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Abstract
Insights from extreme-adapted organisms, which have evolved
natural strategies for promoting survivability under severe envi-
ronmental pressures, may help guide future research into novel
approaches for enhancing human longevity. The cave-adapted
Mexican tetra, Astyanax mexicanus, has attracted interest as
a model system for metabolic resilience, a term we use to de-
note the property of maintaining robust health and longevity
under conditions that would have highly deleterious effects in
other organisms (Fig 1). Cave-dwelling populations of Mexi-
can tetra exhibit elevated blood glucose and possess a muta-
tion in the insulin receptor that in humans has been linked to
Rabson-Mendenhall syndrome, a condition characterized by se-
vere insulin resistance that causes numerous developmental ab-
normalities, is highly associated with debilitating progression,
and drastically reduces lifespan. In addition, cavefish develop
large numbers of hypertrophic visceral adipocytes and possess
vastly enriched stores of body fat compared to surface-dwelling
counterparts. However, cavefish appear to avoid the progression
of the respective pathologies typically associated with these con-
ditions, such as accumulation of advanced glycation end prod-
ucts (AGEs), chronic tissue inflammation, impaired growth due
to insulin dysregulation, and low survivability due to arterial
disease. The metabolic strategies underlying the resilience prop-
erties of A. mexicanus cavefish, and how they relate to environ-
mental challenges of the cave environment, are poorly under-
stood. Here, we provide an untargeted metabolomics study of
long- and short-term fasting in two A. mexicanus cave popula-
tions and one surface population. We find that, although cave-

fish share many similarities with metabolic syndrome normally
associated with the human state of obesity, important differ-
ences emerge, including a reduction in cholesteryl esters and
intermediates of protein glycation, and an increase in antiox-
idants and metabolites associated with hypoxia and longevity.
We find important overlaps between metabolic alterations in
cave-dwelling Mexican tetra and other models of resilience and
extreme longevity, such as naked mole-rats, including enhanced
reliance on sugars as an energy source and a trend toward more
potent antioxidant activity. This work suggests that certain
metabolic features associated with human pathologies are not
intrinsically harmful, but are rather consequences of subopti-
mal adaptation of humans to survival under adverse metabolic
conditions, and suggests promising avenues for future investiga-
tion into the role of metabolic strategies in evolutionary adap-
tation and health. We provide a transparent pipeline for repro-
ducing our analysis and a Shiny app for other researchers to
explore and visualize our dataset.
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Fig. 1. Metabolic resilience — survivability under a variety of extreme condi-
tions. Certain populations of cavefish have adaptations that cause increased appetite
(1) and increased fat accumulation (2) (in cases where nutrients are plentiful, such
as in lab-raised populations). These same populations also exhibit robust health and
longevity (2, 3) and do not suffer ill-effects due to high levels of visceral fat and hyper-
glycemia, both of which are features of most cave populations. However, visceral fat
accumulation in cave populations is highly dependent on nutrient availability and is not
displayed in wild-caught specimens (4). Thus, cavefish paradoxically appear to toler-
ate both extremely low and extremely high levels of triglycerides, glucose, and other
energy storage metabolites. We argue that these differences can be reconciled un-
der a hypothesis whereby the cave environment selects not for resistance to nutrient
deprivation per se, but rather resilience to a variety of nutrient availability states (such
as seasonal floods). Survival under such challenging conditions ostensibly favors the
ability to tolerate extreme metabolic states, including not only starvation but also high
levels of potentially deleterious metabolites such as triglycerides and reactive oxygen
species (ROS). We find evidence for elevated antioxidant levels and altered cholesterol
/ cholesteryl ester homeostasis in cavefish, suggesting that cavefish may use these
mechanisms to offset potentially harmful metabolites and tolerate a broad range of
metabolic conditions.
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Introduction
Metabolism plays a central role in many cellular processes,
and its dysregulation is a hallmark of many disease states, in-
cluding cancer, obesity, and diabetes. Recent work (5) has
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Fig. 2. Experimental setup (A) and PCA for each tissue and metabolite category. Pachón, Tinaja, and surface A. mexicanus fry were raised for 4 months and then separated
evenly into fasted (30–day) and non–fasted groups. At 4 days prior to collection, non–fasted fish were again divided into two groups (6 fish each) and either fasted for the
remaining 4 days (first group) or fasted for 4 days and refed 3 hours prior to collection (second group). Thus, 6 fish were obtained for each of the following conditions: 30–day
fasting, 4–day fasting, and 4–day fasting followed by re–feeding.

shown that certain health effects, particularly cardiovascu-
lar disease, can be predicted from metabolic signatures prior
to clinical manifestations. This suggests that metabolic dys-
regulation has causal influence over the disease state of an
organism, and conversely disease may be preventable via
metabolic intervention (6).

An evolutionary system with particularly extreme changes
in metabolic regulation is the Mexican tetra, Astyanax mexi-
canus, which has undergone considerable physiological and
behavioral changes to colonize a number of subterranean
caves in the Sierra de El Abra region of Mexico. Cavefish
have evolved a suite of metabolic phenotypes to cope with the
cave environment, including lower metabolic rate, increased

appetite, fat storage, and starvation resistance (1, 2, 7). Cave-
fish are also insulin resistant, hyperglycemic, and exhibit in-
creased caloric intake (3), a feature often associated with de-
creased longevity. A notable genomic feature in Pachón and
Tinaja cavefish is a mutation in the insulin receptor (3) that,
in humans, is linked to Rabson-Mendenhall (RM) syndrome,
a form of severe insulin resistance that causes many develop-
mental abnormalities and typically progresses to ketoacidosis
(8). Nevertheless, cavefish do not appear to suffer any of the
adverse effects of RM, lack advanced glycation end products
(AGEs) (3) normally associated with hyperglycemia, and live
long, healthy lives without ill-effects of metabolic disease
(3). A. mexicanus may provide natural solutions to overcome
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Fig. 3. Global trends in lipid and primary metabolite data. To visualize overall patterns in the metabolome of different experimental groups, we performed principal
component analysis (PCA) first on all lipids and primary metabolites (A,B), then on individual categories thereof (C,D). Specifically, PCA of mTIC–normalized log–peak
intensities of combined lipid and primary metabolite data (filtered by peaks matching either a KEGG compound or a valid LIPIDMAPS id): (A) Samples were colored
according to tissue (blue, purple, green) and population (shading of the primary color). (B) Shading by feeding state instead. (C) First (X-axis) and second (Y-axis) PCA
components of primary metabolite data subset by five main categories (see Methods) for brain, muscle, and liver of all three populations. (D) PCA of lipid data subset by
LIPIDMAPS categorical designation for brain, muscle, and liver of all three populations. (E) Legend for C and D.

the challenges associated with metabolic diseases, like dia-
betes (9).
From an evolutionary standpoint, survival in the cave en-
vironment requires more than starvation resistance, and we
use the term metabolic resilience to describe the property of
cavefish to withstand a variety of metabolic stresses, includ-
ing starvation at times and at other times the accumulation of

potentially harmful energy metabolites such as triglycerides,
glucose, and various derivatives thereof. We hypothesize that
survival in the cave environment thus requires multiple, coun-
terbalancing evolutionary changes and that the combined ef-
fect of these changes is to make cavefish resilient to a variety
of metabolic conditions, of which starvation and triglyceride
/ sugar accumulation are discrete examples.
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Fig. 4. Common signatures of primary metabolites and lipids in cave populations. In order to determine the degree of agreement between differentially abundant
metabolites in Pachón and Tinaja cave populations, we fit an O-PLS / Bayesian GLM statistical model to filtered peak intensity data. The number of metabolites (primary
metabolites and lipids respectively) significant at the p “ 0.05 level are shown. Metabolites in the intersection of two or more sets are constrained to agree on a directional
basis (i.e. the differential abundance of a given metabolite in both cave populations must be either greater or lesser than surface, not a mixture).

We thus sought to characterize the metabolic signature of re-
silience by examining the metabolome of Pachón and Tinaja
cavefish (two independently-evolved cave populations) com-
pared to surface-dwelling populations using untargeted mass
spectrometry (MS) of primary metabolites and lipids. We
characterized the response of energetically important tis-
sues (the liver, muscle, and brain) of each population in
short/long-term fasted, and fed conditions. We demonstrate
that metabolite profiles in Pachón and Tinaja cavefish are
more similar to each other than surface fish in each feed-
ing state / tissue combination, highlighting the role of par-
allel evolution in shaping the metabolome of cavefish. We
identify metabolic signatures and metabolites exhibiting the
most pronounced regulatory changes within each tissue, pop-
ulation, and feeding state. We constructed inter-population
and inter-feeding state comparisons and fit separate statisti-
cal models to each case (Fig S1). Cavefish exhibit many sim-
ilarities with human models of obesity and metabolic syn-
drome, but also differ from these conditions in terms of an-
tioxidants, metabolites associated with cellular respiration /
the electron transport chain, and unexpectedly reduced lev-
els of cholesteryl esters. Moreover, we observe a significant
degree of overlap in metabolic strategies, including increased
abundance of antioxidants (10) and reliance on sugars as an
energy source (11), between cavefish and the long-lived ro-
dent the naked mole-rat (Heterocephalus glaber), suggesting
that metabolic resilience in cavefish does indeed include cer-
tain features that appear to be consistently associated with
robust health and longevity across taxa.
Our results lay the groundwork to explore the mechanistic
roles of metabolites and pathways in the adaptation of cave-

fish and suggest that natural evolutionary systems may of-
fer insights into metabolic function by showing how disease
states can be altered or counterbalanced under a genetic back-
ground more suited to a different set of parameters governing
states like obesity and starvation resistance.
We also provide a shiny app at https://cavefin.
shinyapps.io/shiny to allow others to explore and vi-
sualize our dataset.

Results
Our experimental design aimed to a) characterize the re-
sponse of the A. mexicanus metabolome to different feed-
ing states in energetically expensive tissues and b) utilize
comparisons across populations and feeding states to identify
metabolites conserved in cavefish populations. Food scarcity
is one of the cave’s harshest evolutionary pressures. Cave-
fish have specialized feeding strategies and fat metabolism
that helps them thrive in the cave environment (1, 2, 7, 12).
We raised age-matched offspring of Surface (river) fish, and
Pachón and Tinaja cavefish morphs originating from two in-
dependent cave colonizations. To understand how the cave-
fish metabolome adapts to ecologically relevant food chal-
lenges, we separated Surface, Pachón and Tinaja populations
into three different groups at 4-months: 30-day fasted, 4-day
fasted, and “Refed” (fed at 3 hours prior to collection after 4-
days without food) (Fig 2). We chose 4-months so that tissue
collection would take place prior to sexual maturity (which
occurs at 6–9 months). We made all efforts to equalize the
mass and standard length (SL) distributions of fish in each
group prior to separation (Fig S2, Table S1, Initial mass and
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Initial SL).
Our untargeted metabolomics study yielded a total of 174
identified metabolites linked to KEGG (13) / HMDB (14)
IDS and 483 identified lipids linked to LIPIDMAPS IDS. We
examined the effect of normalizing identified peak values by
the total sum of peaks (mTIC) and by sample weight (Fig S3)
and found that mTIC is more robust to variations in sample
weight. Hence, we employed mTIC-normalized data for the
remainder of the analysis.
Figure 3A/B shows that metabolites cluster primarily by tis-
sue, in line with previous studies in mammals (15). Figure
3C/D shows how clustering patterns depend strongly on the
chemical classification of identified metabolites. Some lipid
and primary metabolite categories show a clear separation be-
tween different populations (e.g. carbohydrates, Fig 3C, and
glycerophospholipids, Fig 3D, across most tissues), whereas
other categories have a less pronounced change (amino acids
in the brain, Fig 3C, and fatty acyls in most tissues). In or-
der to quantify separation of feeding states as a function of
population and metabolite category, we used a supervised
machine learning method based on orthogonal projection of
latent structures (O–PLS, Fig S4). We then used O–PLS to
remove “orthogonal” variation (16) from each metabolite cat-
egory and fit a Bayesian logistic regression model to the de–
noised data (Supplemental Methods).

