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Abstract  7 

The human bladder contains bacteria in the absence of infection. Interest in studying these 8 
bacteria and their association with bladder conditions is increasing, but the chosen experimental 9 
method can limit the resolution of the taxonomy that can be assigned to the bacteria found in the 10 
bladder. 16S rRNA gene sequencing is commonly used to identify bacteria, but is typically 11 
restricted to genus-level identification. Our primary aim was to determine if accurate species-12 
level identification of bladder bacteria is possible using 16S rRNA gene sequencing. We 13 
evaluated the ability of different classification schemes, each consisting of combinations of a 16S 14 
rRNA gene variable region, a reference database, and a taxonomic classification algorithm to 15 
correctly classify bladder bacteria. We show that species-level identification is possible, and that 16 
the reference database chosen is the most important component, followed by the 16S variable 17 
region sequenced.  18 
 19 
Importance 20 
Species-level information may deepen our understanding of associations between bladder 21 
microbiota and bladder conditions, such as lower urinary tract symptoms and urinary tract 22 
infections. The capability to identify bacterial species depends on large databases of sequences, 23 
algorithms that leverage statistics and available computer hardware, and knowledge of bacterial 24 
genetics and classification. Taken together, this is a daunting body of knowledge to become 25 
familiar with before the simple question of bacterial identity can be answered. Our results show 26 
the choice of taxonomic database and variable region of the 16S rRNA gene sequence makes 27 
species level identification possible. We also show this improvement can be achieved through 28 
the more careful application of existing methods and use of existing resources. 29 
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Introduction 42 

The human body provides a wide range of habitats, supporting a variety of microorganisms that 43 
include bacteria, archaea, viruses and fungi, collectively known as the human microbiome(1). 44 
Recent evidence from sequence-based and enhanced culturing techniques have revealed a 45 
population of microbes (bacteria, fungi and viruses) that exist in the bladder, even in the absence 46 
of infection(2–7). The discovery of the bladder microbiota (also known as the bladder urobiome) 47 
has led researchers to question how these microbes influence the health of the host. Studies have 48 
shown that altered bladder urobiome diversity is associated with urgency urinary incontinence 49 
(UUI)(4,8), urinary tract infection after instrumentation of the urinary tract(9,10), and is 50 
predictive of response to a common UUI drug (11). These studies collectively provide evidence 51 
that the bladder urobiome, while previously overlooked, is clinically relevant and warrants 52 
further investigation. 53 

To study the relationships between the bacteria found in the human bladder and health of the 54 
host, it is necessary to accurately identify bacteria in a rapid and large-scale manner. Reliable 55 
methods of determining the bacterial identity of an unknown bacterium include Matrix Assisted 56 
Laser Desorption/Ionization-time of flight (MALDI-TOF) analysis or whole genome sequencing 57 
(WGS) of purified colonies; both techniques permit species-level identification of bacteria(12). 58 
However, culturing specific bacterial species is also time consuming and laborious. This 59 
limitation has been circumvented by adopting culture-independent methods of sequencing DNA 60 
directly from an environmental sample, such as shotgun metagenomic sequencing and targeted 61 
amplicon sequencing, the latter most commonly involving the 16S rRNA gene(13). These 62 
culture-independent sequencing methods are an attractive strategy because they can more 63 
accurately reveal microbiota diversity by identifying bacteria that are difficult to grow in culture. 64 

Targeted amplicon sequencing is currently the most practical method for identifying bladder 65 
bacteria in a large-scale manner. When performing targeted amplicon sequencing, DNA is first 66 
extracted from all cells in a sample, including host and bacterial cells. Next, the polymerase 67 
chain reaction (PCR) is used to amplify a small segment of the bacterial genome. This segment is 68 
then sequenced in a high-throughput manner. Finally, bioinformatics are used to process the 69 
resulting sequences and identify the taxonomy of the bacteria. Algorithms compare the short 70 
DNA sequences recovered from a sample to known sequences held in a reference database until 71 
the closest match is found. In general, longer or more unique strings of sequenced DNA can be 72 
used to identify bacteria at a higher level of precision, though sequence length is often limited by 73 
the sequencing technology. The 16S rRNA gene is commonly used in amplicon sequencing 74 
studies due to its universal presence in bacteria. The 16S rRNA gene conveniently contains 75 
multiple “variable regions” with unique strings of sequence that can be used for bacterial 76 
identification. A common target is the 4th variable region (V4), as this region has good 77 
phylogenetic resolution down to the genus level for many bacteria(14).  78 

When identifying bacteria using targeted amplicon sequencing there are three important 79 
components (Figure 1). These components are: 1) the identifier, or DNA sequence of the 80 
unknown bacterium; 2) a database of DNA sequences annotated with taxonomic information; 81 
and 3) a classifier, which is the algorithm that compares the unknown sequence to those in a 82 
database until the closest match is found. These components work together as a classification 83 
scheme. One common classification scheme uses the V4 region from the 16S rRNA gene 84 
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sequence(15) as the identifier, the Silva database(16), and the Naïve Bayes algorithm(17). A 85 
limitation of this particular classification scheme, and many others commonly used, is that the 86 
phylogenetic resolution is usually constrained to the genus level. Recently, several new 87 
approaches to sequence processing and taxonomy assignment have become available, which may 88 
improve resolution to the species level (e.g. amplicon sequence variant algorithms such as 89 
DADA2(18), and taxonomic classifiers such as Bayesian Lowest Common Ancestor 90 
(BLCA)(19)). 91 

