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Abstract

Microbial communities are highly dynamic and sensitive to changes in the environment. Thus,
microbiome data are highly susceptible to batch effects, defined as sources of unwanted variation that
are not related to, and obscure any factors of interest. Existing batch correction methods have been
primarily developed for gene expression data. As such, they do not consider the inherent characteristics
of microbiome data, including zero inflation, overdispersion and correlation between variables. We
introduce a new multivariate and non-parametric batch correction method based on Partial Least
Squares Discriminant Analysis. PLSDA-batch first estimates treatment and batch variation with latent
components to then subtract batch variation from the data. The resulting batch effect corrected data
can then be input in any downstream statistical analysis. Two variants are also proposed to handle
unbalanced batch x treatment designs and to include variable selection during component estimation.
We compare our approaches with existing batch correction methods removeBatchEffect and ComBat
on simulated and three case studies. We show that our three methods lead to competitive performance
in removing batch variation while preserving treatment variation, and especially when batch effects
have high variability. Reproducible code and vignettes are available on GitHub.

Introduction

Investigating the link between microbial composition and phenotypes, including human diseases has become
critical in microbiome research. The microbiome was first defined as the microorganisms and their activities
within their specific habitats (Prescott, 2017) then widely referred to as the genetic material within the
entire collection of microorganisms. The microbiome can be considered as a counterpart to the human
genome, as microbes include a large population and participate in human physiological system, such as
programming the immune system and providing nutrients. The disruption of gut microbial communities
has been linked to varieties of diseases and sub-health status, ranging from inflammatory bowel diseases
(Zuo and Ng, 2018), diabetes (Sharma and Tripathi, 2019) to obesity (Gérard, 2016) and malnutrition
(Tidjani Alou et al., 2017).

Microbiome research faces the challenges of data reproducibility and replicability that are essential to
the validity of the statistical results. In particular, microbial communities are highly dynamic (Schloss,
2018) and thus microbiome data are highly susceptible to batch effects, that is, any unwanted sources of
variation that are unrelated to and obscure the biological factors of interest (Wang and Lê Cao, 2019).
Microbiome studies affected by batch affects are abundant in the literature: For example, unwanted
variation can be introduced by sequencing batches (Hieken et al., 2016) or independent studies (Duvallet
et al., 2017). Other confounding factors including geography, age, sex, health status, stress and diet also
introduce batch effects to the composition of the host microbiota (Gibson et al., 2004, Lozupone et al.,
2013, Haro et al., 2016, Kim et al., 2017).

Two types of approaches exist to handle batch effects (Wang and Lê Cao, 2019): methods that correct
for batch effects consist in removing batch variation from the data, while methods that account for batch
effects include batch effects as covariates in the statistical model. Correcting for batch effect offers the
flexibility to apply any type of downstream analysis, including dimension reduction, visualisation and
clustering. Methods accounting for batch effects are often restricted to differential abundance analysis
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with models that hold strong assumptions about data distribution, they include zero-inflated Gaussian
model (Paulson et al., 2013) and Bayesian Dirichlet multinomial regression (Dai et al., 2018)). In terms
of evaluating the effectiveness of batch effect handling methods, batch effect removal methods are more
straightforward and transparent than methods that account for batch effects. However, correcting for batch
effects in microbial studies is challenging. Microbiome studies usually include a small sample size, which
increases the uncertainty of batch effect estimation (Debelius et al., 2016). The data also have inherent
characteristics including zero inflation, uneven library sizes, compositional structure and inter-variable
dependency which challenge existing batch effect correction methods such as ComBat (Johnson et al., 2007)
and removeBatchEffect (Ritchie et al., 2015) that were developed for gene expression data. While methods
accounting for batch effects consider microbiome data characteristics within models, batch effect correction
methods are often applied to microbiome data that are transformed to meet the methods’ parametric
assumptions. However, such transformations are not sufficient to address zero-inflated distribution and
the variables’ inter-dependency.

As microbiome data are naturally multivariate, univariate methods such as removeBatchEffect and
ComBat are limited and do not take into account the microbial variables inter-dependency (Ramette,
2007). Another limitation of existing methods (e.g., ComBat) is their assumption that batch effects are
systematic and thus have a homogeneous influence on all variables. However, batch effects in microbiome
data were found to be non-systematic (Wang and Lê Cao, 2019). When non-systematic batch effects are
mistakenly treated as systematic, biological variation of interest might be removed, or the batch variation
may remain during the batch effect correction process. The multivariate method Remove Unwanted
Variation (RUV) has been recently adapted for microbiome data (Hardwick et al., 2018, Moskovicz et al.,
2020), but requires the availability of negative control variables and technical sample replicates that capture
batch variation, which are not often available in microbiome studies.

Finally, another challenge that batch effect correction methods face is their assumption that batch and
treatment effects are independent, requiring a balanced batch× treatment design (Wang and Lê Cao, 2019).
However, technical experimental issues result in unbalanced designs, where batch and treatment effects
are confounded, resulting in losing treatment variation during the batch correction process. Promising
methods have been proposed in other fields of application, such as single cell RNA-seq field. Methods such
as Seurat V3 (Stuart et al., 2019), mnnCorrect (Haghverdi et al., 2018), scmerge (Lin et al., 2019), zinbwave
(Risso et al., 2018) assume a zero-inflated distribution but are not directly applicable to microbiome studies
because of their very small sample size compared to the single cell datasets.

We propose a novel method to correct for batch effects in microbiome data based on Partial Least
Squares Discriminant Analysis (PLSDA, Barker and Rayens 2003). Our approach, PLSDA-batch is highly
suitable for microbiome studies as it is non-parametric, multivariate and allows for ordination. It esti-
mates latent components related to treatment and batch effects to remove batch variation in the data
whilst preserving biological variation of interest. Two variants are proposed to 1/ handle unbalanced
batch × treatment designs and 2/ select discriminative microbial variables amongst treatment groups.
We assess the performance of PLSDA-batch in simulation and three case studies which investigate mi-
crobial communities in sponge tissues, anaerobic digestion conditions and diet types. We compare the
efficiency of our approaches in removing batch effects and uncovering treatment effects with ComBat and
removeBatchEffect.

Methods

PLSDA-batch is derived from Partial Least Squares Discriminant Analysis (Barker and Rayens, 2003).
We first give a brief description of PLSDA and its core method Partial Least Squares (PLS, Wold et al.
2001). We will use the following notations: X denotes an (n×p) explanatory data matrix with p microbial
variables and Y an (n × q) data matrix with q response variables. Both datasets match on the same n
samples. We denote the matrix transpose by >. The `1 norm of a random vector v (v ∈ Rp×1) is defined
as ||v||1 =

∑p
i=1 vi and the `2 norm is ||v||2 =

√∑p
i=1 v

2
i .