Common Metabolite Signatures and Adaptive Re-
sponse In general, the metabolome of all three populations
shows a large degree of similarity within a given tissue (Fig
S5), highlighting the influence of genetic ancestry, even in
subpopulations that show markedly different phenotypes.
To quantify the degree to which the metabolomic signature of
Pachón and Tinaja cave populations is conserved, we com-
puted the directional intersection of metabolites either in-
creased or decreased (but not a mixture of both) in Pachón
and Tinaja with respect to surface according to the GLM (Fig
4). In other words, metabolites in the yellow wedge represent
the intersection of metabolites that have significant differen-
tial abundance in Pachón (red circle) and Tinaja (gold circle)
and are increased in both Pachón and Tinaja or decreased in
both Pachón and Tinaja.
A large convergent signal was displayed between Pachón and
Tinaja cave populations, with the differences between cave
populations typically being fewer than the differences be-
tween each respective cave population and surface. Muscle
displayed the highest degree of common primary metabolites,
and both muscle and brain display a large overlap of differ-
entially abundant lipids. Given that Pachón and Tinaja rep-
resent independent cave populations, adaptive shaping of the
metabolome thus appears to have the strongest effect in mus-
cle, the site of energy expenditure during locomotion, and the
brain, where lipids may play an important role in signaling.
Thus, adaptation appears to play at least a partial role in shap-
ing the metabolome of cave-dwelling A. mexicanus. Adapta-
tion is particularly highlighted in certain classes of metabo-
lites, which display extreme changes in both cave popula-
tions, as described in the following subsections.

Sugar Phosphate Metabolism Given the overall similar-
ity at the tissue level for most classes of metabolites (Fig
S5), phenotypic differences are likely to be linked to a rela-
tively small subset of the metabolome. We sought to identify
metabolites that could be responsible for the drastic change in
phenotype of cave populations. Sugars and sugar phosphates
are important energy metabolites and hence candidates for
adaptations related to resistance to nutrient deprivation. This
class of metabolites displays a dramatic change during short-
and long-term fasting, particularly in the liver (Fig 5). Hep-
atic glucose production is derived from gluconeogenesis and
glycogenolysis, the latter relying on stored glycogen, which
is quickly exhausted during fasting (17), indicating that hep-
atic gluconeogenesis likely plays a role in sustaining sur-
vival under long-term nutrient deprivation in A. mexicanus.
Surprisingly, surface fish also show stable (albeit generally
lower) sugar levels in the liver under different feeding states
(Fig 5), indicating that sugar production in the liver may be
driven by overall demand rather than supply. This may point
to a shift from oxidative to sugar-based metabolism as an en-
ergy source in energetically expensive tissues. Cavefish pos-
sess a larger amount of body fat (1, 2), and hence have a larger
pool of glycerol to serve as a substrate for gluconeogenesis.
We find that both cave populations exhibit decreased levels
of glycerol in the 30-day fasted state, particularly in Tinaja
(Table S2), indicating increased consumption of this inter-
mediate as a substrate for gluconeogenesis may be the source
of increased sugar / sugar phosphate abundance in cave pop-
ulations.

Regardless of the substrates leading to sugar metabolite ac-
cumulation, it is clear that a large difference exists between
cave and surface populations within this class of metabolites.
However, the specifics of this alteration to sugar metabolism
appear to be population-specific, with Tinaja showing a large
increase in sugar phosphates and Pachón showing an increase
in unphosphorylated sugars respectively in short/long-term
fasted states in comparison to surface (Fig 5).

Other tissues show a mixed response, with muscle display-
ing increased levels of most sugar phosphates in Pachón but
decreased levels of fructose-1-phosphate in both cave popu-
lations with respect to surface. The brain displays low levels
of sugar / sugar phosphate metabolites overall but possesses
increased sugar metabolite abundance in cave populations for
certain metabolites and feeding states (Table S2). In particu-
lar, fructose and fructose phosphates tend to be upregulated in
the brain, suggesting that reliance on glycolytic metabolites
may be a strategy used by cavefish to survive in low nutrient
or hypoxic environments, an adaptation that is also present in
naked mole-rats (11).

While the levels of most simple sugars and sugar phosphates
are increased in cavefish with respect to surface, the levels
of gluconic acid and glucoronic acid show the opposite pat-
tern (Fig 5). Gluconic acid and glucoronic acid belong to
uronic acids, a class of sugar acids that are major building
blocks of proteoglycans. It has previously been observed that
A. mexicanus cave morphs lack advanced glycation end prod-
ucts (3), which are a defining feature of diabetes and are nor-
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Fig. 5. Extreme alterations to sugar metabolites in cave vs. surface populations. To show differences in cavefish sugar metabolism, we selected 5- and 6-carbon sugars,
sugar phosphates, and uronic acids (oxidized forms of sugars that form building blocks of proteoglycans). The row axis shows metabolites within each of these classes, and
the column axis shows different populations (short range, labels at bottom), feeding states (medium-range, labels at top) and tissues (long-range, labels at topmost point).
Color indicates the mTIC-normalized peak intensity for the average of 6 biological replicates. Red indicates the maximum value for a given row (i.e. across all populations,
tissues, and feeding states), whereas navy blue (the bottom of the color bar) corresponds to a peak intensity of zero, not to the minimum value. Thus, dark cells correspond
to very little / zero intensity, as opposed to simply corresponding to the minimum intensity within the row. Given that mTIC intensities are “semi–quantitative”, red values thus
correspond to the most abundant group for a given metabolite, and navy blue corresponds to lack of abundance.

mally associated with chronic hyperglycemia in humans. Al-
tered metabolism of sugar acids in cavefish may play a role in
inhibiting excessive protein glycation and the adverse health
effects thereof.

Ascorbate A highly unexpected and unexplained feature of
our analysis is the abundance of vitamin C, particularly in
its oxidized form dehydroascorbic acid (DHAA), across all
tissues in cave populations (Fig 6). Ascorbic acid (AA), the
reduced, active form, is also more prevalent in muscle tissue.
DHAA can be recycled back to AA using reducing cofactors
such as NADH and NADPH, which can in turn be regen-
erated from the pentose phosphate pathway and TCA cycle
using simple sugars (which cavefish possess in great abun-
dance). For this reason, vitamin C content in food labeling
is usually reported as the sum of AA and DHAA (20). Thus,
cavefish possess a larger total ‘pool’ of vitamin C (including
interconvertible oxidized and reduced forms, Fig 6).
Many cavefish populations exhibit increased appetite and
carry an allele of the melanocortin 4 receptor that predisposes
them to hyperphagia (1). The increased appetite could cause
cavefish to consume more overall food, which could be re-
sponsible for the AA/DHAA increase in the refed state. How-
ever, this does not pertain to the 30-day fasted state, where
AA/DHAA levels are also elevated across all tissues. There
is widespread consensus that teleosts, like humans, lack the
ability to produce AA endogenously due to the absence of
gulonolactone oxidase, which catalyzes the final step in AA

biosynthesis (21). In humans, this enzyme is a pseudogene,
whereas in teleosts the gene is absent entirely, thought to be
lost in the distant evolutionary past. Thus, the additional
AA/DHAA supply likely comes from selective reuptake in
the kidney, a process that also occurs in humans to conserve
AA/DHAA, or it may be produced by commensal microbiota
in cavefish. Trace amounts of AA/DHAA in the feed used in
the aquatics facility used to house the fish in this experiment
may recirculate throughout the water filtration system and be
redistributed to all tanks, including those housing fish in the
fasted groups. Nevertheless, it remains that even in the case
of circulating trace amounts of AA/DHAA, cavefish appear
to exhibit selective retainment of AA/DHAA in larger quan-
tities.
The advantages of AA conservation in adaptation to an en-
vironment where prolonged starvation is common are self-
evident. AA is involved in collagen formation, and its de-
ficiency leads major loss of integrity of connective tissue.
Thus, the ability to retain what little ascorbate is present in
underground cave environments would confer an enormous
survival advantage to fish.
Another factor that could influence the AA/DHAA ratio is the
effect of insulin resistance and hyperglycemia on the GLUT
family of transporters, particularly GLUT4 in adipose / mus-
cle tissue (20, 22). DHAA competes with glucose for trans-
port across the membrane by GLUT4, whereas AA is taken
up by Na` transporters. GLUT4 activity is dependent on
membrane translocation and this process is dysregulated in
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bars indicate 2.5 / 97.5 percentiles). Asterisks indicate significance at the 0.05 level according to an O-PLS / Bayesian logistic regression (Methods) for Pachón vs surface
(˚), Tinaja vs surface (˚), and Pachón vs Tinaja (˚). (A) Ascorbate (vitamin C) is a potent antioxidant and essential nutrient. Vitamin C exists as the reduced form ascorbic
acid (AA) and oxidized form dehydroascorbic acid (DHAA), which can interconverted by cellular processes. (B) Glutathione, another antioxidant, is significantly increased in
the liver and brain under 30-day fasting. Alpha-ketoglutarate is a tricarboxylic acid cycle (TCA) intermediate that has been linked to longevity in nematodes and mice (18, 19).
(C) Nicotinamide is a precursor to NAD` synthesis via a salvage pathway, and increased in the liver but decreased in other tissues in cavefish. Orotic acid is a metabolite
that causes fatty liver disease in rats when added to a chow diet.

diabetes (23). This combination of elevated blood sugar and
insulin resistance suggests that GLUT4 could be less active
in cavefish and cause DHAA to accumulate in the extracel-
lular space. AA/DHAA have also been reported to influ-
ence C-reactive protein levels (24) and protein glycation (25),
prompting further investigation into A. mexicanus as a model
of diabetes-related adaptations. Finally, Pachón cavefish pos-
sess a reduction in neutrophils, one cell type which are nor-
mally involved in the uptake of AA and reduction to DHAA,
compared to surface (26).

Adaptation to Hypoxic Conditions Energy metabolism in
most organisms can be viewed as a balance between oxida-
tive processes (cellular respiration via oxidative phosphoryla-
tion and the electron transport chain) and sugar metabolism,
and the relative contributions of these two processes can
have important physiological consequences, as in the well-
known Warburg effect in cancer. A. mexicanus cave morphs
have considerably upregulated sugar metabolism (Fig 5), and
also display decreased levels of several products of oxidative
metabolism. One important metabolite in this category that

displays differences in cave populations is α-ketoglutarate
(α-KG), which has increased abundance in the liver in all
feeding states and in the brain in certain feeding states in both
cave populations. α-KG supplementation has been linked to
lifespan extension in C. elegans (18) and mice (19). Further-
more, uronic acids, the oxidative products of simple sugars,
are significantly reduced in the liver of both cave populations
(Fig 5, Table S2), suggesting that troglomorphs are charac-
terized by decreased reliance on oxidative metabolism and
increased reliance on sugar metabolism. This would enable
cavefish to survive in a hypoxic subterranean environment,
similar to naked mole-rats (11).

Obesity and Inflammation-Related Metabolites In hu-
mans, chronic inflammation of adipose tissue is a common
feature of obesity and can often lead to insulin resistance and
eventually type 2 diabetes (27). Cave populations of A. mex-
icanus have been previously reported to exhibit pronounced
insulin resistance (3), but do not accumulate advanced gly-
cation end products and do not appear to have diminished
longevity.
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Fig. 7. Parallel evolution in cavefish exhibits profound alteration of cholesterol / cholesteryl ester metabolism. Cavefish possess a significant reduction in certain
long-chain fatty acid cholesteryl esters (A-C) and cholesterol itself (D), particular in peripheral tissues (muscle). Values on the y–axis are mTIC-normalized peak intensities
for each lipid species. Asterisks indicate significance at the 0.05 level according to an O-PLS / Bayesian logistic regression (Methods) for Pachón vs surface (˚), Tinaja vs
surface (˚), and Pachón vs Tinaja (˚).

