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3.2  

Figure 4. Visualization of network interpretations. (A) enrichment of high-confidence 
schizophrenia associated genes in gene groupings found associated with different neural network 
layers.  Enrichment p-values are from the hyper-geometric test, and the empirical cumulative 
density function (CDF) is plotted on the y-axis. (B) compares the subject groupings derived 
from different levels of the cascaded network decomposition applied to SCZ and ASD subjects. 
Subjects are projected into PCA-space using their gene expression profiles; red, blue and black 
denote cases, controls and rejected points at each stage of the cascade (mirroring Fig. 3B). 
 

Table 1. Prioritization function comparison.  The rankings of genes induced by different 
prioritization functions are compared against citation-based rankings from existing literature.  
Table shows normalized ℓ&-distances of predicted and citation-based rankings for the top 20 
genes, with best performing metrics highlighted.  Rows are: Schizophrenia, Skin Melanoma and 
Esophageal Adenocarcinoma. 
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all layers, and the groupings produced by higher layers of the network (𝐿9 `lowest', 𝐿$ `highest') 
tend to associate with more trait-relevant terms (peaking at the penultimate layer, 𝐿&). 
 
Finally, we analyzed the enrichment of the groupings from all layers as described above for 
`high-confidence schizophrenia genes'.  These are genes which can be linked to GWAS hits for 
schizophrenia by any three of the following four methods: Hi-C interactions; enhancer-target 
links (using covariation of chromatin and expression signals); eQTL linkages, and isoform-QTL  
linkages (321 genes; list to be made available in [2]).  The enrichment of such genes in each 
module is scored using a p-value from the hyper-geometric test. Fig. 4A shows that these genes 
are significantly more enriched in the groupings found by the rank projection tree than 
randomized trees, where the groupings found by the penultimate layer 𝐿& again appear most trait-
relevant, matching the findings of the citation-based metric above.  We also compared the 
𝐿9	distribution with a gradient-based prioritization scheme which ranked the modules at this 
level according to the absolute magnitude of the gradient of the network output with respect to 
each input (as in [7]), but found that it was not significantly better than the randomized tree 
(p=0.78); the rank projection tree was better than the randomized tree across all layers (p<1e-4 
for 𝐿&+9, and p=0.012 for 𝐿$, all p-values using 1-tail KS-tests). 
 
3.2 Instance-based groupings 
 
We next test the ability of the cascaded network decomposition approach to extract meaningful 
instance/subject groupings from the PsychENCODE psychiatric genomics dataset, using the 

Table 2. Multigene and subject groupings in psychiatric genomics data.  (A) Top compares 
the total citations of the top 20 KEGG terms associated with rank projection tree and 
randomized gene groupings at each layer of neural networks trained to predict healthy versus 
schizophrenia with two hidden layers. (B) Bottom compares the number of subject clusters 
discovered by cascaded network decomposition found to be associated with each semantic 
category.  Associations were determined by a 0.1 threshold on the p-value of a hypergeometric 
test, and the totals are counted across models trained on 10 data-splits. 
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same data and network settings as above for Schizophrenia (SCZ), in addition to 10 data splits 
each for Bipolar (BDP) vs control subjects, and Autism Spectrum Disorder (ASD) vs control 
subjects (see Appendix).   We compress the networks trained on each data split, and extract 
subject groupings for each stage of the cascade in the compressed networks.  We analyze the 
extracted subject groupings for enrichment of semantic categories, including Gender, Age 
(binarized at the median), Ethnicity, as well as treatment with Psychotic medication and ASD 
subtype (see [2]). 
 
Fig. 4B visualizes the subject groupings extracted from two cascades trained on SCZ and ASD 
datasets respectively.  Notably, in both cascades, while the case-control axis for the groupings 
associated with the first stage of the cascade (𝐾 = 1) is the same as the dominant axis for the 
dataset, in the second stage (𝐾 = 2) the axis is reversed, suggesting that these subjects are 
characterized by different criteria.  Table 2B then provides a breakdown of the number of 
groupings enriched for each semantic category across all datasets.  Notably, the SCZ groupings 
are more highly enriched for semantic groupings, which may reflect the increased size of the 
SCZ dataset.  Further, we note that signal for enrichment in subjects prescribed psychotic 
medication is weaker than the other categories, in agreement with prior observations that the 
effects of medication on the post-mortem transcriptome are weak in this dataset [31].  Finally, 
the ability of the cascade approach to find groupings associated with ASD subtypes reflects the 
associations of these subtypes with PFC and other brain regions [31]; the models are trained on 
PFC expression data, leading to an association of the PFC subtype with earlier stages in the 
cascade, and the non-PFC subtype with later stages (see Appendix A). 
 