Partial Least Squares

PLS, a.k.a Projection to Latent Structures is an orthogonal component-based regression method commonly
used to model the covariance structure between explanatory (X) and response (Y ) matrices in large
datasets. The optimisation problem to solve is:
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arg max
||α||2=1||β||2=1

cov(Xα,Y β), (1)

where α (α ∈ Rp×1) and β (β ∈ Rq×1) represent the loading vectors of X and Y respectively. The aim
of PLS is to find the linear transformations (α and β) of X and Y that maximise the covariance between
their latent components denoted as t and u respectively, with t = Xα and u = Y β, t,u ∈ Rn×1. After
the first pair of latent components (t,u) is obtained, the residual matrix is calculated via matrix deflation:

Xresiduals = X − tγ, (2)

where γ = (t>t)−1t>X. γ represents the regression coefficient vector for each variable inX on t,γ ∈ R1×p.
Similarly, we can calculate the residual matrix Yresiduals by deflating the matrix Y with u. The deflated
matrices are then used as updated X and Y for the next PLS dimension. The deflation steps ensure that
the latent components associated to each PLS dimension are orthogonal.

PLS Discriminant Analysis

PLSDA is an adaption of PLS for classification and discrimination, where the response matrix Y is a
dummy matrix transformed from a categorical outcome variable. Each column in Y indicates the group
membership of samples: If sample i belongs to group j, then Yij is 1, otherwise 0. For each dimension
h = 1, ...,H, the latent components th and uh are calculated as shown earlier in Eq.(1) of the section
“Partial Least Squares”. th summarises the variation from X that is associated with uh, where uh is a
linear combination of the dummy outcomes in Y . Thus, the th component is mostly relevant to explain
the discrimination between sample groups.

In PLSDA, we need to specify the optimal number of components H. It can be chosen using repeated
cross-validation to estimate the classification error rate on each component th. As PLSDA is an iterative
process based on deflated matrices, the H components that yield the lowest error rate correspond to the
overall performance of the PLSDA model (Rohart et al., 2017).

sparse PLSDA

sPLSDA uses `1 penalisation on the loading vectors [α1, ...,αH ] in PLSDA to select variables (Lê Cao
et al., 2011). During the regression step, for each component h = 1, ...,H, the penalty is solved with
soft-thresholding in Eq.(1):

arg max
||αh||2=1||βh||2=1

cov(Xhαh,Yhβh) + λh||αh||1, (3)

where λh is a non-negative parameter that controls the amount of shrinkage on the loading vector αh and
thus the number of non-zero loadings. The latent component th is therefore calculated based on a subset
of variables that are deemed the most discriminative to classify the sample groups.

Two types of parameters need to be specified in sPLSDA: the number of components H and the
number of variables to select on each component, which corresponds to the shrinkage coefficient λh. Both
parameters can be chosen simultaneously using repeated cross-validation by evaluating the classification
error rate on a grid of number of variables to select on each component (Rohart et al., 2017).

PLSDA-batch

PLSDA-batch aims to estimate and remove batch variation whilst preserving treatment variation. We use
additional notations as we include in the model two different types of sample information, treatment and

batch, denoted Y (trt) and Y (batch) respectively. The matrices A(trt) =
[
α

(trt)
1 , ...,α

(trt)

H(t)

]
and B(trt) =[

β
(trt)
1 , ...,β

(trt)

H(t)

]
include the loading vectors associated to X and Y (trt) respectively, where H(t) is the

number of components associated to the treatment variation. The corresponding latent components are

denoted T (trt) =
[
t
(trt)
1 , ..., t

(trt)

H(t)

]
and U (trt) =

[
u

(trt)
1 , ...,u

(trt)

H(t)

]
. Similar notations are used for the

loading vectors and latent components associated to the batch effect across H(b) components. We will
use simplified notations without superscript, such as Y , A, H and T that are related to either treatment
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or batch variation when there is not ambiguity. X(nobatch) is the matrix from which the batch effect is
removed, and similarly X(notrt) for the treatment effect.

Overview. The general concept of PLSDA-batch is shown in the first column of Figure 1. Assuming X
includes both treatment and batch effects, the samples projected onto a Principal Component Analysis
(PCA) plot would be segregated according to both treatment and batch information. In a first step,
PLSDA-batch estimates the treatment variation via the components T (trt), which are extracted out of X
to obtain X(notrt). Thereafter, only the batch variation still remains. The second step estimates the batch
associated components T (batch) from X(notrt). The original dataset X is then deflated with T (batch) to
obtain the final matrix corrected for batch effects whilst preserving the treatment variation X(nobatch).

Algorithmic and geometrical point of views. The remaining columns in Figure 1 further describe
the approach. For illustrative purposes, we only depict the case where one component is associated with
either treatment or batch effects rather than several components. The data matrix X with both treatment
and batch effects can be decomposed into three major sources of variation: treatment, batch and residuals,
which are assumed to be orthogonal. In practice however, treatment and batch sources are likely to be
correlated to some extent, which motivated our approach to first estimate the treatment variation to avoid
over-estimating the batch variation and losing substantial treatment variation.

In the first step, we apply PLSDA to X and Y (trt) to identify the dimension of treatment effects
α(trt) from X (see Algorithm 1 “Estimation of latent dimensions”). t(trt) is then calculated using a scalar
projection of X onto α(trt). Therefore, the treatment variation of all variables in X is summarised in the
component t(trt). We then calculate the matrix without treatment effects X(notrt) by deflating X with
t(trt). In the second step, we identify the batch associated dimension α(batch) from X(notrt), then calculate
t(batch) by projecting X onto α(batch). The batch variation t(batch) is then removed from X via matrix
deflation whilst ensuring the treatment effects are fully preserved. Since the components t(trt) and t(batch)

are orthogonal, we could also deflate X(notrt) with respect to t(batch) but such alternative would require
adding the treatment variation back.

Weighted PLSDA-batch. A balanced batch × treatment design is an experimental design where sam-
ples within each treatment group are evenly distributed across batches (Wang and Lê Cao, 2019). Because
of quality control steps or lack of samples, a batch × treatment design may be unbalanced, resulting in
treatment and batch effects that are correlated and not separable. In our approach, latent components
associated to either treatment or batch effects are orthogonal, which limit our ability to consider the cor-
relation between these two effects. The consequences might be over-estimation of the treatment variation
as well as insufficient removal of the batch variation. Weighted PLSDA-batch (wPLSDA-batch) is inspired
from weighted PCA to account for unbalanced designs (Holmes and Huber, 2018). We weight each sample
i with wi to take into account the number of samples within each batch and treatment:

wi =
B∑
b=1

C∑
q=1

Y
(batch)
i,b Y

(trt)
i,c

1
√
nb,c

,

where Y
(batch)
i,b represents the indicator value (0 or 1) of sample i and batch b in the dummy matrix Y (batch),

and similarly for Y
(trt)
i,c . nb,c represents the sample size in batch b and treatment group c. W is a diagonal

matrix that includes wi, i = 1, . . . , n. We then obtain the weighted explanatory and response matrices
X(weighted) and Y (weighted) multiplying X and Y by W respectively. The batch effect corrected data
X(nobatch & weighted) resulting from the calculation on the weighted matrices using PLSDA-batch are then
multiplied by W−1 to remove the influence of weights.

sparse PLSDA-batch. In PLSDA-batch, the latent components are calculated based on all variables.
However, we should assume that treatment effects only affect a small number of variables, while batch
effects that include a high variability should affect a large number of variables. A non-sparse version of
PLSDA-batch may hence result in treatment associated components T (trt) that include the variation from
batch related variables, and ultimately affect the accuracy of the batch corrected matrix X(nobatch).

