoheptulose -1.50
threonic acid -0.50
maltose -1.15
maltotriose -1.40

Fatty acids 2-hydroxybutanoic
acid

-2.35 oleic acid -1.63

Misc.

2-aminobutyric acid -0.54 phosphoethanolamine -1.08 isothreonic acid 0.45
4-hydroxybenzoate -0.55
2-hydroxyglutaric
acid

-2.67

maleimide -0.56
ciliatine -0.81

Nucleotides

UDP-N-
acetylglucosamine

-0.82 orotic acid 3.08

cytosine -0.69 inosine -0.34
uridine -1.12
guanosine -1.39
uracil -1.15

Table S8. Adaptive Response in 4-day Fasting. Differentially significant metabolites in 4-day fasted states which are similar in both
cave populations. Cf. Table S7 with the difference that this table compares 4-day fasted versus refed conditions. Thus, metabolites
displayed as upregulated in this table are differentially upregulated in 4-day fasted cave fish versus refed cave fish using surface fish as
a baseline for comparison. Outliers are not included in this analysis.

Category Brain log2 fc Muscle log2 fc Liver log2 fc

Amino
acids

oxoproline 0.79
glutamic acid 1.45
threonine 0.67
alanine -1.13

Carbo-
hydrates /
CCM

maltotriose 3.13 myo-inositol 1.26 myo-inositol 1.08
threonic acid 0.50 digalacturonic acid -1.49 glucose 0.40
sophorose -1.36 raffinose -1.89
isomaltose -1.83 maltotriose -1.07

xylitol -1.50
1-kestose -1.82

Fatty acids stearic acid -0.25 palmitic acid -0.24 stearic acid -0.05
palmitic acid 0.06

Misc.
phosphate -2.71 2-aminobutyric acid 1.54
glycolic acid -0.99 ciliatine 1.37
pyrophosphate -1.28 xanthurenic acid 1.65

Nucleotides adenosine 1.87 xanthine 0.76
inosine 0.92

Table S9. Adaptive Response in 30- vs 4-day Fasting. Differentially significant metabolites in 30-day vs 4-day fasting which are similar
between both cave populations. Cf. Table S7 with the differences that this table compares 30-day fasted versus 4-day fasted conditions.
Thus, metabolites displayed as upregulated in this table are differentially upregulated in 30-day fasted cave fish versus 4-day fasted
cave fish using surface fish as a baseline for comparison. Outliers are not included in this analysis.

24 | bioRχiv Medley et al. | Cavefish Metabolomics

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 31, 2020. ; https://doi.org/10.1101/2020.10.27.358077doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.27.358077
http://creativecommons.org/licenses/by-nd/4.0/

	Lipid Data Processing
	Weight change and K-factor calculations