3.4 Compression and Generalization 
 
Secs. 3.1-3 have shown that the RPT and CND methods are able to extract semantically 
meaningful gene and subject groupings from the datasets tested.  For this purpose, we took a 
global view, exploring the characteristics of the groupings extracted across models, data-splits 
and cascade stages, while fixing the compression branching factor in the case of the RPT.  Here, 
we consider the interpretations extracted at a finer-grained level; particularly, we investigate 
whether there is a relationship between the strength of the semantic associations and the 
generalization of the network, and if the compression bounds in Sec. 2.3 can be used to predict 
such a relationship (hence we test whether models which generalize better, or are predicted to do 
so, are more interpretable). 
 
We begin by investigating the strength of association between the PAC-Bayes bound (Eq. 8) 
with the MDL-prior (Eq. 9) in predicting the test error for both the RPT and CND compression 
schemes.  For this purpose, we use RPTs to derive compressed networks of varying degrees of 
compression by setting the half-branch factor to 𝐵 = {1,2, … 5} for networks trained on each of 
the 10 SCZ data splits.  We evaluate the bound in Eq. 8 by compressing the parameters of the 
resulting networks using LZW compression [33], and use the resulting binary code as the 
network representation, 𝑁y in Eq. 9.  Similarly, we use the cascades learned by CND on each of 
the psychiatric datasets to derive a series of compressed models, by truncating each cascade after 
each possible stage, and compressing the resulting models by LZW compression to generate the 
binary codes, 𝑁y.  Fig. 5A and 5B show plots of the correlation between the empirical test error 
and the MDL bounds calculated as above using the RPT and CND schemes respectively. In Fig.  
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(𝑝 = 0.022	and 𝑝 = 0.031 for RPT and CND schemes respectively).  Further, since we fit 𝜆  

Figure 5. Predicting semantic enrichment using generalization bounds. (A) and (B) plot test 
error vs. MDL bounds for groups of models derived from the RPT and CND schemes 
respectively.  (C) shows the relationship between interpretability and predicted accuracy 
(defined as 1 − MDL-bound) per network layer (𝐿) and compression strength (𝑍) for the RPT.  
(D) shows the relationship between per-cascade-stage generalization and semantic enrichment 
for the CND scheme.  See text for details. 
 

Table 3. Comparing MDL and Modified MDL bounds for predicting semantic enrichment. 
Table shows mean Pearson correlation and 1-sample t-test p-values for models using the RPT 
scheme, when the KS-semantic-enrichment is correlated with the quantities shown. 
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5A, the bound parameter 𝜆 is fitted independently for each group of compressed models 
associated with a given uncompressed model (corresponding to a fixed data split), hence each 
plot contains networks associated with 𝐵 = {1,2, … 5}.  In Fig. 5B, similarly, 𝜆 is fitted 
independently for the truncated models associated with each cascade, hence the number of 
datapoints is 𝐾, the length of the full cascade.  We further standardize each bound, by dividing 
by the variance per plot, and subtracting the minimum distance with the test error across all 
models; these steps represent an ‘empirical normalization’ of the bound, and are for visualization 
purposes only, since we are only concerned with correlations with the test error.  A sign-test on 
the correlations between bounds and test error shows that there is significant positive correlation 
(𝑝 = 0.022	and 𝑝 = 0.031 for RPT and CND schemes respectively).  Further, since we fit 𝜆 
independently on each group of models, we additionally test the informativeness of the MDL 
component of the bound, by comparing against a null distribution, in which we permute the 
model description lengths (the binary codes) and optimize 𝜆 as above for 20 permutations per 
model.  Using the mean correlation over the top 3 models as the test statistic, this gives 𝑟 =
0.954 and 𝑟 = 0.926 for RPT and CND schemes respectively, which are significant at the 𝑝 =
0.05 and 𝑝 = 0.2 levels according to the permutation test. We then investigate the relationship 
between generalization and interpretability for each compression scheme.  For the RPT scheme, 
we directly correlate the predicted accuracy (defined as 1 − MDL-bound) for each model with 
the KS test statistic, calculated as in Sec. 3.2 for the gene groupings derived per-layer from the 
RPT compressed networks (based on the enrichment of high-confidence SCZ genes from [2]).  
Fig. 5C shows the correlations across all models, which are significantly skewed positive (𝑝 =
0.0072, 1-sample t-test).  Further, we observe from Sec. 3.2 that the degree of positive 
correlation is strongest in layer L0, and decreases for subsequent layers, mirroring the variation 
across layers shown in Fig 3.A.  For the CND scheme, we divide the subject groupings into 
‘semantically enriched’ and ‘non-enriched’ categories, corresponding to those associated with 
the categories in Table 2B.  For both these groups, we compare the change in test-error, or MDL-
bound, which results from adding the cascade stage from which the grouping derives to the 
model.  The rationale for this, is that the change in predictive power may serve as an 
approximate measure of the ‘informativeness’ of the local boundary found by a given cascade 
stage, and hence the semantic relevance of the groupings associated with the stage in question.  
Fig. 2D shows that there is indeed an enrichment in larger reductions in test-error associated with 
semantically relevant groupings; while the trend is in the same direction for the MDL-bound, the 
effect is not significant, suggesting that a tighter bound may achieve a stronger correspondence 
(for instance, using a larger dataset). 
 