To avoid overfitting when we estimate the treatment associated components, we apply `1-penalty to
each loading vector (see Eq. (3)) to select variables. Thus, the variables with no treatment effect are
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Algorithm 1 PLSDA-batch

Initialisation

X and Y are centered and scaled

Main algorithm

A(trt) ← PLSDA(X,Y (trt)) . to preserve treatment variation from X
X(notrt) ← Deflation(X,A(trt))
A(batch) ← PLSDA(X(notrt),Y (batch)) . to remove batch variation in X
X(nobatch) ← Deflation(X,A(batch))

Sub-steps

PLSDA(X,Y ): Estimation of latent dimensions
Initialise X1 = X and Y1 = Y

For h = 1, ...,H, initialise αh as the left singular vector of the singular value decomposition of
X>h Yh, with ||αh||2 = 1

Repeat until convergence of αh and βh
th ←Xhαh . latent components associated to X
βh ← (Yh)>th . loading vectors associated to Y
βh ← βh/||βh||2 . standardisation
uh ← Yhβh . latent components associated to Y
αh ← (Xh)>uh . loading vectors associated to X
αh ← αh/||αh||2 . standardisation

Xh+1 ← Deflation(Xh,αh) and Yh+1 ← Deflation(Yh,βh) . matrix deflation
Output: A = [α1, ...,αH ]

Deflation(X,A): Deflation of X on latent dimensions A
Initialise X1 = X

For d = 1, ..., D
αd = A[, d]
td = Xdαd . projection of X on latent dimensions
γd = (t>d td)

−1t>dXd . regression coefficients
Xd+1 = Xd − tdγd . matrix deflation

Output: XD+1
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Figure 1: PLSDA-batch framework. From left to right columns: Visualisation with Principal Compo-
nent Analysis sample plots; Workflow describing each step of Algorithm 1 and Geometrical representation
of the approach via projections and deflation. For illustrative purpose, we only represent one component
associated with either treatment or batch effects.

assigned a zero loading value and are not included in the calculation of a component. As we assume that
batch effects are more variable than treatment effects, variable selection is not considered when estimating
the batch components to ensure that all batch variation is retained.

Parameter tuning. In PLSDA-batch, we need to specify the optimal number of components associated
with either treatment or batch effects (H(t) or H(b)). To choose this parameter, we estimate the variance
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explained in the outcome matrix Y (trt) on each treatment component t
(trt)

h(t) , h(t) = 1, ...,H(t) and similarly
for the batch associated outcome matrix and components. We choose the optimal number of components
that explain 100% variance in Y , either Y (trt) or Y (batch). The remainder components should only explain
some (unknown) noise.

In sPLSDA-batch, in addition to the number of components, we also need to specify the optimal
number of variables to select on each treatment component. For this purpose, we calculate the balanced

classification error rate BER =
∑C

c=1
Fc

Tc+Fc

C ), where Fc and Tc represent the number of false and truly
classified samples in the treatment group c, c = 1, . . . , C, where C represents the total number of treatment
groups (Tharwat, 2018). The BER is evaluated through repeated cross-validation using the “maximum”
prediction distance as described in Rohart et al. (2017) on a proposed grid of numbers of variables to select
on each treatment component. The number of variables with the lowest BER has the strongest association
with the treatment information (Y (trt)).

Simulation and case studies

Simulation study

We adapted the simulation strategy that is component-based and multivariate from Singh et al. (2019). We
assumed the input data are Centered Log Ratio (CLR) transformed with a Gaussian-like distribution (see
section “Case studies”). Thus, we simulated components from a Gaussian distribution across all samples.
The data matrix was generated based on the simulated components and corresponding loading vectors
for each variable. Different parameters including amount of batch and treatment variability, number of
variables with batch and/or treatment effects, balanced and unbalanced batch × treatment designs were
considered and summarised in Table 2.

Each simulated dataset included 300 variables and 40 samples grouped according to two treatments
(trt1 and trt2) and two batches (batch1 and batch2). The balanced batch × treatment experimental
design included 10 samples from two batches respectively in each treatment group, while the unbalanced
design had 4 and 16 samples from batch1 and batch2 respectively in trt1, 16 and 4 samples from batch1
and batch2 in trt2 (see Table 1).

Table 1: Unbalanced batch × treatment design in the simulation study
Trt1 Trt2

Batch1 4 16
Batch2 16 4

We first generated two base components t(trt) and t(batch) to represent the underlying treatment and
batch variation across samples in the datasets. The samples with trt1 or trt2 in the component t(trt) were
generated from N(−µ(trt), σ

2
(trt)) and N(µ(trt), σ

2
(trt)) respectively, where σ2

(trt) refers to the variability
of treatment effect, and similarly for the batch component. We then sampled the corresponding loading
vectors α(trt) and α(batch) from a uniform distribution [−0.3,−0.2]∪ [0.2, 0.3] respectively and scaled them
as an unit vector. We subsequently constructed the treatment relevant matrix as X(trt) = t(trt)(α(trt))>

and similarly for the batch relevant matrix.
We also generated background noise E (E ∈ R40×300), where each element was randomly sampled from

N(0, 0.22). The final simulated dataset Xresult was constructed based on the treatment, batch relevant
matrices and background noise. Starting with Xresult = E, we then added different types of variables,
such that:

Xresult[, variables with trt effects] = E[, variables with trt effects] +X(trt)

Xresult[, variables with batch effects] = Xresult[, variables with batch effects] +X(batch),

where variables with treatment or batch effects were randomly indexed in the data.
Finally, we simulated a ground-truth dataset that only included the background noise and treatment

but no batch effect to evaluate batch corrected datasets.
We simulated different scenarios summarised in Table 2 to verify the influence of different parameters.

The scenario indicated in bold is likely to be encountered in real data , where a few variables are relevant
to treatment effects, while a large number with batch effects that are stronger and more variable than
treatment effects. A subset of variables are influenced by both effects. For the PLSDA-batch analyses, we
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Table 2: Summary of simulations. For a given choice of parameters listed, each simulation was repeated
50 times. p(trt), p(batch) and p(trt & batch) represent the number of variables with treatment, batch, or both
effects respectively. Simulation 6 includes parameters reflective of real data.