Our primary aim was to determine if species-level identification of bladder bacteria is possible 92 
from 16S rRNA gene sequencing studies. To achieve this aim, we used a representative sample 93 
of bacteria found in the human female bladder and published by Thomas-White and 94 
colleagues(20). This dataset includes bacteria found in the human female bladder that have been 95 
cultured, isolated, subjected to whole genome sequencing, and identified using full length 96 
sequences of 40 protein-encoding genes.. We used these known DNA sequences to determine 97 
which classification schemes would be most useful for future targeted amplicon sequencing 98 
studies. We evaluated several variable regions (i.e. potential identifiers), reference databases, and 99 
taxonomic classification algorithms for their ability to accurately identify bladder bacteria at the 100 
species level.  101 

 102 

Figure 1. Model of the components that make up a classification scheme to assign taxonomy to 103 
unknown sequences. A classification scheme consists of an identifier, a database, and a classifier. The identifiers 104 
used in this study are subsequences of the 16S rRNA gene, computationally generated using published primers as 105 
coordinates on the gene sequence. These targeted amplicons are the V3, V4, and V6 variable regions of the gene, or 106 
span the V1-V3, V2-V3, V3-V4, and V4-V6 variable regions. The databases used in this study are the Greengenes, 107 
Silva, and NCBI 16S. The classifiers used in this study are the Naive Bayes and Bayesian Lowest Common Ancestor 108 
(BLCA) algorithms. One example of a classification scheme is the V4 region identifier, Silva database, and Naive 109 
Bayes classifier. Another example classification scheme is the V6 region identifier, Greengenes database, and BLCA 110 
classifier. These two examples are distinct from each other and can have different outcomes when assigning 111 
taxonomy. 112 

Results 113 

Representation of bladder bacteria in 16S rRNA gene sequence databases. The Thomas-114 
White genome sequencing dataset consists of 149 bladder bacterial isolates, representing 78 115 
bacterial species from 36 genera(20). There are several databases available for bacterial 116 
identification using the 16S rRNA gene(21,22). Of these, Greengenes (v.13_5)(23), Silva (v. 117 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 28, 2020. ; https://doi.org/10.1101/2020.10.27.358408doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.27.358408
http://creativecommons.org/licenses/by-nc-nd/4.0/


 4 

132)(24), and NCBI 16S Microbial (v. August 2019) were evaluated due to their widespread use 118 
in amplicon sequencing studies and availability of species-level annotation. At the genus level, 119 
all but 1 genus (Globicatella) were present in the Greengenes database and all genera were 120 
present in the Silva and NCBI 16S Microbial databases. At the species level, all 78 bladder 121 
bacterial species were present in the Silva and NCBI 16S Microbial databases, whereas only 21 122 
species were present in the Greengenes database.  123 

Information contained in variable regions differs for bladder bacterial species. Sequencing 124 
studies frequently focus on a small segment of the 16S rRNA gene that can be rapidly sequenced 125 
in a high throughput manner using short read sequencing technology, such as the Illumina HiSeq 126 
or MiSeq. To evaluate the performance of different variable regions as identifiers, amplicons 127 
were computationally generated from the Thomas-White genome sequencing dataset for the V1-128 
V3, V2-V3, V3-V4, V4-V6, V3, V4, and V6 variable regions using published primers (see 129 
Methods). These computational amplicons (Figure 2A) were used to determine how well the 130 
currently available classification schemes can distinguish bladder bacterial species. To assess 131 
different classification schemes, we tested multiple permutations of the variable regions listed 132 
above with different databases (i.e. Greengenes, Silva, or NCBI 16S Microbial) and different 133 
classifiers (i.e. Naive Bayes or BLCA, see Figure 1).  134 

To quantify the amount of information contained across variable regions of the 16S rRNA gene 135 
among commonly identified bladder bacteria, we performed a sliding window analysis on a 136 
multiple sequence alignment (MSA) of all genomes from the Thomas-White dataset. We 137 
calculated entropy as a measure of information content along the MSA (Figure 2B). As 138 
expected, the defined variable regions contained regions of high entropy, suggesting variability 139 
across species, whereas variable regions were flanked by conserved regions with low entropy 140 
containing sequences that are similar among species. The V1 and V2 regions contained the 141 
highest entropy, while V7 and V8 contained the lowest.  142 

Evaluation of classification scheme performance. To evaluate the ability of 143 
currently available resources to identify bladder species, we calculated the recall, precision and 144 
F-measure for each classification scheme implemented (see Methods). Briefly, each resulting 145 
taxonomic classification was evaluated as a true match, true non-match, false match or false non-146 
match based on whether the taxonomic classification was correctly assigned or not. Recall refers 147 
to the proportion of matches that the classification scheme correctly identified out of all possible 148 
matches. Precision refers to the proportion of matches that the classification scheme called 149 
correctly out of all classified matches. The F-measure is the equally weighted harmonic mean of 150 
recall and precision.  151 

In general, the classification schemes that use the NCBI 16S Microbial database perform the best 152 
(Figure 3), with high recall and precision (range 60.3%-91.0% for both classifiers). Those using 153 
the Silva database show reduced precision and recall (range 23.1%-70.5% for both measures). 154 
Because the Greengenes database is missing many of the bacterial species found in the bladder, it 155 
is less precise. As such, classification schemes using the Greengenes database can have good 156 
recall values (range 50.0%-81.8%), but the precision values are very low (range 22.0%-36.0%), 157 
indicating a large proportion of false matches to the number of true matches.  158 
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 159 

When different variable regions are used as identifiers with Silva and NCBI 16S databases, there 160 
are differences in classification scheme outcomes. Using the Silva database and Naive Bayes 161 
classifier, the identifiers yielding the highest recall are the large V3-V4 (69.2%) and V4-V6 162 
(69.2%) targeted amplicons. Using the Silva database and BLCA classifier, the V1-V3 and V4-163 
V6 amplicons have the highest recall (55.1% and 48.7%, respectively). In contrast, the identifiers 164 
yielding the highest recall in classification schemes using the NCBI 16S database are the V1-V3 165 
(90.3% on average) and V2-V3 (89.1% on average) targeted amplicons, regardless of the 166 
classifier.  167 