Finally, we investigate the modified MDL bound introduced in Eq. 10, combining both MDL 
and data-dependent components, using the RPT scheme.  We replicate the generalization test 
from Fig. 5A using this bound, while fitting 𝜆 and 𝛼 for each group of models.  This achieves an 
improved mean correlation of 𝑟 = 0.955 for the top 3 models, which is again significant at the 
𝑝 = 0.05 level (permutation test).  Table 3 further compares the mean KS-bound correlation 
across models (as in Fig. 5C) of the MDL and modified-MDL bound, showing only a marginal 
increase in correlation.  Table 3 further shows that both bound achieve a significantly stronger 
correlation with the semantic KS-scores than the observed test error; a possible reason for this is 
the use of the training error in the first term of the bound, which is typically more stable than the 
test error, given the larger number of data points (640 vs. 70 in the SCZ datasets). 
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4. Discussion 
 
We have introduced the general framework of a network interpretability scheme, based on model 
transformation (particularly compression), information extraction, and an ‘interpretable model 
selection’ step.  Further, we have introduced two complementary schemes using model 
compression, rank projection trees, and cascaded network decomposition, which allow feature 
groups and data instance groups to be extracted from a trained network that may have semantic 
significance.  We further outline a general purpose MDL generalization bound suitable for such 
compression schemes (based on [15]), which we extend to a modified MDL bound with MDL 
and data-dependent components.  We show that both generalization performance and the bounds 
we introduce are predictive of semantic enrichment, with a small benefit afforded by the 
modified bound, strengthening our claim that compression an generalization analysis should be 
combined in order to derived optimal interpretations of a network (one which optimally 
preserves the network’s implicit semantics [16]). 
 
A number of future directions are suggested by our work.  One possibility is to extend our 
consideration of combined MDL and data-dependent bounds to explicitly handle cases where 
prior structure is built into network models.  For instance, in [2], the structure of a gene 
regulatory network is explicitly encoded into a deep network (a Deep Structured Phenotype 
Network, DSPN), and novel gene groupings are extracted by a compression scheme similar to 
our RPT.  A formal analysis of generalization in such cases may be achieved by including 
structural features of the network in the data-dependent prior, which in turn may motivate 
enhanced interpretation methods using by selecting groupings based on the corresponding bound. 
 
We also note that, while we have concentrated on schemes which do not explicitly constrain the 
resulting model class (beyond sparsity), such constraints may be straightforwardly embedded as 
in [13], and a targeted form of compression may be achieved by optimizing for generalization 
within a restricted model class whose structure may be readily interpreted in an externally 
defined context (for instance, decision trees as a basis for decision making). 
 
Finally, while we have concentrated on genomics applications, the compression schemes we 
introduce, as well as the associated bounds may be readily investigated in other domains such as 
image procession and language.  We expect a similar relationship to hold between 
interpretability and MDL-based generalization schemes in other domains, although the optimal 
bounds for performing interpretable model selection may vary greatly across domains, for 
instance in response to different kinds of relevant prior information. 
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A. Appendix A 
 
A.1 Proof of Theorem 1 
 
Theorem 1 (Modified MDL Bound). Let 𝜋>?* be the MDL prior from [15] (see Th. 4.3, letting 
𝜎& = 𝜏), and 𝜋@AB be a data dependent prior, 𝒩(. ; 𝑁$, 𝜎'), where 𝑁$ is a pretrained neural 
network, and 𝒩(. ; . , 𝜎) is a Gaussian with symmetric covariance 𝜎.  Then, for the weighted prior 
𝜋 = 𝛼𝜋>?* + (1 − 𝛼)	𝜋@AB and posterior 𝜌 = 𝒩(. ; 𝑁, 𝜎9) we have: 
 