Parameters µ(trt) σ(trt) µ(batch) σ(batch) p(trt) p(batch) p(trt & batch)

Simulation 1 3 1 7 {1,4,8} 60 150 0
Simulation 2 {3,5,7} 1 7 8 60 150 0
Simulation 3 3 {1,2,4} 7 8 60 150 0
Simulation 4 3 2 7 8 {30,60,100,150} 150 0
Simulation 5 3 2 7 8 60 {30,60,100,150} 0

Simulation 6 3 2 7 8 60 150 {0,18,30,42,60}

chose C − 1 (or B − 1) components associated with treatment (or batch) effects (where C or B represents
the total number of treatment or batch groups) as C− 1 (or B− 1) components are likely to explain 100%
variance in Y , and the number of variables with a true treatment effect (p(trt)) as the optimal number to
select on each treatment component in sPLSDA-batch.

Case studies

We analysed three 16S rRNA amplicon datasets at the operational taxonomic unit (OTU). Our methods
are also suitable for the data considered at any other level of taxonomy. The count data were filtered to
alleviate sparsity, then transformed with Centered Log Ratio (CLR) transformation, a pragmatic way to
handle both uneven library sizes and compositional structure as (Susin et al., 2020). CLR also converts
skewed data towards a Gaussian-like distribution.

Sponge A. aerophoba. This study investigated the relationship between metabolite concentration and
microbial abundance on specific sponge tissues (Sacristán-Soriano et al., 2011). The dataset includes the
relative abundance of 24 OTUs and 32 samples collected from two tissue types (Ectosome vs. Choanosome)
and processed on two separate denaturing gradient gels in electrophoresis. The tissue variation is the effect
of interest, while the gel variation is the batch effect.

Anaerobic digestion. This study explored the microbial indicators that could improve the efficacy
of anaerobic digestion (AD) bioprocess and prevent its failure (Chapleur et al., 2016). The microbiota
was profiled under various conditions. The dataset includes 231 OTUs and 75 samples treated with two
different ranges of phenol concentration (effects of interest). These samples were processed at five different
dates, which constituted the batch effect to remove.

High fat high sugar diet. This study aimed to investigate the effect of high fat high sugar (HFHS)
diet on the mouse microbiome (Susin et al., 2020). This dataset includes 419 OTUs and 54 samples treated
with two types of diets (HFHS vs. normal) and housed in two different facilities (TRI and PACE). The
diet variation is the treatment effect, while the facility variation constitutes the potential batch effect. The
actual batch effect in this dataset is weak, and enables to assess whether batch correction methods are
able to preserve treatment variation in this context.

The case study datasets are available in GitHub https://github.com/EvaYiwenWang/PLSDAbatch.
For the PLSDA-batch analyses, we chose the number of components that explained 100% variance in Y
associated with either treatment or batch effects, and the number of relevant variables to select on each
treatment component that yielded the lowest BER from repeated cross-validation with four folds and 50
repeats in sPLSDA-batch.

Benchmarking and assessment of batch effect removal

We compared our approaches with removeBatchEffect and ComBat that were developed for gene expression
data from microarray or RNA-seq and are classical univariate methods to correct for batch effects in the
literature. The methods are described in Supporting Information section “Existing methods”.
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We next describe several performance measures in removing batch effects while preserving treatment
effects between the different methods.

Accuracy in simulated data. We assessed the accuracy of identifying variables with a true treatment
effect from the batch corrected data using two approaches: 1/ univariate method one-way ANOVA (Law
et al., 2014) to identify differentially abundant taxa between treatment groups (Benjamini-Hochberg ad-
justed P-value < 0.05) and 2/ multivariate method sparse PLSDA to select the taxa that discriminate
treatment groups. Thereafter, we measured the accuracy of selected variables using Precision ( TP

TP+FP ),

Recall ( TP
TP+FN ) and F1 score (2∗ Precision∗RecallPrecision+Recall ), where TP is the number of true positives - the variables

assigned with treatment effects in the simulation and correctly identified; FP the number of false positives
- the variables without treatment effects but wrongly identified; FN the number of false negatives - the
variables with treatment effects that were not identified. Since in sPLSDA we specified the number of
variables to select as the number of variables with a true treatment effect, the Precision, Recall and F1

score are equal. We thus called this accuracy measure as “multivariate selection” to distinguish from the
results from one-way ANOVA (see Table 3).

Proportion of explained variance across all the variables. We calculated the proportion of vari-
ance explained by treatment, batch effects, and their intersection using the multivariate method partial
redundancy analysis (pRDA) in the batch corrected data (Borcard et al., 1992, Wang and Lê Cao, 2019).

Proportion of explained variance for each variable. The proportion of variance explained by
treatment or batch effects for each variable was assessed via R2 value estimated with one-way ANOVA for
each covariate. The R2 values were then plotted according to treatment or batch on a scatterplot.

Alignment scores. To evaluate the degree of mixing samples from different batches in the batch cor-
rected data, we adapted the alignment score originally designed to examine the local neighbourhood of
each sample after aligning different groups in single cell RNA-seq data (Butler et al., 2018). The alignment
score ranges from 0 to 1, representing poor to perfect performance of mixing the samples from different
batches after batch effect removal. By applying PCA to the batch corrected data, we calculated a sample
dissimilarity matrix with the principal components that explained at least 95% of the total variance. The
adapted alignment score is then defined as:

Alignment Score = 1−
x̄− k

n

k − k
n

,

where k represents the number of nearest neighbours, and n represents the sample size. x is the number
of each sample’s k nearest neighbours that belong to the same batch, and x̄ represents the average of all
x. In our case studies, we chose k = 0.1 ∗ n, a value that seemed reasonable for the size of our data.

Results

We benchmarked PLSDA-batch and the two extensions against removeBatchEffect and ComBat, first, on
the simulated datasets, then on the three case studies.

Simulation studies

We measured the accuracy of batch corrected data from different methods applied to the simulated data
under different scenarios as shown in the supplements (Figure S1-S6). Here we describe only one scenario
that we believe is a representative of real data (p(trt & batch) = 30, simulation 6 in Table 2).

We first considered the proportion of variance explained by treatment and batch effects before and
after batch correction across all variables using pRDA. Efficient batch correction methods should generate
data with a smaller proportion of batch associated variance and larger proportion of treatment variance
compared to the original data. Figure 2A shows that there was no intersection shared between treatment
and batch variation with a balanced batch × treatment design. All methods successfully removed batch
variation, but PLSDA-batch and sPLSDA-batch preserved more proportion of treatment variance than
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removeBatchEffect and ComBat. In addition, the data corrected by sPLSDA-batch included almost as
much proportion of treatment variance as the ground-truth data. With an unbalanced batch × treatment
design (Figure 2B), we observed that certain amount of variance was shared (intersection) and explained
by both batch and treatment effects. Such intersectional variance should exist even in the ground-truth
data with no batch effect, as it originates from treatment variation because of the unbalanced design.
Unweighted PLSDA-batch and sPLSDA-batch failed in such design, as their corrected data still included a
large amount of batch variation (PLSDA-batch) or not included intersectional variance (sPLSDA-batch),
while the other methods removed batch variation successfully. The corrected data from removeBatch-
Effect and ComBat included less proportion of variance explained by treatment but more intersectional
variance compared to the ground-truth data. Although wPLSDA-batch corrected data included the largest
treatment variance, swPLSDA-batch outperformed all methods with results similar to the ground-truth
data.