 168 

Figure 2. Variable regions of the 16S rRNA gene used in this study. A) Locations of the primers used in 
this study on the 16S rRNA gene. Locations of the predicted amplicons are shown as black bars in relation to the 
multi-sequence alignment (MSA) of the bacterial species described in Thomas-White et al. (2018). Gray columns 
are the locations of the known variable regions based on the sequence from E. coli. B) The information of variable 
regions, measured by entropy from a sliding window analysis of the MSA. Higher entropy indicates that the 
region has more variability across species, and therefore more information to identify a bacterial species. Lower 
entropy indicates that the region has little variability (i.e. is conserved) across species and therefore less 
information to identify a bacterial species. 
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 169 

Confidence scores affect classification.  170 

The BLCA and Naïve Bayes classifiers used in this study will classify an unknown sequence 171 
even when the posterior probability for that taxon is very low. To account for this situation, a 172 
confidence score is calculated that measures how much the classification changes through 173 
random permutation (bootstrapping) and produces a value that reflects the “goodness of fit” of 174 
that classification. When lacking any knowledge of how to choose the best confidence score that 175 
minimizes the number of errors of a classification scheme (i.e. when a test set is not available), 176 
using a predefined confidence score threshold is an option. Here, we evaluated the performance 177 
of classification schemes when confidence score thresholds of 50% or 80% were used, such that 178 
matches returned with confidence scores less than the threshold were considered non-matches. 179 
Figure 4 shows the effect of increasing the confidence score on the number of true matches 180 
returned by each classification scheme. 181 

Almost all classification schemes had a decrease in recall when using a default confidence score 182 
of 80% (Supplemental Figure 1). This effect is especially marked for the classification schemes 183 
that use the Silva database, which shows a 79.3% reduction in recall, on average. Classification 184 
schemes that use the NCBI 16S database are unequally affected, for example the V1-V3 185 
identifier shows a slight reduction in recall (7.1% on average), while the V6 identifier shows the 186 
largest (43.3% on average). Classification schemes that use the Greengenes database are slightly 187 
affected. These reductions in recall are mirrored in all classification schemes when a confidence 188 
score of 50% is used as a threshold, but at a smaller magnitude. 189 

Figure 3: Classification scheme evaluation when ignoring confidence scores. The performance 
of each classification scheme is summarized by the precision (y axis) and recall (x axis) for each variable 
region (color). The best classification scheme would lie in the upper right-hand corner. Overall, 
classification schemes using the NCBI 16S Microbial database performed better than those using the 
Greengenes or Silva databases. 
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Changes in the precision of the classification schemes are affected the most by the database used 190 
(Supplemental Figure 1). For the classification schemes that use the NCBI 16S database, 191 
precision is generally improved regardless of confidence score, but at unequal amounts. For 192 
example, using the 80% threshold, the V1-V3 identifier shows a slight increase of 3.5% on 193 
average, while the V6 identifier shows a large 39.7% increase on average. Classification schemes 194 
that use the Silva database are unequally affected, with both reduction and gains in precision. A 195 
dramatic increase in precision is shown by the classification scheme composed of the Silva 196 
database, V4 identifier, and the Naive Bayes classifier. When ignoring a confidence score, this 197 
classification scheme has a precision of 52.6%, but shows a 63.1% gain when using a confidence 198 
score of 80% as a threshold. In general, precision is reduced when using the BLCA classifier and 199 
the Silva database. As with recall, classification schemes that use the Greengenes database show 200 
slight changes in precision.  201 

The overall changes in how these classification schemes perform when using a 50% or 80% 202 
confidence score can be summarized by comparing the F-measure values shown in 203 
Supplemental Figure 2. In almost every classification scheme, the F-measure value decreases 204 
when a threshold is used, indicating a larger proportion of false matches and false non-matches 205 
to the number of true matches. The classification schemes that use the Silva database clearly 206 
demonstrate this effect, which show a 66.9% reduction in F-measure values on average. The 207 
classification schemes that use the NCBI 16S database show slight decreases in the F-measure 208 
values, with the exceptions of those that use the V3, V4 and V6 regions as identifiers. Those 209 
classification schemes show a large 27.2% reduction in F-measure values on average. Finally, 210 
the classification schemes that use the Greengenes database have slight changes in their F-211 
measure values, regardless of using a threshold or not.  212 

Figure 4: The number of true matches returned for each classification scheme across all 
confidence score values. As the confidence score value is increased, the number of true matches dramatically 
decreases, especially for schemes using the Silva database.  
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Amplicons spanning more than one variable region identify a higher number of bladder 213 
bacterial species. Amplicons spanning more than one variable region identified more unique 214 
bladder bacteria at the species level than amplicons spanning a single variable region. For 215 
example, with the commonly used V4 variable region and Naïve Bayes classifier, 21.8% of 216 
bladder bacteria are correctly identified with the Greengenes database, whereas 52.6% are 217 
identified with the Silva database and 73.1% with the NCBI 16S database (Figure 5). However, 218 
with the NCBI database, when using amplicons spanning more than one variable region, such as 219 
the V1-V3 region, 91.0% of bacteria are correctly identified at the species level.  220 

Species identified depends on choice of database and variable region. While the results thus 221 
far have focused on summarizing overall performance of classification schemes for identifying 222 
bladder bacteria at the species level, we also sought to determine which classification schemes 223 
could be used to identify specific bacteria (Table 1, Supplemental Figure 3). Although the 224 
NCBI database contains the largest representation of bladder species, some species were not 225 
identified with certain variable regions, if at all. For example, Lactobacillus species were overall 226 
best represented within the NCBI database, with 8 out of 9 species being identified with the V1-227 
V3 and V2-V3 variable regions (Figure 6). However, the other variable regions only identified 228 
between 4 and 6 Lactobacillus species when using the NCBI database. Interestingly, 229 
Lactobacillus crispatus was identifiable with the Silva and NCBI databases when using the V4-230 
V6 regions, but only with the NCBI database using the V1-V3 and V2-V3 regions, and only the 231 
Silva database when using the V4 and V6 regions independently. Lactobacillus iners was not 232 
correctly identified from our dataset with any classification scheme.    233 