In order to compare the metabolome of A. mexicanus cave
populations to the known metabolic signatures of obesity
(5), we calculated changes in lipid categories (the coarsest
abstraction used in LipidMaps; Table S3), classes (a more
detailed partitioning scheme used in LipidMaps; Table S4),
and, within free fatty acids specifically, the degree of sat-
uration (Table S5). Additionally, we also examined a sub-
set of the lipid data corresponding to individual lipid species
with common names (Table S6). The metabolome displays
a remarkable overlap with the proinflammatory signature as-
sociated with obesity that, in humans, leads to insulin resis-
tance. This signature consists of (1) the elevation of saturated
fatty acids (SFAs) in muscle in most feeding states (Table
S5), which have a direct and pronounced proinflammatory
effect in mammals through the recruitment of macrophages
(28) (although the importance of fatty acid release in insulin
resistance is disputed (29, 30)), (2) abundance of ceramides
in muscle in all feeding states (Table S4), which are known
direct mediators of insulin signaling (28). Indeed, the only
feeding state for which skeletal muscle did not display in-
creased SFA abundance was 30-day fasting, which could sim-

ply indicate the exhaustion of free SFA pools. Additionally,
palmitate, a precursor of ceramide biosynthesis (28), is ele-
vated in muscle in all feeding states (Table S6). Sphingoid
bases are significantly more abundant in muscle in all feed-
ing states (Table S3), suggesting generally upregulated sph-
ingolipid biosynthesis in cave populations.

In contrast to proinflammatory metabolites, omega–3 fatty
acids (ω-3 FAs) such as DHA and EPA have protective effects
against inflammation (27, 28, 31). These molecules bind to
the GRP120 receptor on macrophages and adipocytes, and
the activated receptor then modulates the activity of PPARγ
and ERK (27, 31). ω-3 FAs are less abundant in the liver
under 4–day fasting (Table S6) and are generally not upreg-
ulated in most feeding states and tissues (Table S6). Thus,
ω-3 FAs do not appear to offset for the proinflammatory sig-
nature of cavefish SFA and ceramide signatures, suggesting
that cavefish possess an alternate compensatory mechanism
to prevent chronic tissue inflammation. Overall, cavefish ap-
pear to exhibit many metabolic similarities with obesity and
health conditions associated with it.

However, this is not a universal trend. Cirulli et al. report a
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Fig. 8. Adult Pachón cavefish possess lower HDL than surface fish. (A) A colorimetric assay (see Methods) was used to measure lipoprotein levels in Pachón and surface
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strong association between urate levels and BMI, likely due
to insulin resistance interfering with uric acid secretion in the
kidney (5). In contrast, cavefish appear to have significantly
reduced levels of uric acid in muscle, and in other tissues
levels are comparable with surface (except for a small but
significant increase in Pachón liver during fasted states, Ta-
ble S2). Uric acid is increased in humans during prolonged
fasting (32), but this trend again does not hold for cavefish,
particularly Tinaja. Mannose, which is associated with obe-
sity and insulin resistance in humans (5), was abundant in the
Pachón liver in all feeding states, but was reduced in Tinaja
compared to surface fish.

Finally, cholesteryl esters (Table S6), and cholesterol in some
feeding states (Table S2), were less abundant in cave popula-
tions. Using a previously published gene expression dataset
(33), we investigated factors that might influence levels of
cholesteryl esters. Cholesteryl ester transfer protein (CETP),
which transports cholesterol in / out of lipoproteins, is down-
regulated in both Pachón and Tinaja compared to surface fish
(Fig S6), suggesting a potential causal relationship between
lower cholesteryl ester levels in cave populations and this
important carrier protein. A human variant of CETP asso-
ciated with decreased serum levels of the protein and larger
low-density lipoprotein (LDL) and high-density lipoprotein
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(HDL) particle sizes has been linked to exceptional longevity
(34). The LDL / HDL cholesterol ratio, mediated in part by
CETP (35), is a major contributor to risk of atherosclerosis
and coronary heart disease (36). The reliance on triglycerides
as an energy source in cavefish may increase the risk of ar-
terial disease by providing an abundance of free fatty acids
and other lipids. Cholesteryl esters, in particular, are formed
from esterification of a fatty acid and cholesterol, are a major
constituent of foam cells in atherosclerotic lesions (37, 38),
and, for certain lipid species, show a large difference in abun-
dance between cavefish and surface (Fig 7). Inhibition of
CETP has been shown to reduce cardiovascular risk, ostensi-
bly by altering the partitioning of cholesteryl esters between
LDL and HDL (39). Indeed, lipid homeostasis in zebrafish
exhibits strong similarities with human (40), and zebrafish
express CETP whereas other model organisms such as mice
do not. This raises the question of whether CETP and its
cholesteryl ester substrates may be a locus of positive selec-
tion in cavefish to offset the risks associated with increased
visceral fat.
Large differences in CETP expression suggest that lipid
homeostasis may be regulated differently between cave and
surface populations. Lipoproteins, in the form of HDL, IDL,
LDL, VLDL and chylomicrons contribute to and regulate
lipid homeostasis. In order to investigate whether lipopro-
teins display any significant differences between cave and
surface populations, we measured HDL and LDL/VLDL lev-
els between aged Pachón and surface individuals using a
colorimetric assay (Fig 8A). LDL/VLDL levels were highly
variable in Pachón, but HDL levels showed a consistent dif-
ference (Fig 8A). Surprisingly, Pachón cavefish possess an
LDL/HDL ratio similar to human (although slightly lower),
whereas surface possess higher HDL and lower LDL/VLDL.
In humans, HDL is widely believed to play a protective role
in atherosclerosis. However, antioxidants may also influence
the risk of atherosclerosis by inhibiting the production of ox-
idized LDL (41, 42). Our discovery of elevated antioxidant
levels in cavefish may offset the decreased HDL abundance
in this population, and may allow cavefish to tolerate lower
plasma HDL levels.
Given alterations in lipid metabolism, we asked whether ei-
ther cave or surface populations also exhibit signs of in-
creased arterial disease risk as indicated by the presence of
arterial lesions. In a separate experiment, we imaged caudal
vein sections using Van Gieson staining (c.f. (43)) in order to
investigate whether cavefish show signs of arterial lesions at
an early life stage. We did not observe arterial lesions in any
of our cave or surface samples (Table S10), in stark contrast
to zebrafish fed a high cholesterol diet, in which fatty streaks
can be readily observed (43).
In summary, lipid metabolism in A. mexicanus represents a
hub of evolutionary activity which clearly separates surface
and cave populations. Cavefish must balance increased de-
mands on energy storage with counter-adaptations to protect
against pro-inflammatory and atherogenic metabolites. We
observe elevated levels of most energy metabolites, with the
notable exception of cholesterol and cholesteryl esters, and

cavefish have a larger (V)LDL/HDL ratio as compared to
surface fish. LDL and VLDL have higher triglyceride con-
tent as compared to HDL (44) and VLDL is a substrate for
lipoprotein lipase (45), which liberates free fatty acids from
triglycerides. LDL/VLDL may thus be important for energy
metabolism in cavefish, and hence selective pressure may
contribute to the higher (V)LDL/HDL ratio in this popula-
tion.

Resistance to Nutrient Deprivation In order to determine
the basis of cavefish adaptation to low-nutrient environments,
we sought a statistical test that would be sensitive to metabo-
lites that change significantly between refed and short/long-
term fasted states and insensitive to metabolites that remain
relatively stable across feeding states. We further hypothe-
sized that certain metabolites may have an important role in
cave adaptation. Pachón and Tinaja represent independently
evolved populations, and we reasoned that a test for parallel
adaptation should be selective for metabolites that show the
same differential feeding state response pattern across cave
populations (e.g. differentially increased in both Pachón and
Tinaja fasted states relative to surface). In order to construct
this test, we fitted a Bayesian GLM (46) to a linear combi-
nation pP `T q{2´S of O-PLS-filtered z-score values (see
Methods), where P stands for Pachón, T stands for Tinaja,
and S stands for surface. We used this test to identify metabo-
lites that might have a role in the fasting response of cavefish,
i.e. metabolites that are differentially abundant in cave popu-
lations in the fasted versus refed state (Pachón and Tinaja are
assigned equal weight), and generally show the opposite pat-
tern in surface. Figure 9 shows the results of this test for
30-day fasting vs. refeeding (A, which corresponds to the
most extreme experimental groups), and the two other pos-
sible comparisons between feeding states (B/C).
Using this adaptive criterion, we examined which energy
metabolites seem to be specifically correlated with differ-
ent fasting states (Tables S7, S8, and S9 show the results of
different fasting state comparisons). Sugar metabolites do
not appear to exhibit a strong differential feeding state re-
sponse. However, long-chain fatty acids such as palmitate
and stearate (Fig 9C) do show differential abundance between
long- and short-term fasting, suggesting that cavefish may
rely on increased usage of fat stores in long-term fasting. Fur-
thermore, analysis of the 30-day fasting response in cavefish
liver highlights orotic acid (OA, Fig 9A), an intermediate in
pyrimidine synthesis that has been implicated in fatty liver
condition (47). OA is suppressed in all feeding states in cave
populations, but exhibits a sharp spike in refed surface fish
(Fig 6).
Steatosis, or non-alcoholic fatty liver condition, can be
caused by reduced FA oxidation / secretion, or increased FA
update or lipogenesis (48), with the majority of fat accumu-
lation in the liver coming from uptake of non-esterified fatty
acids in humans (49). Lipidomics data indicate that free fatty
acid content in the 30-day fasted state is lower for both cave
populations with respect to surface (Table S3). The higher
body fat of cave populations may be due to increased fatty
acid synthesis in the liver under conditions of nutrient avail-

10 | bioRχiv Medley et al. | Cavefish Metabolomics

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 9, 2021. ; https://doi.org/10.1101/2020.10.27.358077doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.27.358077
http://creativecommons.org/licenses/by-nd/4.0/


A
phosphoethanolamine*

ascorbic acid

pyrophosphate

myo-inositol

glucose

isomaltose

xylulose

benzoic acid

ribose*

galactinol*

Brain
myo-inositol*

phosphate*

guanosine*

ribulose-5-phosphate*

lignoceric acid*

isothreonic acid*

behenic acid*

digalacturonic acid*

2-hydroxyglutaric acid*

ribose-5-phosphate*

Muscle
malic acid*

orotic acid*

fumaric acid*

N-carbamoylaspartate*

isothreonic acid*

ciliatine*

threonine*

oleamide*

myo-inositol*

alanine*

Liver
30d Fasted vs Refed

B
sucrose*

phenylethylamine

benzoic acid

2-hydroxybutanoic acid*

N-acetylaspartic acid*

maltotriose*

2-aminobutyric acid*

maltose*

threonic acid*

glucoheptulose*

Brain
ciliatine*

maleimide*

2-hydroxyglutaric acid*

shikimic acid*

guanosine*

uridine*

4-hydroxybenzoate*

cytosine*

phosphoethanolamine*

UDP-N-acetylglucosamine*

Muscle
isothreonic acid*

orotic acid*

tryptophan*

proline*

N-carbamoylaspartate*

pinitol

uridine

2-aminobutyric acid

inosine*

oleic acid*

Liver
4d Fasted vs Refed

C

maltotriose*

threonic acid*

adenosine*

valine

lactic acid

sulfuric acid

threitol

isomaltose*

stearic acid*

sophorose*

Brain
myo-inositol*

xanthine*

inosine*

adenosine

behenic acid

palmitic acid*

pyrophosphate*

digalacturonic acid*

glycolic acid*

phosphate*

Muscle
2-aminobutyric acid*

ciliatine*

stearic acid*

palmitic acid*

oxoproline*

myo-inositol*

xylitol*

maltotriose*

raffinose*

alanine*

Liver
30d Fasted vs 4d Fasted D

p = 0.02

p = 1

p = 0.02

Up in 
cave+fasted

Down in 
cave+fasted

Fig. 9. Parallel adaptive metabolic signature in response to food deprivation in cave populations. To identify metabolites linked to adaptations promoting survival in a
nutrient-limited environment shared between cave populations, we fit an O–PLS / GLM statistical model to the response to fasting, i.e. the difference between 30-day fasting
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ability. Increased lipid accumulation from this process could
render cave populations vulnerable to steatosis / fatty liver
condition. Given the role of OA in fatty liver condition, OA
suppression may therefore have a potential role in preventing
excessive lipid accumulation in the liver of cave populations.