Figure 2: Simulation studies: comparison of explained variance before and after batch correc-
tion for (A) balanced and (B) unbalanced batch × treatment designs. The partitioned variance explained
by treatment, batch, treatment and batch intersection, and residuals was estimated with pRDA. sPLSDA-
batch and swPLSDA-batch performed best in correcting for batch effects as the explained variance was
most similar to the ground-truth data that included no batch effect.

We also estimated the proportion of variance explained by treatment and batch effects for each variable
respectively using the R2 value. In the balanced batch × treatment design (Figure 3A), the variables
assigned with both treatment and batch effects in the corrected data from removeBatchEffect and ComBat
presented less proportion of treatment associated variance than in the ground truth data. This result agrees
with the pRDA evaluation that these two methods do not preserve enough treatment variation. With
PLSDA-batch, variables with only batch effects displayed some amount of treatment variation, but only in
the case where the batch effect variability was high (results not shown). sPLSDA-batch outperformed all
methods, with results similar to the ground-truth data. In the unbalanced design (Figure 3B), variables
assigned with both treatment and batch effects were segregated into two groups depending on whether
their abundance increased or decreased consistently or not according to the two effects. We observed
similar results to those obtained from the balanced design (Figure 3A).

When considering the measures of accuracy with univariate one-way ANOVA, we observed that for
both balanced and unbalanced designs the corrected data from PLSDA-batch, wPLSDA-batch, sPLSDA-
batch and swPLSDA-batch led to higher recall and lower precision than the data from removeBatchEffect
and ComBat (Table 3). However, the precision of sPLSDA-batch and swPLSDA-batch was competitive
to removeBatchEffect and ComBat for each type of design. Moreover, both versions of weighted and
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Figure 3: Simulation studies: R2 values for each microbial variable before and after batch
correction for (A) balanced and (B) unbalanced batch × treatment designs. Each point represents one
variable with respect to its fitted R2 from a one-way ANOVA with a treatment effect (x-axis) or batch
effect (y-axis) as covariate. Colours and shapes indicate the associated effects (batch or/and treatment
effects) for each variable. RemoveBatchEffect and ComBat did not preserve enough treatment variation
for variables with both treatment and batch effects, while PLSDA-batch and wPLSDA-batch generated
spurious treatment variation for variables with batch effect only. sPLSDA-batch and swPLSDA-batch
corrected data are the most similar to the ground-truth data that include no batch effects.

unweighted sPLSDA-batch achieved higher F1 scores and multivariate selection scores than removeBatch-
Effect and ComBat in each design. The standard deviations of the multivariate selection scores were all
smaller than the univariate selection scores for the different corrected data, indicating a better stability of
the variables selected by multivariate sPLSDA compared to the one-way ANOVA univariate selection.

We observed similar but higher resolution results of accuracy measures for the other simulation scenarios
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Table 3: Simulation studies: summary of accuracy measures before and after batch correction.
The proportion of correctly identified microbial variables with a true treatment effect was assessed with
Precision, Recall, F1 score and Multivariate selection score using one-way ANOVA or sPLSDA.

Before correction Ground-truth data removeBatchEffect ComBat PLSDA-batch sPLSDA-batch

Balanced

Precision 0.98 (0.02) 0.95 (0.03) 0.94 (0.15) 0.93 (0.16) 0.56 (0.25) 0.86 (0.11)
Recall 0.74 (0.10) 1.00 (0.00) 0.87 (0.10) 0.88 (0.10) 1.00 (0.02) 1.00 (0.00)

F1 0.84 (0.06) 0.98 (0.02) 0.89 (0.12) 0.89 (0.12) 0.68 (0.20) 0.92 (0.07)
Multivariate selection 0.89 (0.06) 1.00 (0.00) 0.92 (0.07) 0.92 (0.07) 0.92 (0.12) 1.00 (0.01)

Before correction Ground-truth data removeBatchEffect ComBat wPLSDA-batch swPLSDA-batch

Unbalanced

Precision 0.52 (0.32) 0.96 (0.03) 0.85 (0.18) 0.80 (0.23) 0.52 (0.23) 0.80 (0.14)
Recall 0.72 (0.04) 1.00 (0.00) 0.86 (0.10) 0.86 (0.10) 0.99 (0.03) 1.00 (0.00)

F1 0.55 (0.21) 0.98 (0.02) 0.84 (0.14) 0.81 (0.18) 0.65 (0.19) 0.88 (0.10)
Multivariate selection 0.73 (0.05) 1.00 (0.00) 0.88 (0.07) 0.87 (0.08) 0.89 (0.15) 0.99 (0.02)

presented in Figures S1-S6. When the variability of batch effects σ(batch) increased, the precision of PLSDA-
batch decreased dramatically, but the precision of sPLSDA-batch slightly increased and outperformed
removeBatchEffect and ComBat in both designs. In all scenarios with a high variability of batch effects
(σ(batch) = 8), PLSDA-batch performed the worst among all the methods. The change of mean (µ(trt))
and variability (σ(trt)) of treatment effects did not largely affect any accuracy measurement. When the
number of variables associated either with treatment or batch effects increased, the precision of sPLSDA-
batch increased and was slightly higher than removeBatchEffect and ComBat, especially for the unbalanced
design. sPLSDA-batch outperformed the other methods in all scenarios except for the case when a large
number of variables were influenced by both treatment and batch effects (greater than half the number of
variables with treatment effects), resulting in a lower precision but still higher recall than the other two
univariate batch correction methods.

Case studies

Numerical performance. We first investigated the variance structure of the batch corrected data using
PCA. If batch effects account for the largest proportion of variance in the data, we expect a separation
of the samples from different batches on the first component. However, in the sponge data (Figure 4A),
21% of the total data variance was explained by the first principal component, which highlighted a strong
difference of samples across different tissues (effect of interest). The batch variation accounted for 19% of
the total variance in the second component. Thus in this study, batch effects are slightly weaker than the
treatment effects.

After batch correction, the difference between batches became barely distinct (Figure 4B-E), except
for ComBat corrected data where a clear separation of the samples from two batches for the Choanosome
tissue could still be observed. The variance explained by the first principal component that separated
the different tissue types was increased in all of the corrected data, with PLSDA-batch resulting in the
highest proportion of variance (24%). We observed similar results in the AD study (Figure S7). When
batch variation was not observed on a PCA plot, as for the HFHS data (Figure S8), the proportion of
variance explained by the first component (related to treatment effects) before and after batch correction
was similar, indicating that treatment variation was preserved. Thus, batch correction methods are still
relevant in the case where no batch effect is present.