Additionally, we found that there were important discrepancies for bacteria that are thought to 234 
play a role in bladder health and disease (Supplemental Figure 3). Several bladder species, such 235 
as Gardnerella vaginalis, were only detected with the NCBI and Silva databases. Staphylococcus 236 

Figure 5: Percent of bladder bacteria correctly identified for each classification scheme. With the commonly 
used V4 variable region and BLCA classifier, 17% of bladder bacteria are correctly identified using the Greengenes database, 
compared with 35% correctly identified using the Silva database and 67% using the NCBI 16S database. A similar trend is seen 
with the Naïve Bayes classifier. Using other variable regions can lead to improved species-level resolution to a maximum 
number of 91% correctly identified. 
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species were poorly identified with the V4 region but were distinguishable with all other regions. 237 
Streptococcus and Corynebacterium species were best identified with NCBI. Escherichia coli is 238 
not well represented in any of the databases, and was only detected with the V4 region and the 239 
NCBI database.  240 

 241 

Figure 6: The ability of classification schemes to distinguish between different Lactobacillus 
species. Results shown for classification schemes using the BLCA classifier. Classification schemes using the 
NCBI 16S database have the most coverage, regardless of variable region chosen. The Greengenes database is not 
shown since it only classified two species (L. pontis and L. delbrueckii). 
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Table 1. Number of species identified with each database by variable region (BLCA).  242 

 243 
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Validation of computational findings on V4 amplicon data. To evaluate the performance of 244 
our computational findings on actual data, we acquired targeted amplicon sequencing data from 245 
24 urine samples. These urine samples were a subset of those that were used to derive cultures in 246 
the Thomas-White dataset and thus should contain the same bacteria.  Sequencing data were 247 
generated as part of two other studies using Illumina sequencing of the V4 region of the 16S 248 
rRNA gene(4,11). We reprocessed the raw sequencing data (see Methods) and performed 249 
taxonomic classification to assess the performance of our computational findings. Since 16S 250 
rRNA gene sequencing will detect many more bacteria than those identified even with enhanced 251 
culture, we restricted the evaluation to only the bacteria that grew in culture from a given sample. 252 
We used accuracy to assess the number of predicted matches that were correctly identified in the 253 
V4 dataset, using classification schemes composed of the V4 identifier, each of three databases, 254 
and the BLCA classifier (Figure 7). All databases had good accuracy with high proportions of 255 
accurate identifications at the species level (80% for NCBI 16S, 86% for Silva, and 88% for 256 
Greengenes). Accuracy was reduced when the default confidence score of 80% was applied 257 
(61% for NCBI 16S, 67% for Silva, and 86% for Greengenes). The default confidence score of 258 
50% reduced the accuracy of two of the classification schemes (76% for NCBI 16S and 80% for 259 
Silva). We also evaluated classification schemes with the Naive Bayes classifier and found 260 
similar results (Supplemental Figures 4 and 5) 261 

 262 

Figure 7. Taxonomic classification of the V4 validation dataset. A) Results when using a classification scheme including the 
V4 identifier, NCBI 16S database, and BLCA classifier. Blue dots represent species identified in cultured isolates, but not 
identified in targeted amplicon sequencing using this classification scheme. Yellow dots represent the species that were 
present in cultured isolates and successfully identified by the classification scheme. B) Summary of accuracy for 
classification schemes that use the V4 rRNA identifier, BLCA classifier, and the three databases (Greengenes, Silva and NCBI 
16S). Rows show accuracy results when ignoring confidence scores, and when using confidence scores of 50% or 80% as 
thresholds. 
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Discussion 263 

Our study demonstrates that it is possible to gain higher resolution results at the species level 264 
with existing resources when performing targeted amplicon sequencing of urinary specimens. 265 
Though higher resolution is possible, it requires a carefully chosen classification scheme. Within 266 
the classification scheme, the reference database strongly influences the identification of bacteria 267 
at the species level.  Overall, we found the NCBI 16S database performs the best, whereas the 268 
Greengenes database performs the worst, primarily because it does not currently contain 269 
representatives of bladder bacteria. The identifier, or 16S rRNA variable region that is chosen, 270 
can also influence the types of bacterial species that are identified. The choice of classifier did 271 
not drastically affect the identification of species and thus is less critical within the classification 272 
scheme.  273 

The largest limitation of any reference database is that the number of records of accurately 274 
classified bacteria is dwarfed by the number and diversity of unidentified sequences obtained 275 
through metagenomic sequencing of environmental samples. Because of the considerable 276 
amount of work required to construct and maintain databases, they will undoubtedly 277 
incompletely represent existing bacteria.  278 

For species level taxonomy assignments, the reference database must contain species-level 279 
information. In other words, if species of bacteria are expected in a sample, it must be verified 280 
that the database contains those species. For example, we found that the Greengenes database 281 
does not currently contain many bacterial species that are found in the human bladder. In 282 
contrast, the NCBI 16S Microbial and Silva databases had representation of all species that were 283 
identified from prior studies of bladder bacteria. Thus, the latter two databases are better choices 284 
for evaluating bacterial species from the bladder.  285 