Starvation has detrimental effects on an organism in many
ways. One detrimental effect is the depletion of antioxidant
substances and the resulting oxidative stress through increas-
ing levels of reactive oxygen species (ROS) (50). Studies that
focus on the impact of food deprivation on oxidative stress in
fish show that prolonged starvation decreases the capacity of
fish to ameliorate oxidative stress (50). Glutathione is a ma-
jor antioxidant that detoxifies ROS and thereby prevents cel-
lular damage from oxidative stress (51). Cavefish face pro-
longed periods of nutrient deprivation in their natural envi-
ronment (1). Adaptation to the cave environment may have
led to changes in glutathione metabolism in cavefish to pro-
tect against oxidative stress under prolonged fasting. Indeed,
in an earlier study we were able to demonstrate that cavefish
show an increased expression of genes that are involved in
the metabolism of glutathione, which is indicative of an in-
creased stress level compared to surface fish in their natural
habitat (4).Here, we can confirm that these trends in gene ex-

pression are accompanied by elevation of reduced glutathione
in the liver and brain (Fig 6, Table S2). We did not observe
a significant increase of glutathione in the surface fish in the
fasted states (Fig 6, Table S2).

Guided by these observations, we further attempted to
characterize the role of altered antioxidant and cholesterol
metabolism in cavefish. In particular, we hypothesized that
cavefish resilience to widely varying nutrient levels is driven
by a robust antioxidant system that prevents the accumulation
of ROS under conditions of stress (e.g. induced by fasting).

To test this hypothesis, we examined ROS state in the liver
under a subset of our original fasting experiment using simi-
larly aged fish. ROS accumulation has been shown to cause
lethal levels of cell damage in flies, but such damage can
be prevented via oral administration of antioxidants or over-
expression of antioxidant-producing enzymes (52). This
caused us to ask whether naturally elevated antioxidant levels
in cavefish might protect against starvation-induced ROS ac-
cumulation. We reasoned that the most extreme changes are
observed between 30-fasted and 4-day fasted + refed groups,
and that given the similarity in Pachón and Tinaja antioxidant
profiles, one cave population would be sufficient for valida-
tion. We thus repeated the fasting experiment using only 30-
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day fasted and 4-day fasted + refed groups, and using only
Pachón and surface populations.
Using dihydroethidium (DHE) staining, we examined differ-
ent populations and feeding states for ROS level. While liver
sections of fasted / refed fish did not show differences in cy-
toplasmic / nuclear localization of DHE (Fig S7B-E), a quan-
titative analysis showed that, under 30-day fasting, juvenile
Pachón cavefish exhibit lower levels of ROS in cytoplasm as
compared to surface under the same conditions (Fig S7A),
supporting the hypothesis that elevated antioxidants in cave-
fish may have a protective effect by neutralizing active ROS
and may have arisen as an adaptation allowing cavefish to tol-
erate ROS produced by long periods of nutrient deprivation.
We did not observe significant differences in DHE nuclear
intensity for either the cytoplasm or the nucleus, suggesting
that 30 days of fasting may not be sufficient to produce salient
differences in the nucleus for juvenile fish. The known re-
silience properties of antioxidants may also help explain the
metabolic resilience of cavefish by providing a buffer against
different forms of stress.
Cavefish thus exhibit decreased ROS abundance in the liver
in 30-day fasted conditions, which correlates with the trend
we observed in glutathione. Antioxidant levels in cavefish
may have evolved as a strategy to allow cavefish to tolerate
variation in nutrient availability, as a means of controlling
inflammation caused by deleterious energy metabolites, as a
way of inhibiting atherogenesis, or several of these effects.

Discussion
A. mexicanus has been advanced as a model of resilience
under ostensibly pathological conditions including hyper-
glycemia, diabetes (9), and insulin resistance (3). Here, we
have provided a large, untargeted study of the metabolome of
A. mexicanus surface fish and two cave populations in order
to investigate the molecular underpinnings of these adapta-
tions.
We were particularly interested in the role of metabolism in
cave adaptation of the two A. mexicanus cavefish populations
in this study: Pachón and Tinaja. We found evidence of cave-
mediated positive selection in the form of overlap of changes
in metabolite levels (particularly lipids) in certain tissues un-
der all feeding conditions (Fig 4). This suggests that paral-
lel adaptation to cave environments requires satisfying cer-
tain common metabolic needs that are an inherent part of
the niche. The obvious candidate for this evolutionary con-
flux is adaptation to a low-nutrient environment. However,
metabolic strategies for survival in such environments are not
currently well-understood. We found that drastic alterations
in energy metabolism, together with shifts in mediators of re-
dox metabolism and ascorbate, an essential vitamin which is
lacking in the cave environment, constitute a major feature of
cave adaptation in these populations.
Cavefish appear to have substantially altered sugar
metabolism, and exhibit higher levels of sugars and sugar
phosphates. However, the opposite trend occurs for uronic
acids, which are the oxidized forms of simple reducing sug-
ars and can be formed enzymatically or non-enzymatically.

This incongruency can be resolved by noting the overall
trend to decreased reliance on oxidative metabolism (and
enzymes that catalyze oxidative processes) and increased
reliance on sugar metabolism. This trend stems from sugars
and sugar phosphates, antioxidants such as ascorbate and
glutathione, and α-KG (which has been shown to inhibit the
electron transport chain in C. elegans). Due to drastic fluctu-
ation in oxygen level in the subterranean niche, cavefish may
rely on a shift from oxidative to predominantly sugar-derived
energy metabolism, as compared to their surface-dwelling
cousins. Reduction in uronic acids, which are derived from
sugars using oxidative processes, can thus be seen as part of
this trend. However, the specific reduction of uronic acids
in particular may have an additional survival benefit for
cavefish by inhibiting protein glycation and thus preventing
accumulation of advanced glycation end products. Further
investigation is required to fully understand the evolutionary
and physiological implications of these metabolic changes.

The altered sugar metabolism of cavefish may be indicative
of a shift from oxidative to sugar-based energy metabolism,
similar to certain metabolic adaptations in naked mole-rats
(11). Further work is required to establish the extent of hy-
poxic conditions in A. mexicanus evolution. However, we
also find that certain redox-related metabolites, including α-
KG, glutathione, and ascorbate, all exhibit distinctive abun-
dance patterns in cavefish. These patterns may be in response
to hypoxia, poor nutrient conditions, differences in metabolic
rate, or some other aspect of the cave niche.

Our data indicate that upregulation of glucose and long-
chain fatty acid production is a common feature shared by
Pachón and Tinaja cave populations, suggesting that cer-
tain cave habitats do require considerable changes in energy
metabolism. Pachón and Tinaja likely have a greater reliance
on fat stores for locomotion, as evidenced by increased SFA
content in muscle in fasting and refeeding. The decrease of
ω-3 FAs during fasting (Table S6) coupled with the increase
of palmitate (Table S9) in long- vs short-term fasting sug-
gests that cavefish metabolism may be preferentially biased
towards storing caloric intake as energy-rich saturated fatty
acids. Whether cavefish possess adaptations to counteract the
deleterious effects of high body fat, such as suppression of
orotic acid (a metabolite implicated in steatosis in the liver),
requires further investigation.

In summary, A. mexicanus troglomorphic populations share
many metabolic similarities with human obesity and diabetes
mellitus, but also display important differences which may
help to explain their resistance to diabetes-like pathologies.
We found considerable overlap between the human metabolic
signature of obesity and cavefish metabolism. However,
we also found important differences in ascorbate, which is
known to serve diverse physiological roles, nicotinamide,
which is a precursor toNAD` synthesis and hence is related
to oxidative metabolism, α-ketoglutarate, which has been im-
plicated in longevity in C. elegans (18). We have shown via
ROS staining that Pachòn cavefish do possess lower levels
of superoxide radicals in the liver after 30 days of fasting.
This confirms that increased antioxide levels in cavefish do
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indeed correlate with physiological state, and suggests that
selection in cave environments favors resistance to oxidative
stress. Whether selective pressure is driven chiefly by star-
vation resistance, or whether it is a mechanism to offset ox-
idized LDL and other harmful metabolites is an open ques-
tion.
A. mexicanus cave populations clearly exhibit altered lipopro-
tein composition and expression of CETP, an important com-
ponent of lipid homeostasis. Together with increased abun-
dance of antioxidants, this may contribute to the ability of
cavefish to withstand high triglyceride levels.
Finally, in order to make our data and methods maximally
available to other researchers, we have implemented a trans-
parent pipeline that can be used to regenerate all main figures
and tables presented here. We have also used the structured
data library ObjTables (53) to provide machine-readable,
semantically-accurate representations of the results presented
here.
This study provides for the first time (to our knowledge) a
large, untargeted metabolomics and lipidomics study of A.
mexicanus surface and cave morphs. However, there are lim-
itations to our approach. Our analysis was based on juve-
nile, pre-sexually mature fish. We chose this developmental
time point under the hypothesis that evolutionary changes in
metabolism would tend to act early to respond to the selective
pressure of the cave environment and positive juvenile fish
for robust starvation resistance. However, an age of 5 months
does not necessarily coincide with seasonally-correlated food
shortages, and hence manifestations of starvation adaptations
may not occur until a later developmental stage. We also did
not examine a fasting duration of greater than 1 month, de-
spite the potential for longer periods of nutrient deprivation
in cave environments.

Conclusion
Our goals for this study were (1) to provide a comprehen-
sive untargeted study of primary metabolites and lipids in
A. mexicanus, an extreme-adapted organism with important
connections to human health, (2) examine the molecular ba-
sis for low-nutrient adaptation in cave-dwelling subpopula-
tions, and (3) identify metabolic changes that might explain
A. mexicanus longevity in the face of a phenotype with prop-
erties linked to obesity and diabetes.
Our findings show that the adaptation to a low nutrient en-
vironment in A. mexicanus is linked to extreme changes in
sugar and fat metabolism, and that increased reliance on
these energy sources in the liver insulates other tissues from
catabolism under long-term fasting.
All in all, our results highlight the role of A. mexicanus as
an evolutionary example of extreme metabolism and a model
of human obesity, and suggest important roles for certain
metabolites in fish and other species.
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Materials and Methods

Experimental Model and Subject Details
Surface morphs of Astyanax mexicanus were reared from off-
spring of Mexican surface fish collected in the Río Choy.
Pachón and Tinaja morphs were reared from fish originat-
ing from the Pachón and Tinaja caves. A total of 18 fish
from each population were used in experiments. Sex was
not determined due to difficulties in determining sex in juve-
nile A. mexicanus fish. This study was approved by the In-
stitutional Animal Care and Use Committee (IACUC) of the
Stowers Institute for Medical Research under protocol 2019-
084. Animals were euthanized according to an IACUC–
approved euthanasia protocols based on American Veterinary
Medical Association (AVMA) guidelines using Tricaine me-
sylate. The method currently in use has been updated to re-
flect 2020 AVMA guidelines and uses 30 minutes of oper-
cular movement cessation unless a secondary method is em-
ployed.