The alignment scores complement the PCA results especially when batch effect removal is difficult
to assess on PCA sample plots. In Figure 5, we observed that the samples across different batches
were better mixed after batch correction with different methods than before. In both sponge and AD
studies, the data corrected using PLSDA-batch and sPLSDA-batch had higher alignment scores than
using removeBatchEffect and ComBat, indicating a better performance in removing batch variation. The
ComBat corrected data had the lowest alignment score, which was consistent with PCA that the data still
had residual batch variation remaining. In the case of an undetected batch effect, such as HFHS data,
the corrected data from PLSDA-batch and sPLSDA-batch had lower alignment scores than those from
removeBatchEffect and ComBat.

We next focused on estimating the proportion of explained variance by treatment and batch effects
globally for the batch corrected data. In the sponge data (Figure 6A), the different methods preserved
similar proportion of treatment variance and removed all batch variance, with the exception of ComBat
that still retained 1.5% of batch variance. In the AD data (Figure 6B), we observed a small amount
of intersection (0.7%) between batch and treatment associated variance due to the unbalanced batch ×
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Figure 4: PCA sample plots of the sponge data (A) before or after batch correction using (B)
removeBatchEffect, (C) ComBat, (D) PLSDA-batch or (E) sPLSDA-batch. Colours represent the effect
of interest (tissue types), and shapes the batch types. ComBat did not remove enough batch variation, as
samples still present a batch separation within the cluster of Choanosome.

Figure 5: Comparison of alignment scores for (A) sponge data, (B) AD data and (C) HFHS data
before and after batch correction using different methods. A large alignment score indicates that samples
from different batches are well mixed based on the dissimilarity matrix calculated from PCA. For data
with strong batch effects (sponge and AD data), our method sPLSDA-batch gave the best performance,
while for data with weak batch effects (HFHS data), Combat performed best.

treatment design. As the intersection was small, unweighted PLSDA-batch and sPLSDA-batch were still
applicable, and thus the weighted version was not used. PLSDA-batch preserved the largest proportion
of variance explained by treatment effects, and also the largest proportion of intersectional variance.
sPLSDA-batch corrected data led to a slightly higher proportion of treatment variance and an undetectable
intersectional variance than the other two univariate methods. In the HFHS data where no batch variation
was observed on the PCA plot, we still detected 1.8% of the variance explained by batch effects (Figure 6C).
The differences of preserved treatment variance and removed batch variance from the different corrected
data were small. In addition, the similarity of the results of unweighted PLSDA-batch and sPLSDA-batch
in each case study indicated a small batch effect variability.

The R2 values representing the variance explained by batch or treatment effects for each variable
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Figure 6: Explained variance before or after batch correction for (A) sponge data, (B) AD
data and (C) HFHS data. In sponge data (A), ComBat corrected data still included batch associated
variance. In AD data (B), sPLSDA-batch corrected data included a higher treatment variance and lower
intersectional variance compared to the data corrected from the other methods. In HFHS data with weak
batch effects (C), ComBat corrected data preserved the largest amount of treatment variance.

estimated with one-way ANOVA are displayed in Figure 7 for the AD study. The corrected data from
ComBat still included a few variables with a large proportion of batch variance. When considering the
sum of all variables, removeBatchEffect removed slightly more batch variance but preserved less treatment
variance than our proposed approaches. The results from the sponge and HFHS data were consistent with
the AD data (Figures S9-S10).

Biological interpretation. We applied sPLSDA to select 20% of the total number of OTUs in the
anaerobic digestion and the HFHS studies, but we excluded the sponge study from this analysis since it
included a small number of OTUs. We then compared the OTU selections before and after batch effect
correction with different methods.

Anaerobic digestion. When comparing the variable selections before and after batch correction, two
OTUs were uniquely selected in the original uncorrected data, and belonged to the family Methanobac-
teriaceae and an unknown family of order Clostridiales. Methanobacteriaceae has been reported to be
associated with methanogenesis (Granada et al., 2018). After batch correction, we observed an overlap
of 35 out of the 50 OTUs that were selected from the corrected data with different methods, showing a
good agreement among all methods. We also identified 16 OTUs that were only selected from the batch
corrected data compared to the original uncorrected data. Among these OTUs, one from the family Por-
phyromonadaceae was only selected with removeBatchEffect, while two from the family Rikenellaceae and
Spirochaetaceae were selected with both removeBatchEffect and ComBat. Two out of these three taxa
were from the order Bacteroidales. These taxa have been found to be involved in the degradation of the
accumulated volatile fatty acids, propionate production and hydrogenotrophic methanogens (Poirier et al.,
2016, 2018, Di Gioia et al., 2020). Another six OTUs among these 16 were only selected with PLSDA-batch
or/and sPLSDA-batch, all of which were from the order Clostridiales. Members of this order have been
recognised to hydrolyse a variety of polysaccharides by different mechanisms (Poirier et al., 2018). The
families of these taxa included Ruminococcaceae (2), Syntrophomonadaceae (1), Peptococcaceae (1) and
and two unknown families. All known families have been found to play a key role in AD process, ranging
from the degradation of cellulose to acetogenesis, and to syntrophic acetate oxidation (Tian et al., 2014,
Poirier et al., 2016, Wirth et al., 2019). To summarise, from the data corrected with our PLSDA-batch
and sPLSDA-batch approaches, we identified more taxa within the order Clostridiales, while with remove-
BatchEffect and ComBat we identified more taxa from the order Bacteroidales. Our approaches selected a
larger number of unique OTUs compared to removeBatchEffect and ComBat, and these OTUs are highly
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Figure 7: AD study: R2 values for each microbial variable before and after batch correction.
Each point represents one variable with respect to its fitted R2 from a one-way ANOVA with a treatment
effect (x-axis) or batch effect (y-axis) as covariate. Combat corrected data included some variables with
a large proportion of batch variance. Compared to our proposed approaches, removeBatchEffect removed
more batch variance.

relevant to the AD process. This study also shows that our approaches were successful at preserving
treatment variation for data that included a strong batch effect.

High fat high sugar diet. From the original uncorrected data, one OTU was selected from an unknown
family of order Clostridiales that was not selected after batch effect correction. When analysing and
comparing batch corrected data, 75 out of 80 OTUs were commonly selected among all different methods.
We also identified seven OTUs that were uniquely selected by particular methods, including one OTU
from the family Verrucomicrobiaceae selected from the ComBat corrected data. Verrucomicrobiaceae
has been reported as a probiotic that can fight the metabolic syndrome (Anhê et al., 2016, Shan et al.,
2019). Another four OTUs were only selected from the data corrected with our PLSDA-batch or/and
sPLSDA-batch approaches and belonged to the family Erysipelotrichaceae, S24-7, Lachnospiraceae and an
unknown family of order Clostridiales. All known families have been found to be involved in the regulation
of metabolism and immunity (Liu et al., 2019, Ma et al., 2020), degradation of plant glycan, host glycan,
and α-glucan carbohydrates (Zhang et al., 2018, Rodŕıguez-Daza et al., 2020) and chronic inflammation of
the gut (Zeng et al., 2016). To summarise, in the HFHS data that included weak batch effects, over 90%
of the selected microbial variables from different batch corrected data were in common with the original
uncorrected data. However, our approaches still selected additional OTUs relevant to the HFHS diet
compared to removeBatchEffect, ComBat and before batch correction.