While the databases reviewed in this study do have species-level information associated with the 286 
records, additional work was needed before species-level identification could be achieved with 287 
the Naïve Bayes classifier. This classifier requires a database that has undergone the "training" 288 
steps that convert the DNA sequences to the calculated frequencies that each k-mer occurs in a 289 
taxon. For available classification algorithms like the RDP classifier(25) and QIIME2(17), the 290 
training is only currently done to reliably identify bacteria to the genus level. For this study, it 291 
was necessary to train the Silva and NCBI 16S databases to the species level for use with the 292 
Naive Bayes classifier. While training the reference databases did take significant computational 293 
effort, once completed it was used repeatedly. 294 

The classifiers used in this study are examples of two different strategies designed to overcome 295 
the common challenges of searching an extremely large dataset in order to find matching pairs of 296 
query sequences and reference records. While these two approaches are different in concept, we 297 
did not find significant differences in their performance for species-level classification of bladder 298 
bacteria. 299 

BLCA is an example of sequence comparison by pairwise alignment. The strength of this 300 
method is due to the fact that the similarities between two DNA samples are directly compared. 301 
This is the most effective way to compare the characteristics of a sample to those that define a 302 
taxon; however, until recent advances in computer technology, it remained impractical because 303 
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of the computational burden. The Naive Bayes classifier is an example of a k-mer-based 304 
classification approach, and was designed to circumvent the computational challenges that are 305 
faced with use of a pairwise alignment classifier. However, there are limitations when using 306 
Naive Bayes for species-level identification. The first limitation arises from the database training 307 
process. If one taxon has more training examples than another, Naive Bayes generates 308 
unfavorable weights for the decision boundary(26). The second limitation is that all features (i.e. 309 
the k-mers generated from the DNA sequences) are assumed to be independent, and weights for 310 
taxa with strong dependencies among the associated k-mers are larger than those taxa with 311 
weakly dependent k-mers(26). 312 

Finally, as shown by both the computational and V4 validation results, the use of the 50% or 313 
80% confidence score thresholds significantly reduced the recall and accuracy of the 314 
classification schemes. Precision increased in several cases, for example with classification 315 
schemes that use the NCBI 16S database or those that use the Silva database and Naïve Bayes 316 
classifier, but at the cost of severely decreasing the number of species identified. These results 317 
show that the default settings of 50% or 80% are restrictive, and limit the ability to detect bladder 318 
species, especially when using the Silva and Greengenes databases. This could be resolved 319 
through the use of a comparative data set to find the confidence score values yielding optimal 320 
performance of these classification schemes.  321 

Affordable sequencing of large-scale data is presently done with short read sequencing 322 
technology, such as Illumina MiSeq. This is currently limited to sequencing reads up to 300 323 
nucleotides in length. Until full-length 16S rRNA gene sequencing can be achieved affordably 324 
on a large scale (such as with Oxford Nanopore and PacBio technologies), choosing the optimal 325 
region of the 16S rRNA gene for identification purposes remains a significant part of the 326 
experimental design. Thus, the variable regions that are used as identifiers require some 327 
consideration. 328 

Our findings show that use of the V2-V3, and V1-V3 regions of the 16S rRNA gene allowed for 329 
the correct identification of the most bladder bacterial species when combined with the NCBI 330 
16S database and either classifier. In general, amplicons that span more than one variable region 331 
perform better than those that contain single variable regions. This is likely due to the increased 332 
information available with longer reads. It is important to note that longer reads can also have 333 
limitations, which are discussed in more detail below.  While shorter variable regions, such as 334 
the V4 region, did not perform as well as longer amplicons, they were able to identify many 335 
bladder bacteria at the species level (52 out of 78). These shorter amplicons are widely used with 336 
Illumina sequencing and may be valid, depending on the study design and level of precision 337 
desired. However, other variable regions may be explored for practical application, or when 338 
more detailed information is desired.  339 

By taking a computational approach to evaluating classification schemes that are capable of 340 
identifying bladder bacterial species, we were able to thoroughly assess the ability of 341 
classification schemes to identify known bacterial species. However, there are several practical 342 
limitations of amplicon sequencing that were not captured in this approach.   343 

Targeted amplicons are generated by priming the polymerase chain reaction with specially 344 
designed oligonucleotides (PCR primers). The challenge of PCR primer design is to identify a 345 
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sequence of nucleotides that will anneal to only one location on the template DNA. Finding 346 
suitable annealing sites that flank the variable region of interest becomes very difficult when 347 
considering the 16S rRNA gene sequence of many species. We used published primers to create 348 
computational amplicons, but this may not reflect the actual experimental efficiency. Finally, 349 
quality control with DNA sequence processing must be conducted before classification is 350 
performed. Targeted amplicon sequencing generates a large number of overlapping reads and 351 
provides the data for methods to correct for errors introduced by the polymerase enzyme. After 352 
error correction, similar reads are aggregated into operational taxonomic units or amplicon 353 
sequence variants. The last step is to attempt to merge reads that are complementary before 354 
attempting to classify them. If the sequence reads do not overlap, loss of phylogenetic 355 
information occurs in the gaps and impacts the accuracy of identification, which may occur for 356 
longer amplicons, such as the V1-V3 and V4-V6 regions.  357 

In our study, we identified the V1-V3 region of the 16S rRNA gene as having the greatest 358 
taxonomic resolution for the bacteria that are found in the bladder. This may be attributed to the 359 
high occurrence of insertions and deletions (indels) in the conserved regions between the first 360 
three variable regions across the bacteria in the Thomas-White dataset. Designing one degenerate 361 
primer set that would amplify the entire dataset may not be possible for this region. A future 362 
research direction could be to stratify the Thomas-White dataset into smaller, more closely 363 
related phylogenetic groups for more specific primer design. 364 