Method Details
Fish husbandry All Astyanax are housed in glass fish tanks
on recirculating aquaculture racks (Pentair, Apopka, FL) with
a 14:10 LD photoperiod. Each rack system is equipped with
mechanical, chemical and biological filtration and UV disin-
fection. Water quality parameters are monitored and main-
tained daily as described in previous studies (2, 26). Fish
were fed once per day with mysis shrimp and twice per
day with Gemma diet. Gemma feed is Protein 59%; Lipids
14%; Fiber 0.2%; Ash 14%; Phosphorus 1.3%; Calcium
1.5%; Sodium 0.7%; Vitamin A 23000 IU/kg; Vitamin D3
2800 IU/kg; Vitamin C 1000 mg/kg; Vitamin E 400 mg/kg.
Health examinations of all fish were conducted by aquatics
staff twice daily. Astyanax colonies are screened biannually
for ectoparasites and endoparasites and no pathogens were
present at the time of this study. Fish treatment and care was
approved by the Institutional Animal Care and Use Commit-
tee (IACUC) of the Stowers Institute for Medical Research.
NR’s institutional authorization for use of Astyanax mexi-
canus in research is 2019-084.

Feeding regimen and tissue collection Age-matched off-
spring of Surface, Pachón, and Tinaja populations were
reared in similar densities at 23°C in 14:10LD cycles as de-
scribed previously. Fish were the result of a group mating
event within populations. Fish were housed only with mem-
bers of their population for their entire lives. At 4-months
(Tinaja), 4 months and 1 day (Pachón), 4 months and 2 days
(Surface), fish of each population were separated into two
tanks. 12 fish were separated and starved for 30-days un-
til tissue collection. The 12 fish were maintained on regu-
lar feeding schedules until 4-days prior to tissue collection
when food was withheld from each population’s regular feed-
ing tank. The mass (g) and length (cm) of each fish was
recorded at separation. All efforts were made to equalize
mass and length distributions in each cohort. On the evening
before tissue collection, 6 fish from the 4-day starved tank

were separated and placed into three, 3L-tanks. Tanks were
divided down the middle such that all 6 fish (2 in each tank)
were housed individually. Singly housed fish were refed for
3-hours with 10mg of Gemma 500 on the morning of the
dissection day for each population. Dissection occurred at
5 months (October 5th, 2019; Tinaja), 5 months and 1 day
(October 6th, 2019; Pachón), 5 months and 2 days (Octo-
ber 7th, 2019; Surface). Fish were re-fed in intervals be-
tween 8:30am-12:00pm. At each 3-hour time point, a re-fed
fish, a 4-day starved fish, and a 30-day starved fish was eu-
thanized in MS-222. To reduce variability between popula-
tions dissected on subsequent days, all dissections took place
between 11:30-3pm and were handled identically. Prior to
dissection, the final mass and length were recorded for each
fish. The liver, muscle, and brain were dissected and placed
in 1.5mL plastic tubes. Tissues were flash frozen on liquid
nitrogen, transferred to dry ice and stored at -80C. Samples
were shipped to West Coast Metabolomics Center on dry ice
overnight for analysis.

Sample Preparation Samples were prepared using the
Matyash protocol (54). This procedure allows efficient
extraction of lipids in a non-polar methyl tert-butyl ether
(MTBE) layer, and extraction of primary metabolites in the
polar water/methanol layer (55, 56). From each sample, 4.1
mg of frozen liver or brain tissue (+/- 0.3 mg) or 10.1 mg of
muscle tissues (+/- 0.3mg) was weighed and placed into 1.5
mL Eppendorf tubes. Samples were ground prior to extrac-
tion using beads with a Spex Sample Prep GenoGrinder with
stainless steel 2–3 mm beads for 30 s. 975 µL of ice cold,
3:10 (v/v) MeOH/MTBE + QC mix/CE (22:1) extraction sol-
vent was added to each homogenized sample. Samples were
vortexed for 10 sec and shaken for 5 min at 4°C. 188uL room
temperature LC/MS water was added and samples vortexed
for 20 sec, then centrifuged for 2 min at 14,000 rcf. The up-
per organic phase was transferred to two separate tubes (350
µL each) for lipidomics (CSH) analysis. The bottom aque-
ous phase was transferred to two additional tubes (110 µL
each) for primary metabolism (GC-TOF) analysis. One tube
from each phase was reserved as a backup, the other tube was
dried down completely using centrivap. Both were kept at -
20°C until ready for analysis. As an additional step prior to
GC-TOF analysis, samples were resuspended in 500 µL of
degassed, ´20°C mixture of acetonitrile (ACN): isopropanol
(IPA): water (H2O) (3:3:2, v/v/v). Samples were vortexed
for 10 sec and then centrifuged at 14,000 rcf for 2 min. 450
µL of supernatant was transferred to a new tube and concen-
trated to complete dryness using a Labconco Centruvap cold
concentrator.

Primary Metabolite Data Acquisition Metabolite abun-
dances were quantified by gas-chromatography, time-of-
flight mass spectrometry (GC-TOF/MS) using previously es-
tablished methods (57). Briefly, an Agilent 6890 gas chro-
matograph (Santa Clara, CA) equipped with a Gerstel au-
tomatic linear exchange systems (ALEX) which included a
multipurpose sample dual rail and a Gerstel cold injection
system (CIS) was used with a Leco Pagasus IV time-of-flight

Medley et al. | Cavefish Metabolomics bioRχiv | 15

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 9, 2021. ; https://doi.org/10.1101/2020.10.27.358077doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.27.358077
http://creativecommons.org/licenses/by-nd/4.0/


mass spectrometer running Leco ChromaTOF software. The
injection temperature was ramped from 50°C to a final tem-
perature of 275°C at a rate of 12°C/s and held for 3 minutes.
Injection volume was 0.5 µl with 10 µl/s injection speed on a
splitless injector with a purge time of 25 seconds. The liner
(Gerstel # 011711-010-00) was changed automatically every
10 samples to reduce sample carryover. The injection sy-
ringe was washed three times with 10 µL ethyl acetate before
and after each injection. For gas chromatography, a Rtx-5Sil
MS column (30 m long, 0.25 mm i.d.) with 0.25 µm 95%
dimethyl 5% diphenyl polysiloxane film was used (Restek,
Bellefonte PA). The GC column was equipped with an addi-
tional 10 m integrated guard column. 99.9999% pure Helium
with a built-in purifier was set at a flow rate of 1mL/minute.
The oven temperature was held constant at 50°C for 1minute,
ramped at 20°C/minute to 330°C, and then held constant for
5 minutes. The transfer line temperature between gas chro-
matograph and mass spectrometer was set to 280°C. The
mass spectra were acquired at a rate of 17 spectra/second,
with a scan mass range of 80–500 Da at an ionization energy
of -70 eV, 1800 V detector voltage, and 250°C ion source.

Primary Metabolite Data Processing Raw GC-TOF MS
data files were preprocessed using ChromaTOF version 4.0
without smoothing, a 3 s peak width, baseline subtraction just
above the noise level, and automatic mass spectral deconvo-
lution and peak detection at signal/noise (s/n) levels of 5:1
throughout the chromatogram. Results were exported with
absolute spectra intensities and further processed by a fil-
tering algorithm implemented in the metabolomics BinBase
database (58). The BinBase algorithm (rtx5) used the fol-
lowing settings: validity of chromatogram (107 counts/s),
unbiased retention index marker detection (MS similarity >
800, validity of intensity range for high m/z marker ions), re-
tention index calculation by 5th order polynomial regression.
Spectra were cut to 5% base peak abundance and matched to
database entries from most to least abundant spectra using the
following matching filters: retention index window ˘2000
units (equivalent to about ˘2 s retention time), validation of
unique ions and apex masses (unique ion must be included in
apexing masses and present at >3% of base peak abundance),
mass spectrum similarity must fit criteria dependent on peak
purity and signal/noise ratios and a final isomer filter. Failed
spectra were automatically entered as new database entries if
signal/noise ratios were larger than 25 and mass spectral pu-
rity better than 80%. Data was reported as peak height using
the unique quantification ion at the specific retention index,
unless a different quantification ion was manually set in the
BinBase administration software BinView.

Lipid Data Acquisition Lipid abundances were determined
by charged-surface hybrid column-electrospray ionization
quadrupole time-of-flight tandem mass spectrometry (CSH-
ESI QTOF MS/MS). For positively charged lipids, an Agi-
lent 6530 QTOF mass spectrometer with resolution 10,000
was used and for negatively charged lipids, an Agilent
6550 QTOF mass spectrometer with resolution 20,000 was
used. Electrospray ionization was used to ionize col-

umn elutants in both positive and negative modes. Com-
pounds were separated using a Waters Acquity ultra-high-
pressure, liquid-chromatography charged surface hybrid col-
umn (UPLC CSH) C18 (100 mm length ˆ 2.1 mm internal
diameter; 1.7 um particles). The conditions in positive mode
were as follows: mobile phase A (60:40 acetonitrile:water
+ 10 mM ammonium formiate + 0.1% formic acid, mobile
phase B (90 : 10 isopropanol:acetonitrile + 10 mM ammo-
nium formiate + 0.1% formic acid). The conditions in neg-
ative mode were as follows: mobile phase A (60:40 ace-
tonitrile:water + 10 mM ammonium acetate), mobile phase
B (90:10 isopropanol:acetonitrile + 10 mM ammonium ac-
etate). 5 µL of each brain, liver and muscle sample was in-
jected in negative mode. 0.5 uL of each brain and liver, and
0.25 uL of muscle samples was injected in positive mode. In
both modes, the column temperature was 65°C, at a flow rate
of 0.6 mL/minute, an injection temperature of 4 °C, and a
gradient of 0 minutes 15%, 0–2 minutes 30%, 2–2.5 minutes
48%, 2.5–11 minutes 82%, 11–11.5 minutes 99%, 11.5–12
minutes 99%, 12–12.1 minutes 15%, and 12.1–15 minutes
15%. The ESI capillary voltage was set to + 3.5 and -3.5
kV, and the collision energy to 25 for positive and negative
modes. Mass–to–charge ratios (m/z) were scanned from 60
to 1200 Da and spectra acquired every 2 seconds. Automatic
valve switching was used after each injection to reduce sam-
ple carryover for highly lipophilic compounds.

A Lipid Data Processing Raw lipidomic data were pro-
cessed using MS-DIAL (59) followed by blank subtractions
in Microsoft Excel and data cleanup using MS-FLO (60).
Briefly, data were converted to files using Abf Converter.
All default parameters were used for processing of MS-DIAL
data, except for minimum peak height and width which were
adjusted to the instrument. Results are exported from MS-
DIAL and a blank reduction is performed for all features
which are found in at least one sample. Blank reduction
takes the maximum peak height relative to the blank average
height and the average of all non-zero peak heights for sam-
ples. Duplicates and isotopes are examined using MS-FLO
and deleted if confirmed. Peaks were annotated by manually
comparing the MS/MS spectra and the accurate masses of
precursor ions to spectra in the Fiehn laboratory LipidBlast
spectral library (61). Additional peaks are manually curated
from sample chromatograms. Manually curation was con-
firmed by using MassHunter Quant software to verify peak
candidates based on peak shape and height reproducibility,
and retention time reproducibility in replicate samples. The
data were reported as peak heights for the specific quantifica-
tion ion at the specific retention time.

Quantification and Statistical Analysis

A.1 Weight change and K-factor calculations Percent weight
change for each fish was calculated using formula 1. Mass
and length measurements were recorded at the beginning and
end of feeding regimens.

∆Wtp%q “ pmfinal´minitialq{mfinalˆ100, (1)
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A Lipid Data Processing

where m is mass. K-factor is a metric that represents both
the mass and length of individuals and is frequently used in
aquaculture research to assess an animal’s physical condition
(62). K-factor for each fish was calculated at the beginning
of feeding regimens (app. 4 months) and on the day of dis-
section (30-days later) using the formula (c) below. Percent
K-factor change was calculated using formula (d).