KL(𝜌, 𝜋) ≤ 𝛼 �|𝑁y|=log2 − log h𝑚 cz𝑁yz
=
ei + KL c𝒩(. ; 𝑁, 𝜎9),𝒩X. ; 𝑁y, 𝜎'Ye� 	+	 

(1 − 𝛼)KL	(𝒩(. ; 𝑁, 𝜎9),𝒩(. ; 𝑁$, 𝜎')) 
 
Proof.  We can decompose the LHS into cross-entropy and Shannon entropy terms: 
 

KL(𝜌, 𝜋) = 𝐻(𝜌, 𝜋) − 𝐻(𝜌) 
 

																																										= −�𝜌(𝜃) log 𝜋(𝜃)
C

	− 𝐻(𝜌) 

 
Using Jensen’s inequality, we have: 
 

log 𝜋(𝜃) = logX𝛼𝜋>?*(𝜃) + (1 − 𝛼)	𝜋@AB(𝜃)Y 
 

																						≥ 𝛼 log 𝜋>?*(𝜃) + (1 − 𝛼) log 𝜋@AB(𝜃) 
 
Hence, substituting into Eq. 11: 
 

KL(𝜌, 𝜋) ≤ 𝛼�𝜌(𝜃) log 𝜋>?*(𝜃)
C

+ (1 − 𝛼)�𝜌(𝜃) log 𝜋@AB(𝜃)
C

− 	𝐻(𝜌) 

 
= 𝛼𝐻(𝜌, 𝜋>?*) + (1 − 𝛼)𝐻(𝜌, 𝜋@AB) − 	𝐻(𝜌) 

 
= 𝛼KL(𝜌, 𝜋>?*) + (1 − 𝛼)KLX𝜌, 𝜋@ABY												 

 
The theorem follows by substituting the result of Th. 4.3 from [15] into the first term of Eq. 13.□ 
 
A.2 Datasets and Network details 
 
PCAWG: The PanCancer Analysis of Whole Genomes (PCAWG) study includes a variety of 
biological data types corresponding to 2,800 samples from the International Cancer Genome 
Consortium. To train networks for our analysis, rare variants are singled out for Skin Melanoma 
and Esophageal Adenocarcinoma samples. The predictive task according to which the neural 
networks have been trained is the prediction of somatic and germline variation co-occurrence at 
the gene level for 718 genes of the COSMIC census list fetched on May 08, 2018. Input data 

(10) 

(11) 

(12) 

(13) 
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included 43 features ranging from germline variant signatures of known cancer genes alongside a 
set of biological features extracted from multiple data and annotation repositories, namely UCSC 
Genome Browser [34], Gencode v27 [35], and COSMIC [36]. Each model whose weights have 
been analyzed by rank projection trees has 3 hidden layers. Number of hidden nodes (285-941), 
optimization algorithm (Adam or Nesterov Adam), and activation functions (Exponential or 
Rectified Linear Unit) for each network have been determined by automated hyperparamter 
optimization using the HyperOpt package [37]. Results are averaged for 5 neural networks 
trained on randomly stratified training datasets for each cancer type, with test performance of 
high precision and recall values ranging between 70% and 83%. To balance training datasets, we 
deployed the SMOTE oversampling algorithm [38] using the implementation in the imbalanced-
learn Python package [39]. 
 
PsychENCODE:  The PsychENCODE dataset [30,2] contains bulk transcriptomics and other 
omics data from the prefrontal cortex of 1452 post-mortem subjects, including controls and 
subjects with schizophrenia, bipolar disorder, and autism. From these data, we create 10 training 
and testing partitions (including 640 and 70 samples respectively) of control and schizophrenia 
subjects, which are balanced 50-50% for controls and cases, and balanced across train/test 
partitions for covariates including age, gender, ethnicity and assay.  We train neural networks 
with 2 hidden layers to predict a binary case/control indicator, with 100 and 400 nodes at layers 1 
and 2 respectively, logistic sigmoid activations, and SGD with early stopping for training. We 
train separate neural networks using individual gene expression levels as inputs, and mean 
expression levels across modules of genes pretrained using WGCNA [22,23], pre-selecting the 
top 1% and 15% of genes/modules respectively according to the absolute Pearson correlation 
between the input and the binary output indicator on each training partition (resulting in 187 
genes and 754 modules in each respective model). The test performance of the models averaged 
across partitions was 73.6% and 66.1% for the gene- and module-based models, respectively. 
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