Conclusion 365 

Species level taxonomy assignment will greatly benefit studies focused on the urobiome and its 366 
relationship to bladder health and disease. Our results show that it is possible to reliably classify 367 
bladder bacterial species using targeted amplicon sequencing of the 16S rRNA gene variable 368 
regions with existing classification algorithms and databases. We determined that the most 369 
important component of the classification scheme is the database used, and that the NCBI 370 
database allows for best identification of bladder species. Our validation with V4 amplicon data 371 
demonstrates that the predicted computational outcomes are a good approximation for how a 372 
classification scheme will perform on real data. The knowledge that a majority of the predicted 373 
matches reflect reality is encouraging. It can be expected that the alternate variable regions 374 
covered in this study, such as the V2-V3 region of the 16S rRNA gene, would have similar 375 
outcomes. 376 

Importantly, we found that no single variable region gives 100% coverage of all bladder bacteria 377 
species. Thus, the choice of variable region may significantly affect the results of a given study. 378 
One approach to resolve this could be to use multiple amplicon sequencing or long read 379 
sequencing technology. These technologies are emerging and may prove to be beneficial for the 380 
urobiome community. Furthermore, no database has 100% coverage across a variable region. 381 
This could be resolved by using more than one database for classification, though this approach 382 
is complicated by differences in databases in terms of formatting, as well as conflicting 383 
classifications. Both of these components are important for planning experimental and 384 
computational aspects of urobiome studies, and should be considered when comparing results 385 
across studies. 386 

 387 
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Material and Methods 388 

Code resources. All scripts that were written for this project can be found in the GitHub 389 
repository (https://github.com/lakarstens/BladderBacteriaSpecies). All scripts sourced from this 390 
repository are referred to as “custom.” 391 

The Thomas-White dataset. The 78 species of bladder bacteria used in this study were 392 
identified by culturing 149 urine samples and performing whole-genome sequencing, as 393 
described in Thomas-White et al.(20). This set of identified species served as the basis for our 394 
computational analysis and is referred to as the Thomas-White dataset. For each species 395 
identified, the 16S rRNA gene sequence of the corresponding type strain was downloaded from 396 
the Silva v132 release (https://www.arb-silva.de/) on 4/27/2019. A type strain is the sequence of 397 
the cultured isolate that was subject to the metabolic, genotypic and phenotypic evaluations taken 398 
to define the bacterial species(27), and is the agreed bacterial organism to which the taxonomic 399 
name refers. Sequences were searched using the “[T]” filter setting, and sequences longer than 400 
1450 nt with alignment and pintail quality scores greater than 95% were selected. For the species 401 
that had no hits, the taxonomic synonym (see below) was used as the search query, if available. 402 
One unidentified Corynebacterium species had no type strain available, and was excluded from 403 
the analysis. 404 

The V4 validation dataset. Targeted amplicon sequences from 24 urine samples, using the 405 
V4 region of the 16S rRNA gene sequence, is referred to as the V4 validation dataset. These 24 406 
urine samples originated from a subsample of the women whose samples comprised the Thomas-407 
White dataset. Sequencing data were generated as part of two other published studies using 408 
Illumina sequencing of the V4 region of the 16S rRNA gene(4,11). The raw sequence reads were 409 
processed with DADA2 version 1.14.1(18) to generate amplicon sequence variants (ASVs). The 410 
ASVs were subjected to taxonomic classification with the BLCA algorithm. 411 

Synonyms of species. Species names have changed in response to advances in bacterial 412 
systematics. All currently known species synonyms were downloaded from the Prokaryotic 413 
Nomenclature Up-to-Date(28) (PNU) website on 1/5/2020. PNU includes information down to 414 
the strain level, but these entries were consolidated to the species level. For example, entries like 415 
Enterobacter cloacae and Enterobacter cloacae dissolvens are treated as synonyms of 416 
Enterobacter cloacae. Classification results were then checked for synonyms using the custom 417 
“validate_match_batch.py” script. 418 

Databases. The Greengenes database version 13_5 was downloaded on 9/23/19 from 419 
(http://greengenes.secondgenome.com/?prefix=downloads/greengenes_database/gg_13_5/). For 420 
use with BLCA, the database was processed using the provided "1.subset_db_gg.py" script 421 
(https://github.com/qunfengdong/BLCA/). For use with the Qiime2 package, the FASTA file 422 
was reformatted to work with Qiime2 using the custom "write_qiime_train_db.py" script, and 423 
trained to work with the Naive Bayes classifier with the provided "fit-classifier-naive-bayes" 424 
script. 425 

The Silva database version 132 was downloaded on 9/14/19 from (https://www.arb-426 
silva.de/no_cache/download/archive/release_132/Exports/) as a FASTA formatted file. The 427 
FASTA file was compiled into a database that could be used with BLCA by using the 428 
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"makeblastdb" utility provided in the Blast+ suite. The taxonomy file that was required by 429 
BLCA was generated with the custom "write_taxonomy.py" script. For use with the Qiime2 430 
package, the FASTA file was reformatted to work with Qiime2 using the custom 431 
"write_qiime_train_db.py" script, and trained to work with the Naive Bayes classifier with the 432 
provided "fit-classifier-naive-bayes" Qiime2 script. 433 

The 16SMicrobial database is bundled with the BLCA package, but is available from 434 
(ftp://ftp.ncbi.nlm.nih.gov/blast/db/). For use with BLCA, the database was processed using the 435 
provided “1.subset_db_acc.py” script included with BLCA. For use with the Qiime2 package, a 436 
FASTA file was extracted from the bundled BLCA database using "blastdbcmd" utility provided 437 
in the Blast+ suite, and reformatted to work with Qiime2 using the custom 438 
"write_qiime_train_db.py" script. The database was trained to work with the Naive Bayes 439 
classifier with the provided "fit-classifier-naive-bayes" script included in Qiime2. 440 

Presence of Thomas-White species in databases. To verify that all species from the 441 
Thomas-White dataset were present in the databases used in this study, each database was first 442 
converted to a FASTA file (if needed) using the "blastdbcmd" utility included in the Blast+ suite. 443 
The FASTA file was then searched using regular expressions and the Linux command-line 444 
program grep for a match of each species in the dataset. The commands were implemented using 445 
the custom "species_in_db.bash" script. The presence or absence of each species was recorded. 446 