K “ pm{x3qˆ100, (2)

where x is the standard length.

∆Kp%q “ pKfinal´Kinitialq{Kfinalˆ100 (3)

Data in Supplemental Fig S2 and Table S1 were analyzed
and graphically represented using Prism software (GraphPad,
Prism version 8.3.0 for Mac, GraphPad Software, San Diego,
California USA). Data was first analyzed for normality using
four independent methods: D’Agostino-Pearson, Shapiro-
Wilk, Kolmogorov-Smirnov, Anderson-Darling. When com-
paring between more than two groups, data that passed
three of four normality tests were analyzed using One-way
ANOVA with Tukey correction for multiple comparisons be-
tween all groups. Data which failed more than one normality
test, was analyzed with Kruskal-Wallis test using Dunn’s for
multiple comparison correction. The tests used in each fig-
ure are reported in the figure legends. p-values less than 0.05
are reported and the level of significance is indicated using
the * system (ns, p ą 0.05; *, p ď 0.05; **, p ď 0.01; ***,
pď 0.001; ****, pď 0.0001).

Further Data Processing Processed primary metabolite data
were vector normalized using mTIC. First, the sum of all
peak heights for all identified metabolites, excluding the un-
knowns, for each sample was calculated. Such peak sums
are called “mTIC” and represent the sum of genuine metabo-
lites (identified compounds) in each sample. This method
avoids unidentified peaks that could represent potentially
non-biological artifacts such as column bleed, contaminants,
or routine machine maintenance. mTIC averages for each
sample were compared to determine if the variance between
samples was significantly different (p < 0.05). Samples were
then normalized to the average mTIC “mTICaverage” within
populations (Surface, Pachón, or Tinaja) and within organs
(brain, muscle, or liver). For example, each biological repli-
cate of the Tinaja brain group was normalized to the aver-
age mTIC of all Tinaja brain replicates regardless of feeding
state. The equation (a) below was then used to normalize
each metabolite (i) of a sample (j). After normalization, data
are reported as ‘relative semi-quantifications’ or normalized
peak heights.

yij (normalized)“ pxij,raw{mTICjqˆmTIC, (4)

where xij is the raw peak intensity for metabolite i in sample
j, mTICj is the average identified peak intensity in sample j,
mTIC is the global average identified peak intensity, and yij
is the mTIC-normalized intensity of metabolite i in sample j.

Metabolite Categorization Metabolites were categorized ac-
cording to their respective subclass classification in the hu-
man metabolite database (14) (if the subclass was absent,
we instead used the superclass of the respective metabolite).
Metabolite classes with low membership were manually re-
assigned to arrive at five broad metabolite categories:

• Carbohydrates and central carbon metabolites
(CCM). Simple sugars such as glucose, fructose, and
various phosphates thereof, as well as core metabolites
in glycolysis, gluconeogenesis, the TCA cycle, and the
pentose phosphate pathway.

• Amino acids. All amino acids and intermediates in
amino acid biosynthesis and degradation.

• Fatty acids. All free fatty acids, intermediates, and
metabolites involved in lipogenesis and β-oxidation.

• Miscellaneous / secondary metabolites. Metabolites
that do not fall in any of the other categories.

• Nucleotides. All nucleotides, nucleosides, nucle-
obases, and byproducts / intermediates of nucleotide
metabolism.

Within each of metabolite category, we further normalized
log10 peak intensities using z–score normalization prior to
performing PCA, O–PLS (described below) or any super-
vised classification or statistical modeling.

O–PLS In order to remove sources of variation not useful in
discriminating the feeding state of different samples, we used
O–PLS (16), a technique commonly used in spectroscopy to
correct for systematic variation (16). O–PLS is often applied
to raw spectra in order to eliminate the influence of back-
ground signals, but here we apply it instead to mTIC normal-
ized peak intensities. Our main use of O–PLS is to remove
biological noise that is uncorrelated with feeding state, such
as baseline differences or trends among different populations.
While z–score normalization already removes many of these
artifacts, we observed that O–PLS generally enhanced the
predictive accuracy of our PLS classifier. Given an input ma-
trix X of n samples and m spectral features (metabolite peak
intensities in our study), and a target matrix Y of classes or
measured values (here, the feeding state), the final output of
O–PLS (referred to here as X 1) is again an m by n matrix
consisting of X with the systematic variation orthogonal to
Y removed.

Characterization of Feeding State Responses In order to de-
termine which tissues and metabolite categories are most
strongly implicated in (1) the starvation response within a
given population, (2) differences in metabolite levels between
different populations for a given feeding state, we used a sim-
ple 1–component PLS classifier trained on the output X 1 of
O–PLS.
The discriminant Q2 value is a metric of PLS model accuracy
and is given by
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Q2 “ 1´
ř

k pyk´ ŷkq
2

ř

k pyk´ ŷkq
2

However, we use a truncated version DQ2 (63), where yk
is replaced by y1k “ maxpminpyk,1q,´1q and y1k is used in
place of yk. This metric does not penalize the PLS model for
correct predictions that overshoot the target class label.
Using this framework, we employed a two–step model com-
prised of a O–PLS model followed by a single–component
PLS model to discriminate refed versus long term-starved
samples. We trained this combined model on z score-
normalized log-transformed data for primary metabolites
subdivided into categories. The output of the initial-stage
O–PLS model consists of the original data with a PLS com-
ponent representing ‘orthogonal’ noise removed. This de-
noised data was then used to train a one-component PLS
classifier on labels representing feeding state. This results
in a DQ2 value for the ability to discriminate refed versus
starved states. Finally, an iterative scheme was used to ran-
domly permute the label indices of the input data, resulting
in a distribution of DQ2 values. The significance level of the
original predictive DQ2 value was calculated using a two–
tailed survival function of a normal distribution fitted to the
DQ2 values.

Identification of Significant Metabolites We employed a
logistic regression model to identify important features
(metabolites, lipids and classes thereof). We were specif-
ically interested in marginal p-values of each individual
metabolite, hence we constructed separate single-covariate
models for each metabolite or lipid. Models were further
based on different types of comparisons: (1) we compared
different feeding states within a given population and (2)
different populations within a given feeding state. Logis-
tic regression models (and GLMs in general) tend to suf-
fer from complete separation of observed covariates (64).
This renders maximum–likelihood estimates of the model
parameters impossible. We therefore used the bayesglm
function of the arm R package (46) to obtain estimates for
model coefficients, even in the case of complete separation.
The bayesglm requires specifying a prior distribution. We
found that the highly conservative default prior (correspond-
ing to a an assumption that the response to a change in input
should typically not exceed roughly ˘5 on the logistic scale,
or, equivalently, no typical change in input should cause a
shift in probability from 0.01 to 0.50, or 0.50 to 0.99(46))
was sufficient to identify important metabolic changes in our
comparisons. However, given the conservative nature of this
prior distribution, we did not perform FDR correction.
Fig S1 shows the procedure for training the GLM. We first
split the input dataset into two matrices: one containing pop-
ulations as category labels (bottom left), and one containing
feeding states as category labels (upper right). We then sub-
set each of these into the three possible pairwise comparisons
from each group, compute z-score-normalized values within
the comparison, filter the resulting matrix using O-PLS to re-
move orthogonal noise, and use the bayesglm function to

fit a model to the respective comparison for discriminating
either populations (within a given feeding state) or feeding
states (within a given population). In each case, the GLM
consists of a single covariant corresponding to metabolite /
lipid peak heights (for individual metabolites) or classes of
metabolites / lipids (for Table S4 and S3).

Differences between Feeding States and Shared Metabolites
To identify metabolites that might play a role in cave adapta-
tion, we sought to fit logistic regression to an input capturing
the difference between refed and and starved samples and dif-
ferences between cave and surface populations simultaneous.
We implemented this using the following formula:

x“ pP `T q{2´S, (5)

where P , T , and S are z-score normalized mTIC peak inten-
sities for starved vs. refed samples. In general, these vectors
have length 12 (6 refed and 6 starved samples). A Bayesian
logistic regression model was then fitted to the x vector for
each metabolite as before, with each element of the response
vector labelled accordingly (starved or refed).

ROS Staining and Microscopy We repeated the original star-
vation experiment using 12 fish each from Pachòn and sur-
face populations. The age of fish was 138 dpf at the time of
collection. Following the original fasting procedure, six fish
from each population were separated and fasted for 30 days.
The remaining six fish in each population were fasted for 4
days and refed for at least three hours on the morning of col-
lection. However, three fish from the surface 30-day fasted
group did not survive until collection and were not used in
the experiment.
Pachòn and surface fish were dissected alternately. Dissec-
tions were split across two days, with 3 fish each in all four
experimental groups on the first day and 3 fish each in all
groups except 30-day fasted surface on the second day. Liv-
ers were sectioned on 4% agarose gel and each section was
stained with a primary dye and DAPI. Primary dyes included
dihydroethidium (DHE), MitoSox, and MitoTracker. Sec-
tions were imaged with a ZEISS LSM 780 Laser Scanning
Microscope. A Z-stack was taken at a location with suitable
cell density for each sample.
Quantitation for cytoplasmic and nuclear intensity was ac-
complished by first taking a 2D slice from the middle plane.
We created a threshold mask for the dye signal and DAPI us-
ing the average intensity of all Z-slices (not only the middle
slice) and intensity measured on the middle plane to com-
pute total intensity. We then took either the difference or
intersection of the signal (DHE, MitoSox) and nuclear stain
(DAPI) masks depending on whether cytoplasmic or nuclear
signal was desired. We then integrated the signal and using
the Kruskal-Wallis test to determine significance.

Caudal Vein Imaging Tail sections were taken from 3 fish
each of adult Pachòn and surface populations. Sections were
stained using Van Gieson staining because of its reported
ability to detect fatty streaks in zebrafish larvae (43).
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A Lipid Data Processing

Lipoprotein Measurement and Quantitation Absolute HDL
an LDL/VLDL were quantified in Pachon and surface us-
ing a Sigma-Aldrich HDL and LDL/VLDL quantitation kit
(MAK045). Blood was collected from the caudal vein, spun-
down, and serum fraction was extracted and diluted 50-fold.
Lipoprotein concentration was calculated using OLS curve
fitting based on blanks and cholesterol standard measure-
ments at known concentrations (see Table S12 for standard
concentrations) and by using 50ˆ2“ 100-fold dilution fac-
tor as samples were additionally diluted 2-fold in precipi-
tation buffer in accordance with usage instructions supplied
with the kit. Three biological replicates were used for each
population (Pachon / surface), and two technical replicates
were taken for each biological replicate and averaged to cal-
culate the final result for each biological replicate. Error bars
represent 95% confidence intervals for the three biological
replicates in each population (where each value is the average
of two technical replicates). The HDL/LDL ratio was cal-
culated by dividing raw colorimetric readings for HDL and
LDL/VLDL in order to avoid potential bias from OLS. Ab-
solute difference of HDL concentration between Pachòn and
surface was statistically significant by a Kruskall-Wallis test,
but all other groups were non-significant.