Discussion

Our proposed approach PLSDA-batch aims to estimate and remove batch variation in a multivariate
fashion, whilst preserving treatment variation. The batch corrected data can then be used as input in
any downstream analyses, such as dimension reduction, visualisation, clustering or differential abundance
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analysis. The simulation study showed that when the variability of batch effects is high, PLSDA-batch
can overfit the component estimation and generate spurious treatment variation. Thus, the sparse version
sPLSDA-batch is more suitable in this context to select a subset of microbial variables that are discrimi-
native when estimating treatment components. The weighted variant includes group size weight to handle
unbalanced batch × treatment designs and resulted in superior results to the unweighted variants to
disentangle correlated batch and treatment effects.

We compared our proposed methods to existing removeBatchEffect and ComBat. These two batch
correction methods are univariate and assume each variable has a Gaussian distribution. In addition,
ComBat assumes that all variables are affected by batch effects systematically. This assumption does
not hold true in practice (Wang and Lê Cao, 2019). Our approach PLSDA-batch has a more relaxed
assumption about data distribution compared to removeBatchEffect and ComBat, and thus is more suitable
for microbiome data, even after CLR transformation. The multivariate nature of our approach also enables
to model the correlation structure between variables and handle non-systematic batch effects.

In the simulation studies, we found sPLSDA-batch and its weighted variant outperformed the other
batch correction methods in both balanced and unbalanced batch × treatment designs, when the variability
of batch effects was high. Generally, our methods preserved a larger proportion of global treatment variance
than removeBatchEffect and ComBat. However, only the sparse variant corrected data with explained
variance most similar to the ground-truth data that included no batch effect. Using different types of
performance measures to assess the relevance of the OTUs selected, we observed consistent results regarding
the ability of sPLSDA-batch to reveal treatment variation (competitive precision and higher recall with
one-way ANOVA, and higher multivariate selection score with sPLSDA compared to removeBatchEffect
and ComBat). The precision score was also higher than with PLSDA-batch. Similar results were also
obtained for the weighted version in the data with an unbalanced design.

In the case studies, PLSDA-batch and sPLSDA-batch performed similarly, however, sPLSDA-batch
which includes variable selection selected fewer components than with PLSDA-batch according to the
BER criteria. These results confirm that irrelevant variables influence component estimation during the
batch effect correction process. Both sponge and anaerobic digestion data included a strong batch effect.
For both studies, all performance criteria we used indicated that PLSDA-batch and sPLSDA-batch out-
performed ComBat, which removed an insufficient amount of batch variation. The data corrected with
removeBatchEffect consisted of similar proportion of batch and treatment variance, but worse alignment
scores were obtained compared to our methods. When performing variable selection on the data corrected
for batch effects with our approaches, we selected a larger number of unique OTUs relevant to anaerobic
digestion than with the other batch correction approaches. Regarding the HFHS data that included a
weak batch effect, the batch corrected data indicated a lower alignment score with our methods com-
pared to removeBatchEffect and ComBat. However, the other assessment measures we used suggested
that our methods removed sufficient batch variation (Figures 6C and S10). Therefore, it is possible that
PLSDA-batch and sPLSDA-batch removed more sampling noise, leading to a decrease in total variance of
the corrected data and more emphasis on batch variance. In the case of weak batch effect, the alignment
scores may not be fully appropriate. For the HFHS study, we observed a large overlap of OTUs when
performing variable selection before and after batch correction by the different methods, but data cor-
rected by our approaches selected additional OTUs highly relevant to HFHS diet, suggesting that batch
effect correction is still beneficial when batch effects are weak. Due to the limited resolution of taxonomic
information with 16s rRNA sequencing, our biological interpretation was limited to family level. Deeper
resolution obtained with whole genome sequencing would give more insight into the biological meaning of
the additional OTUs that were selected with our approaches.

The framework we present requires pre-defined batch group information. In the case of unknown
batch information, such effect can be identified with exploratory approaches such as Principal Component
Analysis or clustering methods to assign samples to data-driven batch groups. Despite our proposed
weighted version, our methods are still limited in their ability to handle the presence of an interaction
effect between batch and treatment on microbial variables, because this interaction is likely to be non-
linear. Only methods which account for batch effects, and not correct for them, would be suitable, such as
the linear regression (Wang and Lê Cao, 2019). The approaches we propose are linear techniques, where
both explanatory and response components are constructed based on a linear combination of variables in
their corresponding matrices, and where we model the linear relationship between both components. It is
highly possible that variables in microbiome data interact non-linearly, leading to non-linearly dependent
components from explanatory and response matrices. Non-linear approaches based on PLS kernel could
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also be expanded in our framework (Nguyen and Tsoy, 2017).

Data Availability Statement

An R package ‘PLSDAbatch’ and all analyses are fully reproducible and available at GitHub: https:

//github.com/EvaYiwenWang/PLSDAbatch.
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Supporting Information

Existing methods

removeBatchEffect is a location-scale and univariate method. It has been used in a study of human
oral microbiome to remove batch effects caused by different experimental times (Wu et al., 2016). Let
Xijcb denotes the abundance value for the variable j of sample i from the treatment group c and batch b.
removeBatchEffect includes batch effects as covariates and models Xijcb as:

Xijcb = µj + Y
(trt)
ic αjc + Y

(batch)
ib βjb + εij ,

where µj is the overall abundance of variable j. Y
(trt)
ic and Y

(batch)
ib represent the condition of sample i in

the treatment c or batch b respectively, and αjc and βjb represent the corresponding regression coefficient
for the variable j in the treatment c or batch b separately. εij is the error term assumed to follow a normal
distribution N(0, σ2

j ). Via removeBatchEffect, we first estimate the batch coefficients and then calculate

the batch effect corrected data as X̂ijcb = Xijcb − Y (batch)
ib β̂jb.

ComBat is a location-scale and univariate method using empirical Bayesian model to estimate param-
eters. It assumes batch effects are systematic across all variables. ComBat has been applied in a study
of human lung microbiome to correct for batch effects caused by different research groups (Hong et al.,
2018). The abundance value Xijcb is formulated using the same notations as removeBatchEffect:

Xijcb = µj + Y
(trt)
ic αjc + Y

(batch)
ib βjb + δjbεijb,

where δjb represents the multiplicative batch effect of batch b for variable j. Both additive (βjb) and
multiplicative batch effects (δjb) are modelled in ComBat. The final batch effect corrected data are

calculated as X̂ijcb = µ̂j + Y
(trt)
ic α̂jc + ε̂ijb.