Multisequence alignment. The 16S gene sequences from the Thomas-White dataset were 447 
formed into a multi-sequence alignment using the T-coffee program(29). T-coffee version 448 
12.00.7fb08c2 was downloaded from (http://tcoffee.org/Packages/Stable/Latest/) on 4/5/2019. 449 
Alignments were performed using the default settings. 450 

Sliding window analysis. Comparing the 16S rRNA gene sequences of the species in the 451 
Thomas-White dataset reveals regions of conserved sequence and regions of variability. The 452 
degree that variable regions of species differ from each other can aid the identification of each 453 
species; therefore, quantifying the amount of variability of a region across a set of species is 454 
important. 455 

Sliding window analysis (SWA) is the method by which a list of subsequences are generated by 456 
taking successive groups of equal size, in the manner of a window of fixed length sliding across 457 
the full sequence. Quantifying the amount of variability along a MSA is achieved by combining 458 
SWA with calculating the Shannon Entropy contained in each column framed by the window.  459 

The minimum Shannon entropy occurs when all nucleotides in a position (column) of the MSA 460 
are the same. The maximum occurs when all possible nucleotides in the MSA are present at that 461 
position. However, the Shannon Entropy treats gaps in a sequence as relevant, where in practice 462 
gaps reflect an absence of useful information. Multisequence alignments can generate many 463 
columns of gap characters due to insertions or deletions (indels) in the respective sequences that 464 
make up the MSA. A consequence of treating gaps as relevant is the Shannon Entropy will 465 
interpret these indel regions as conserved sequence. This limitation was overcome by weighting 466 
the entropy scores against gaps(30). The locations of known variable regions of the 16S gene 467 
sequence were validated, and the relative amount of variability was quantified, using the custom 468 
"weighted_ent.py" script.  469 
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Primers. Amplicons were computationally generated from the Thomas-White genome 470 
sequencing dataset for the V1-V3, V2-V3, V3-V4, V4-V6, and V4 variable regions using 471 
published primers and the V3 and V6 regions using designed primers. The primer sequences 472 
used, listed in order of amplicon spanning variable region(s), forward primer name and sequence, 473 
reverse primer name and sequence are: V1-V3: A17F 5'-GTT TGA TCC TGG CTC AG-3', 515R 474 
5'-TTA CCG CGG CMG CSG GCA-3'(31,32). V2-V3: 16S_BV2f 5'-AGT GGC GGA CGG 475 
GTG AGT AA-3', HDA-2 5'-GTA TTA CCG CGG CTG CTG GCA C-3'(33,34). V3: v3_579F 476 
5'-THT TSS RCA ATG GRS GVA-3', v3_779R 5'-GKN SCR AGC STT RHY CGG-3'. V3-V4: 477 
V3F 5'-CCT ACG GGA GGC AGC AG-3', V4R 5'-GGA CTA CHV GGG TWT CTA AT-478 
3'(35). V4: F515 5'-GTG CCA GCM GCC GCG GTA A-3', R806 5'-CCT GAT GHV CCC 479 
AWA GAT TA-3'(36). V4-V6: 519F 5'-GTG CCA GCT GCC GCG GTA ATA-3', 1114R 5'-480 
GGG GTT GCG CTC GTT GC-3'(32). V6: v6_1183F 5'-CCG CCT GGG GAS TAC GVH-3', 481 
v6_1410R 5'-AGT CCC RYA ACG AGC GCA-3'. Degenerate primer design was employed to 482 
generate primer sets for the V3 and V6 regions of the 16S rRNA gene that would anneal to as 483 
many species in the Thomas-White dataset as possible with DegePrime(37) 484 
(https://github.com/EnvGen/DEGEPRIME.git). DegePrime has the option to ignore columns of a 485 
MSA if the number of “-“ characters exceed a user-defined threshold. The MSAs were 486 
preprocessed with this threshold set to .01. The main script of DegePrime was run using a 487 
degeneracy setting of 4096 and a window length of 18. 488 

Extracting computational amplicons. For each primer set, the DNA sequence 489 
bracketed by the forward and reverse primers was extracted from the multisequence alignment. 490 
Coordinates of the MSA were identified by searching the E. coli sequence (accession number 491 
EU014689.1.1541) included in the MSA for a match to the forward and reverse primer 492 
sequences, and then mapping those position to the MSA of the Thomas-White dataset. This 493 
procedure was done using the custom "extract_16s_vr.py" script and output as a multi-record 494 
FASTA formatted file. 495 

Taxonomic classifiers. Taxonomic classification was performed with Bayesian lowest 496 
common ancestor (BLCA) and Naïve Bayes classifiers. BLCA(19) was cloned from the 497 
GitHub repository https://github.com/qunfengdong/BLCA.git. For the 16S variable regions, the 498 
BLCA was run using default settings but pointing to the selected reference database, either 499 
Greengenes, Silva, or NCBI 16S. The Naïve Bayes classifier as implemented by Qiime2(17) was 500 
used with the Greengenes, Silva, and NCBI 16S databases and a confidence setting of 0, 50, and 501 
80, but otherwise default settings. 502 

Evaluating computational results. To evaluate the taxonomic classification results of 503 
each classification scheme on the computational amplicon dataset, the custom 504 
"new_taxonomy_results_2020-3-14.Rmd" file was used. These scripts compare the results of 505 
each record pair (each comparison between the query sequence and sequence held in the 506 
reference database) from the classification scheme to the known identify of the query sequence 507 
from the Thomas-White dataset. All record pairs that were assigned a match by the classification 508 
schemes were evaluated according to the following definitions (Figure 8): 509 