Additional Resources
The Shiny App for this study may be accessed at https:
//cavefin.shinyapps.io/shiny.
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Fig. S1. Schematic depiction of comparisons used for fitting GLM parameters. A Bayesian logistic regression model was used to
identify significant features (metabolites and categories) among different groups. To train the model, we first split the entire dataset
(upper-left matrix) into two components of pairwise comparisons: a matrix containing category labels for every pairwise comparison
of the three populations in our study (lower-left, for example the PvS comparison contains category labels for Pachón and surface
and excludes data from Tinaja), and a separate matrix containing category labels for every pairwise comparison of feeding conditions.
We then trained a Bayesian logistic regression model using the bayesglm R package using the appropriate category labels for each
comparison. Predictors were either O–PLS–filtered metabolite peaks or metabolite classes (e.g. fatty acids, nucleotides, etc.).
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Fig. S2. Percent change of weight and K-factor during fasting regimen.
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Fig. S3. Effect of normalization scheme on peak intensity distribution. In comparing the mass of the different tissue samples used
in this study (A), we observed that liver samples exhibited more variability than muscle or brain. In particular, some liver samples of
Pachón and surface fish had a mass of less than 2 mg. In order to adjust for this effect, we compared three different normalization
schemes: mTIC normalization (B), wherein each peak is normalized to the sum total of all identified peaks in a given sample (see
Methods), (C) sample weight-based normalization, where each peak is normalized according to the physical weight of its sample,
and (D) unnormalized peaks. By examining the change in median peak intensity for identified compounds in each method (E), we
found that mTIC normalization exhibits slightly better correction for low-weight (<2mg) median peak intensities compared to weight-
based normalization and both are superior to unnormalized data. We therefore employed mTIC normalization for the remainder of the
analysis.
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Fig. S4. Classifier performance shows which categories of primary metabolites are most salient in the starvation response.
This figure shows ´log10p values of an O–PLS / PLS classifier trained to discriminate 30-day fasted vs refed samples for different
tissues, populations, and categories. O–PLS is used to produce de–noised data, which was then fitted to a single–component PLS
model. The figure shows´log10p values for each classifier trained on different subsets of the data corresponding to different categories
of primary metabolites. Red indicates the most robust classifiers and blue indicates the least robust. P–values were obtained by
randomly permuting the feeding state indices for 2000 iterations and computing the two–tailed survival function of a normal distribution
fitted to the DQ2 values of the resulting permuted samples. P–values were adjusted for FDR using the BH method.
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Fig. S5. Relative composition for primary metabolites and lipid classes shows metabolome profile for different tissues,
populations, and feeding states. To determine overall composition of the metabolome for different experimental groups, category
information for primary metabolites was computed based on five main categories (Methods). Lipid data consists of the five most
abundant lipid categories: ceramides, fatty acids and conjugates, glycerophosphocholines, and glycerophosphoethanolamines. Some
metabolites, such as palmitate, were detected in both primary and lipid data. The peak intensities for all detected metabolites in these
respective categories were summed across all replicates and across positive and negative modes to obtain total peak intensities for
each population / condition combination. Total peak intensities were then plotted as a fraction of total peak intensity for all identified
metabolites within a given experimental group.
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Fig. S6. CETP, but not HMG-CoA reductase homologs, show identical or reduced expression in surface fish.
Previously published RNA-Seq data (33) of CETP (ENSAMXG00000003656) and HMGCRA/B (ENSAMXG00000007971 /
ENSAMXG00000016175) in cave / surface A. mexicanus. Values on the y–axis are gene expression data in terms of counts measured
in liver tissue under normal feeding conditions.
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A Lipid Data Processing
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Fig. S7. ROS levels in refed / fasted liver via DHE staining. Pachón cavefish and surface fish were fasted for 30 days
and livers were removed and stained with dihydroethidium (DHE), a blue-fluorescent dye that fluoresces red when oxidized and
serves as an indicator of the presence of superoxide radicals. While we did not detect a significant difference in baseline stain-
ing in fish refed after 4 days of fasting, cytoplasmic ROS in Pachón was significantly (Kruskal-Wallis test) decreased in Pachón
with respect to surface as measured by DHE staining (A). Nuclear differences were not detected among any groups (B). (C-F):
Arbitrarily selected images of DHE (left) and DAPI (right) staining for Pachón with 4-day fasting followed by refeeding (C), sur-
face with 4-day fasting followed by refeeding (D), Pachón with 30-day fasting (E), and surface with 30-day fasting (F). All im-
ages are available at https://stowersinstitute-my.sharepoint.com/:u:/g/personal/jm2432_stowers_org/
ETQkz1nbUN1CmXDdKcEUI48BdfHa8Ur6DAl3fdE1YGs_Xw?e=BEhNhc.
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Pop.
Treat-
ment Sample

Initial
mass (g)

Final
mass (g)

Initial
SL (cm)

Final
SL (cm)

Initial
K-factor

Final
K-factor

Weight
Chg. (%)

K-factor
Chg. (%)

Su
rf

ac
e

30d S30.1 0.47 0.35 2.8 2.9 2.14 1.44 -34.3 -49.2
30d S30.2 1.00 0.84 3.4 3.6 2.54 1.80 -19.0 -41.3
30d S30.3 0.89 0.48 3.4 3.4 2.26 1.22 -85.4 -85.4
30d S30.4 0.86 0.64 3.2 3.3 2.62 1.78 -34.4 -47.4
30d S30.5 0.83 0.66 3.3 3.3 2.31 1.84 -25.8 -25.8
30d S30.6 1.72 1.29 4.2 4.2 2.32 1.74 -33.3 -33.3

4d S4.1 0.43 0.43 2.7 2.8 2.18 1.96 0.0 -11.5
4d S4.2 1.01 0.88 3.4 3.9 2.57 1.48 -14.8 -73.2
4d S4.3 0.60 0.53 3.1 3.2 2.01 1.62 -13.2 -24.5
4d S4.4 0.86 0.8 3.3 3.7 2.39 1.58 -7.5 -51.5
4d S4.5 1.71 1.9 4.1 4.5 2.48 2.18 14.1 -13.6
4d S4.6 0.51 0.48 2.9 3.0 2.09 1.78 -6.3 -17.6

Ref SR.1 0.46 0.4 2.7 2.9 2.34 1.64 -15.0 -42.5
Ref SR.2 0.56 0.48 3.0 3.1 2.07 1.61 -16.7 -28.7
Ref SR.3 0.40 0.43 2.7 2.8 2.03 1.96 7.0 -3.7
Ref SR.4 0.75 0.62 3.1 3.2 2.52 1.89 -21.0 -33.1
Ref SR.5 0.77 0.75 3.3 3.5 2.14 1.75 -2.7 -22.5
Ref SR.6 0.86 0.97 3.3 3.6 2.39 2.08 11.3 -15.1

Pa
ch

ón

30d P30.1 1.03 0.96 3.7 3.7 2.03 1.90 -7.3 -7.3
30d P30.2 1.12 0.83 3.6 3.5 2.40 1.94 -34.9 -24.0
30d P30.3 1.17 0.99 3.6 3.5 2.51 2.31 -18.2 -8.6
30d P30.4 1.29 1.06 3.7 3.8 2.55 1.93 -21.7 -31.8
30d P30.5 1.02 0.81 3.5 3.5 2.38 1.89 -25.9 -25.9
30d P30.6 0.73 0.55 3.3 3.4 2.03 1.40 -32.7 -45.2

4d P4.1 0.82 0.81 3.3 3.5 2.28 1.89 -1.2 -20.8
4d P4.2 1.00 1.01 3.5 3.5 2.33 2.36 1.0 1.0
4d P4.3 1.34 1.53 3.8 4.1 2.44 2.22 12.4 -10.0
4d P4.4 0.32 0.37 2.6 2.8 1.82 1.69 13.5 -8.0
4d P4.5 1.05 1.16 3.7 3.7 2.07 2.29 9.5 9.5
4d P4.6 1.09 1.12 3.6 3.7 2.24 2.21 2.7 -1.4

Ref PR.1 1.06 0.93 3.7 3.9 2.09 1.57 -14.0 -33.5
Ref PR.2 0.97 1.00 3.6 3.7 2.08 1.97 3.0 -5.3
Ref PR.3 0.89 0.94 3.4 3.5 2.26 2.19 5.3 -3.3
Ref PR.4 0.75 0.74 3.1 3.4 2.52 1.88 -1.4 -33.7
Ref PR.5 1.18 1.23 3.7 3.7 2.33 2.43 4.1 4.1
Ref PR.6 0.66 0.67 3.0 3.3 2.44 1.86 1.5 -31.1

Ti
na

ja

30d T30.1 0.99 0.70 3.5 3.7 2.31 1.38 -41.4 -67.1
30d T30.2 1.37 1.12 3.9 4.0 2.31 1.75 -22.3 -32.0
30d T30.3 1.64 1.37 4.0 4.3 2.56 1.72 -19.7 -48.7
30d T30.4 1.08 0.93 3.7 3.7 2.13 1.84 -16.1 -16.1
30d T30.5 0.94 1.02 3.5 3.5 2.19 2.38 7.8 7.8
30d T30.6 0.72 0.75 3.5 3.5 1.68 1.75 4.0 4.0

4d T4.1 1.60 1.82 4.1 4.3 2.32 2.29 12.1 -1.4
4d T4.2 0.86 0.84 3.2 3.4 2.62 2.14 -2.4 -22.8
4d T4.3 0.96 0.78 3.4 3.6 2.44 1.67 -23.1 -46.1
4d T4.4 1.22 1.10 3.7 3.8 2.41 2.00 -10.9 -20.1
4d T4.5 1.56 1.68 4.1 4.3 2.26 2.11 7.1 -7.1
4d T4.6 1.15 1.01 3.6 3.7 2.46 1.99 -13.9 -23.6

Ref TR.1 1.23 1.36 3.7 3.9 2.43 2.29 9.6 -5.9
Ref TR.2 0.74 1.06 3.3 3.4 2.06 2.70 30.2 23.6
Ref TR.3 1.31 1.58 3.8 4.1 2.39 2.29 17.1 -4.1
Ref TR.4 0.66 0.83 3.2 3.3 2.01 2.31 20.5 12.8
Ref TR.5 0.98 1.08 3.6 3.6 2.10 2.31 9.3 9.3
Ref TR.6 1.48 1.48 4.0 4.2 2.31 2.00 0.0 -15.8

Table S1. Weight and K-factor measurements of all samples.
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A Lipid Data Processing

Table S2. An Excel file containing the results of the O–PLS / GLM feature identification pipeline for primary metabolites divided into
categories. Columns represent different population and feeding condition combinations. https://drive.google.com/file/d/
1ax0I3_BWO5-MLwWivA5iyVTI_wU4jCBs/view?usp=sharing

Pachon vs. Surface Tinaja vs. Surface Pachon vs. Tinaja
Brain Muscle Liver Brain Muscle Liver Brain Muscle Liver

4 30 R 4 30 R 4 30 R 4 30 R 4 30 R 4 30 R 4 30 R 4 30 R 4 30 R
Fatty Acyls ´ ´ ´ `

Glycerolipids ` ` ` ` `

Glycerophospholipids ´ ´ ´ ´ ´ ´

Sphingolipids ` ` ` ` ` ` ´ ´ ´ ` ` `

Sterol Lipids ´ ´ ´ ´

Table S3. Interpopulation Differences in Abundance of Lipid Categories Peak intensities for all lipids in a given category (determined from
the LipidMaps “CATEGORY” attribute) were summed to yield a total intensity for each category which is either significantly (at the pă 0.05 level)
up– (`) or down–regulated (´) in a given cave population with respect to surface (Pachón versus surface and Tinaja versus surface, top row)
or the Pachón cave population with respect to the Tinaja cave population (last comparison, top row). The sample set for each tissue / feeding
state combination consists of six individuals from each population as shown in Fig 2. P–values were obtained from the OPLS / GLM approach
described in Methods. Coloring (�) indicates a class that agrees in significance and directionality between both cave populations and is thus
may be related to cave adaptation. Columns corresponding to muscle are highlighted to help distinguish the different tissues. Compare Table
S4 based on the “MAIN_CLASS” attribute.