Figures

20

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 28, 2020. ; https://doi.org/10.1101/2020.10.27.358283doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.27.358283
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure S1: Simulation 1: summary of accuracy measures before and after batch correction
for the data simulated with different batch effect variability (see Table 2) with (A) balanced and (B)
unbalanced batch × treatment designs. The proportion of correctly identified microbial variables with a
true treatment effect was assessed with Precision, Recall, F1 score and Multivariate selection score using
one-way ANOVA or sPLSDA. Batch effects were generated with three choices of variability σ(batch) (x-
axis). Each point was averaged over 50 repeatedly simulated data, with error bars indicating estimated
sample standard deviations. As σ(batch) increased, the precision of corrected data from PLSDA-batch dra-
matically decreased while with sPLSDA-batch slightly increased in both cases of balanced and unbalanced
designs. The standard deviation of precision calculated from removeBatchEffect and ComBat corrected
data increased with σ(batch). sPLSDA-batch corrected data slightly outperformed the other corrected data
with a higher precision or/and a smaller standard deviation of the precision in both designs. The resulting
recall and multivariate selection score were similar among different data. F1 score calculated from the
precision and recall therefore displayed the same information as the precision.

21

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 28, 2020. ; https://doi.org/10.1101/2020.10.27.358283doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.27.358283
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure S2: Simulation 2: summary of accuracy measures before and after batch correction
for the data simulated with different sizes of treatment effects (see Table 2) with (A) balanced and (B)
unbalanced batch × treatment designs. The proportion of correctly identified microbial variables with a
true treatment effect was assessed with Precision, Recall, F1 score and Multivariate selection score using
one-way ANOVA or sPLSDA. Treatment effects were generated with three choices of sizes µ(trt) (x-axis).
Each point was averaged over 50 repeatedly simulated data, with error bars indicating estimated sample
standard deviations. The change of µ(trt) did not affect the performance of different batch effect correction
methods.
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Figure S3: Simulation 3: summary of accuracy measures before and after batch correction for
the data simulated with different treatment effect variability (see Table 2) with (A) balanced and (B)
unbalanced batch × treatment designs. The proportion of correctly identified microbial variables with a
true treatment effect was assessed with Precision, Recall, F1 score and Multivariate selection score using
one-way ANOVA or sPLSDA. Treatment effects were generated with three choices of variability σ(trt)

(x-axis). Each point was averaged over 50 repeatedly simulated data, with error bars indicating estimated
sample standard deviations. All accuracy measurements of different batch corrected data slightly decreased
and their standard deviations increased when the σ(trt) is larger than 2.
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Figure S4: Simulation 4: summary of accuracy measures before and after batch correction for
the data simulated with different numbers of variables with a true treatment effect (see Table 2) with (A)
balanced and (B) unbalanced batch × treatment designs. The proportion of correctly identified microbial
variables with a true treatment effect was assessed with Precision, Recall, F1 score and Multivariate
selection score using one-way ANOVA or sPLSDA. Simulated data were generated with four choices of
numbers of treatment associated variables p(trt) (x-axis). Each point was averaged over 50 repeatedly
simulated data, with error bars indicating estimated sample standard deviations. The precision of corrected
data from different methods slightly increased because of the increase of p(trt) for the unbalanced design,
while similar among different p(trt) for the balanced deign with an exception of PLSDA-batch corrected
data. The multivariate selection scores of different corrected data were similar, except PLSDA-batch
corrected data whose multivariate selection score decreased.
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Figure S5: Simulation 5: summary of accuracy measures before and after batch correction
for the data simulated with different numbers of variables with a true batch effect (see Table 2) with (A)
balanced and (B) unbalanced batch × treatment designs. The proportion of correctly identified microbial
variables with a true treatment effect was assessed with Precision, Recall, F1 score and Multivariate selec-
tion score using one-way ANOVA or sPLSDA. Simulated data were generated with four choices of numbers
of batch associated variables p(batch) (x-axis). Each point was averaged over 50 repeatedly simulated data,
with error bars indicating estimated sample standard deviations. The increase of p(batch) resulted in an
increase of the precision of data corrected with removeBatchEffect, ComBat and sPLSDA-batch, while
a decrease with PLSDA-batch for the unbalanced design. The precision of all corrected data and with
different p(batch) were similar for the balanced deign except PLSDA-batch corrected data.
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Figure S6: Simulation 6: summary of accuracy measures before and after batch correction
for the data simulated with different numbers of variables with both treatment and batch effects (see
Table 2) with (A) balanced and (B) unbalanced batch × treatment designs. The proportion of correctly
identified microbial variables with a true treatment effect was assessed with Precision, Recall, F1 score and
Multivariate selection score using one-way ANOVA or sPLSDA. Simulated data were generated with five
choices of numbers of relevant variables with both treatment and batch effects p(trt & batch) (x-axis). Each
point was averaged over 50 repeatedly simulated data, with error bars indicating estimated sample standard
deviations. When p(trt & batch) was larger than 30 (a half of p(trt)), the precision of data corrected with
sPLSDA-batch was lower compared to removeBatchEffect and ComBat, but the recall and multivariate
selection score were higher regardless of different p(trt & batch).
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Figure S7: PCA sample plots of the AD data (A) before or after batch correction using (B) re-
moveBatchEffect, (C) ComBat, (D) PLSDA-batch and (E) sPLSDA-batch. Colours represent the effect
of interest (treatment types), and shapes the batch types. The variance explained by the first principal
component that separated the different treatment groups was increased in all of the corrected data, with
PLSDA-batch resulting in the highest proportion of variance.

Figure S8: PCA sample plots of the HFHS data (A) before or after batch correction using (B)
removeBatchEffect, (C) ComBat, (D) PLSDA-batch and (E) sPLSDA-batch. Colours represent the
effect of interest (diet types), and shapes the batch types. There is no obvious batch variation shown in
the data before correction. The proportion of variance explained by the first component (related to diet
effects) before batch correction and after was almost the same, indicating a good preservation of treatment
variation.
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Figure S9: Sponge study: R2 values for each microbial variable before and after batch cor-
rection. Each point represents one variable with respect to its fitted R2 from a one-way ANOVA with
a treatment effect (x-axis) or batch effect (y-axis) as covariate. All methods performed similarly, with an
exception of ComBat which included a few variables with batch variance.
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Figure S10: HFHS study: R2 values for each microbial variable before and after batch cor-
rection. Each point represents one variable with respect to its fitted R2 from a one-way ANOVA with a
treatment effect (x-axis) or batch effect (y-axis) as covariate. Combat corrected data included one variable
with a large proportion of batch variance. Compared to our proposed approaches, removeBatchEffect
removed more batch variance.
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