True match - All record pairs assigned as a match that have identical genus and species 510 
labels. 511 
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False match - All record pairs assigned as a match that did not have identical genus and 512 
species labels. 513 
False non-match - If a record representing a species in the Thomas-White dataset was 514 
present in the database, but was not assigned as a match, the record was evaluated as a 515 
false non-match.  516 
True non-match - All records in the reference database that were not in the Thomas-517 
White dataset. While records assigned to this category were not used in evaluating the 518 
classification schemes in this manuscript, the definition is still included for completeness. 519 

 520 
 521 
 522 

Performance measures. Recall, precision and the F-measure were used to evaluate the 523 
performance of each classification scheme implemented. Recall refers to the proportion of 524 
matches that the classification scheme correctly identified (true matches) out of all possible 525 
matches (true matches plus false non-matches). Precision refers to the proportion of matches that 526 
the classification scheme called correctly (true matches) out of all classified matches (true 527 
matches plus false matches). The F-measure is the equally weighted harmonic mean of recall and 528 
precision. For this study, we chose to maximize recall over precision, because the number of true 529 
matches impacts the subsequent work on diversity measures, such as species richness and 530 
evenness(38). 531 

Evaluating V4 validation results. The species of bacteria in the V4 seqeuncing data 532 
were identified using classification schemes composed of the V4 sequencing results as the 533 
identifier, BLCA classifier, and the Greengenes, Silva, and NCBI 16S microbial databases. To 534 
determine the expected bacterial species in each sample, the results of the whole genome 535 
sequencing on the isolates cultured from the corresponding subject was used.  For each 536 

Figure 8. Example of classification evaluation used in this study. Suppose there is a classification scheme 
comprising a set of query sequences (the rows E,F,G) and the set of reference sequences (the columns E,F,L,M) held 
in a reference database. In this example, the number of reference records is greater than the query records, and the 
reference is missing a corresponding G record from the query set. A) If the query and reference record letters are the 
same, then they are designated as a match. If they are different they are designated as a non-match. B) Next, the 
classifier is allowed to assign record pairs as matches or non-matches for all query sequences, represented as green 
plus signs for matches and blank cells as non-matches. Some results are correct, and some are not. Note that despite 
the lack of a matching record in the reference database, the classifier still designated the (G:M) pair as a match. C) 
Using the definitions for assigning the classifications to the confusion matrix, there is one true match (green 
square), two false matches (red squares), one false non-match (yellow square), and 8 true non-matches (white 
squares). D) The cell values of the confusion matrix are then filled out, and performance measurements can be 
calculated. For this classification scheme, the precision is 1/(1+2)=.33, recall is 1/(1+1)=.5, and the F-measure is 
(2*.33*.5)/(.33+.5)=.40. 
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classification scheme, accuracy was calculated by enumerating the number of species identified 537 
by WGS that were also identified by the V4 16S targeted amplicon sequencing using the custom 538 
"real_world_data_2020-4-17.Rmd" file. 539 

The results of the V4 validation set were evaluated according to the following definitions 540 
(Figure 9): 541 

True match - All matches from the computational classification scheme that were 542 
correctly identified by V4 16S targeted amplicon sequencing 543 
False match - All species identified by V4 16S targeted amplicon sequencing that were 544 
not identified by the computational classification scheme 545 
False non-match - All matches from the computational classification scheme that were 546 
not identified by V4 16S targeted amplicon sequencing 547 
True non-match - All species that were not identified by either the computational 548 
classification schemes or the V4 16S targeted amplicon sequencing 549 

Figure 9: Definitions of how the classification scheme outcomes are assigned to the 
cells of the confusion matrix for the V4 validation results. This example shows the 
classification scheme composed of the Greengenes database, BLCA classifier, and the V4 region of 
the 16S rRNA gene as the identifier. When the Thomas-White dataset is subsetted by the 24 
samples that underwent targeted amplicon sequencing, a smaller set of 49 species remains. The 
light yellow rows indicate the species correctly identified by the computational classification 
scheme. Blue dots represent species identified in the collected samples by whole genome 
sequencing after expanded urine culturing and isolation. Yellow dots indicate the species were 
identified in those samples by V4 targeted amplicon sequencing. Yellow dots in light yellow rows 
are true matches, when found elsewhere they are false matches. Blue dots in the light yellow rows 
are false non-matches, when found elsewhere they are true non-matches. 
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Data Availability.  550 
This project used previously acquired publicly available data.20 All code that was written for this 551 
project can be found in the GitHub repository: 552 
https://github.com/lakarstens/BladderBacteriaSpecies.  553 
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Supplemental Figures 689 

 690 
Supplemental Figure 1. Classification scheme precision and recall when using a confidence 691 
scores of (A) 80% and (B) 50% as a threshold. The schemes that use the Silva database have 692 
very low recall compared to when the confidence score is ignored (gray dots), whereas schemes 693 
that use Greengenes and NCBI 16S are not as affected. 694 
 695 

 696 
 697 
Supplemental Figure 2. F-measure values for all classification schemes. Values shown are for 698 
confidence scores of 50%, 80%, and when confidence scores are ignored. 699 
 700 
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Supplemental Figure 3. Bladder bacterial species identified by database, variable region, and 701 
BLCA classifier.  702 
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 703 
 704 

 705 
Supplemental Figure 4. Values for accuracy, precision and recall (columns) when assigning 706 
taxonomy with the V4 identifier, Naive Bayes classifier and all databases. Rows are values when 707 
ignoring confidence scores, and when using confidence scores of 50% or 80% as thresholds. 708 
 709 
 710 
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 711 
 712 
Supplemental Figure 5. Values for accuracy, precision and recall (columns) when assigning 713 
taxonomy with the V4 identifier, BLCA classifier and all databases. Rows are values when 714 
ignoring confidence scores, and when using confidence scores of 50% or 80% as thresholds. 715 
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