Pachon vs. Surface Tinaja vs. Surface Pachon vs. Tinaja
Brain Muscle Liver Brain Muscle Liver Brain Muscle Liver

4 30 R 4 30 R 4 30 R 4 30 R 4 30 R 4 30 R 4 30 R 4 30 R 4 30 R
Ceramides ` ` ` ` ` ` ` ` ´ ´ ´ ´ ` ` `

Diradyl-glycerols `

Docosanoids ´ ` ´ ` ` `

Fatty Acids ´ ´ ´ `

Fatty esters ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ` ´

Glycerophospho-cholines ´ ´ ´ ´ ´

Glycerophospho-ethanolamines ´ ´ ´ ´ ´ ´ ` ´ ´

Glycerophospho-glycerols ´ ´ ´ ´ ´ ` ` ` `

Glycerophospho-glycerophospho-glycerols ´ ´

Glycerophospho-inositols ´ ´ ´ ` ´ ´ ´ ` ` ` ´ ´ ´

Glycerophospho-serines ´ ´ ´

Glycosyldiradyl-glycerols ` `

Monoradylglycerols ` ` ` ´ ` ` ` ´

Neutral glycosphingolipids ` ` ´ ` ´

Oxidized glycerophospho-lipids ´ ´ ∅ ∅ ∅ ´ ∅ ∅ ∅ ∅ ∅ ∅
Phosphosphingo-lipids ´ ´

Sphingoid bases ´ ` ` ` ` ` ` ` ´

Sterols ´ ´ ´ ´

Triradylglycerols ` ` ` `

Table S4. Interpopulation Differences in Abundance of Lipid Classes Significant increased (`) or decreased (´) lipid classes based on
summed peak intensities for every lipid species belonging to a given LipidMaps “MAIN_CLASS” label. ∅ denotes classes which were not
detected in a given sample set. LipidMaps also possesses a “CATEGORY” attribute that provides a more coarse–grained classification of lipid
species, which is used as a basis for a similar analysis shown in Table S3.

Pachon vs. Surface Tinaja vs. Surface Pachon vs. Tinaja
Brain Muscle Liver Brain Muscle Liver Brain Muscle Liver

4 30 R 4 30 R 4 30 R 4 30 R 4 30 R 4 30 R 4 30 R 4 30 R 4 30 R
Monounsat. FAs ` ` `

Polyunsat. FAs ´ ´ ´ `

Saturated FAs ` ` ` ` `

Table S5. Intra–population Differences in Fatty Acid Saturation For lipids corresponding to free fatty acids, sauturation was calculated
based on the presence of double bonds in LipidMaps structural data and used to classify each LMID as either saturated, monounsaturated, or
polyunsaturated. Significance values were again calculated using an OPLS / Bayesian GLM workflow. Coloring and markings as before.
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Pachon vs. Surface Tinaja vs. Surface Pachon vs. Tinaja
Brain Muscle Liver Brain Muscle Liver Brain Muscle Liver

4 30 R 4 30 R 4 30 R 4 30 R 4 30 R 4 30 R 4 30 R 4 30 R 4 30 R
13,16-docosadienoic acid ´ ´

20:5 Cholesterol ester ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´

22:1 Cholesterol ester ´

22:6 Cholesterol ester ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ `

9,12-Hexadecadienylcarnitine ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ` `

Acylcarnitine C18:0 ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ` ` ´

Arachidonic acid ` ´ ´ ` `

Behenic acid `

Bishomo-alpha-linolenic acid ´ ´ ´ ´ ´ ´ ´ ´ `

C17 Sphingosine ´ ` ` ` ` ` ` ` ` ` ´

Capric acid ´ ´ ´ ´ ´

Cholesterol ´ ´ ´ ´ ´ ´ ´ ´ ´ ` ` `

DHA ´ ´ ´ `

DPA ´ ` ´ ´ ` ` `

Dihomolinoleic acid ´ ´ ´ ´ ´ ´ `

EPA ´ ´ ´ ´ `

Lauric acid ´ ´ ´ ´ ´

Mangold’s acid ´ ´ ´ `

Myristic acid ´ ´

Nervonic acid ´ ´ `

Oleic acid ` ` ` ` ` ` `

Palmitic acid ` ` ` ´ ` ` ` ` ` ´

Palmitoylcarnitine ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ` `

Pentadecylic acid ´ ´ ´ ´ ´ `

Physeteric acid ´ ´ ´ ´ ´ `

Stearidonic acid ´ ´ ´ ´ ´ `

alpha-Linolenic acid ´ ´ ´ ` ´ ´ ´ ´ ´ ´ ` `

bishomo-gamma-linolenic acid ´ ´ ` ´ ´ ´ ´ ´ ` `

cis-9-palmitoleic acid ` `

cis-erucic acid ´ ´ ´ ´ ´ ´ ´ `

cis-gondoic acid ´ ´ ´ ´ ´ ` `

tetracosapentaenoic acid ` ` ` ` ` `

Table S6. Common lipids Lipids with common names were selected from the set of 447 identified lipids and analyzed using the O–PLS / GLM
scheme. Many lipids exhibit a strongly conserved pattern between Pachón and Tinaja, and these are highlighted in gray. Of note, omega–3
fatty acids appear to exhibit lower abundance in the 4-day fasted state in liver. Some metabolites, such as palmitate and oleic acid, overlap
with primary metabolomics data.

28 | bioRχiv Medley et al. | Cavefish Metabolomics

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 9, 2021. ; https://doi.org/10.1101/2020.10.27.358077doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.27.358077
http://creativecommons.org/licenses/by-nd/4.0/


A Lipid Data Processing

Category Brain log2 fc Muscle log2 fc Liver log2 fc

Amino
acids

N-acetylputrescine -0.53 N-
carbamoylaspartate

2.93

threonine 0.55
proline 1.66
isoleucine 0.52
alanine -1.01
2-ketoadipic acid -1.50

Carbo-
hydrates /
CCM

galactinol -2.67 myo-inositol 1.09 malic acid 1.54
ribose -0.51 ribose-5-phosphate -1.21 fumaric acid 1.49

digalacturonic acid -1.06 myo-inositol 1.63
ribulose-5-phosphate -1.42 lyxitol -1.95
glyceraldehyde-3-
phosphate

-0.60 1,5-anhydroglucitol -3.27

glyceric acid -3.07
xylitol -1.85
lactic acid -4.11

Fatty acids behenic acid -0.25 oleamide 0.52
lignoceric acid -0.02 glutaric acid 0.34

Misc.
phosphoethanolamine 0.72 2-hydroxyglutaric

acid
-1.87 isothreonic acid 0.54

isothreonic acid -0.74 ciliatine 1.68
phosphate -1.43 xanthurenic acid 2.72

Nucleotides

guanosine -1.02 orotic acid 3.13
UDP-N-
acetylglucosamine

-0.54 adenine 0.91

uracil 0.63
hypoxanthine -0.99
nicotinamide -0.86

Table S7. Adaptive Response in 30-day Fasting. Differentially significant metabolites in 30-day fasted states which are similar
in both cave populations. This table shows p–values associated with a logistic regression model using OPLS–filtered z–scores for
30-day tasted and refed fish as input. To identify metabolites conserved between both cave populations, we implemented the test
0.5 ¨ pPS´PR`TS´TRq´pSS´SRq where PS refers to Pachón 30-day fasted, PR refers to Pachón refed, etc. Tables S8 and S9
show conserved metabolites in cave populations versus surface for 4-day fasted versus refed and 30-day fasted versus 4-day fasted
respectively. log2 fc values are also based on this formula. Outliers were excluded for this analysis (Fig ??).
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Category Brain log2 fc Muscle log2 fc Liver log2 fc

Amino
acids

N-acetylaspartic acid -0.23 shikimic acid -0.75 tryptophan 0.69
glutamic acid -0.73 proline 1.01

N-
carbamoylaspartate

3.03

Carbo-
hydrates /
CCM

sucrose 1.49 ribose-5-phosphate -2.01
glucoheptulose -1.50
threonic acid -0.50
maltose -1.15
maltotriose -1.40

Fatty acids 2-hydroxybutanoic
acid

-2.35 oleic acid -1.63

Misc.

2-aminobutyric acid -0.54 phosphoethanolamine -1.08 isothreonic acid 0.45
4-hydroxybenzoate -0.55
2-hydroxyglutaric
acid

-2.67

maleimide -0.56
ciliatine -0.81

Nucleotides

UDP-N-
acetylglucosamine

-0.82 orotic acid 3.08

cytosine -0.69 inosine -0.34
uridine -1.12
guanosine -1.39
uracil -1.15

Table S8. Adaptive Response in 4-day Fasting. Differentially significant metabolites in 4-day fasted states which are similar in both
cave populations. Cf. Table S7 with the difference that this table compares 4-day fasted versus refed conditions. Thus, metabolites
displayed as upregulated in this table are differentially upregulated in 4-day fasted cave fish versus refed cave fish using surface fish as
a baseline for comparison. Outliers are not included in this analysis.

Category Brain log2 fc Muscle log2 fc Liver log2 fc

Amino
acids

oxoproline 0.79
glutamic acid 1.45
threonine 0.67
alanine -1.13

Carbo-
hydrates /
CCM

maltotriose 3.13 myo-inositol 1.26 myo-inositol 1.08
threonic acid 0.50 digalacturonic acid -1.49 glucose 0.40
sophorose -1.36 raffinose -1.89
isomaltose -1.83 maltotriose -1.07

xylitol -1.50
1-kestose -1.82

Fatty acids stearic acid -0.25 palmitic acid -0.24 stearic acid -0.05
palmitic acid 0.06

Misc.
phosphate -2.71 2-aminobutyric acid 1.54
glycolic acid -0.99 ciliatine 1.37
pyrophosphate -1.28 xanthurenic acid 1.65

Nucleotides adenosine 1.87 xanthine 0.76
inosine 0.92

Table S9. Adaptive Response in 30- vs 4-day Fasting. Differentially significant metabolites in 30-day vs 4-day fasting which are similar
between both cave populations. Cf. Table S7 with the differences that this table compares 30-day fasted versus 4-day fasted conditions.
Thus, metabolites displayed as upregulated in this table are differentially upregulated in 30-day fasted cave fish versus 4-day fasted
cave fish using surface fish as a baseline for comparison. Outliers are not included in this analysis.

Table S10. All caudal vein images using Van Gieson staining. https://stowersinstitute-my.sharepoint.com/:u:/g/
personal/jm2432_stowers_org/ESotYEumMNZGt91PEM-TLIUBUy8SqS0bxwTyuyPOXsFyGg?e=YESdnP
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A Lipid Data Processing

Popuation Sample Weight (g) Length (mm) Sex
Surface 1 21.9 86 F
Surface 2 15.4 84.39 F
Surface 3 9.4 73.2 M
Pachon 1 12.22 77.96 M
Pachon 2 17.42 86.35 M
Pachon 3 14.98 83.72 M

Table S11. Info and measurements for fish used in HDL/LDL/VLDL assay (Fig 8. Weight (in grams), length (in millimeters), and sex
for each fish used in the lipoprotein assay (Fig 8.

TR1 TR2
Sample Spike (µl) Std HDL LDL/VLDL Std HDL LDL/VLDL
Pachon 1 0 0.0436 0.3187 0.22 0.0456 0.3024 0.2275
Surface 1 1 0.3468 0.639 0.5749 0.3425 0.638 0.5654
Pachon 2 2 0.6086 0.2225 0.9198 0.6049 0.2784 0.884
Surface 2 3 0.8506 0.6009 0.4745 0.8641 0.5986 0.4498
Pachon 3 4 1.0737 0.3259 0.8434 1.0977 0.3346 0.8046
Surface 3 5 1.2895 0.5852 0.4625 1.3258 0.5632 0.474

Table S12. Brightness readings for cholesterol assay. Source data for Fig 8. Three fish each from Pachòn and surface populations
resp. were euthanized according to protocol and blood was collected from the caudal vein and blood samples were prepared as
described in Methods. Blood samples were 50-fold diluted. Cholesterol standards provided with the Sigma-Aldrich HDL and LDL/VLDL
quantitation kit were spiked into separate wells at the concentrations shown above. Readings were taken on a Spectramax id3 plate
reader for two technical replicates of each sample and raw readings are reported above.
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