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ABSTRACT 
Microbes produce a plethora of secondary metabolites that although not essential for primary 

metabolism benefit them to survive in the environment, communicate, and influence 

differentiation. Biosynthetic gene clusters (BGCs) responsible for the production of these 

secondary metabolites are readily identifiable on the genome sequence of bacteria. 

Understanding the phylogeny and distribution of BGCs helps us to predict natural product 

synthesis ability of new isolates. Here, we examined the inter- and intraspecies patterns of 

absence/presence for all BGCs identified with antiSMASH 5.0 in 310 genomes from the B. 

subtilis group and assigned them to defined gene cluster families (GCFs). This allowed us to 

establish patterns in distribution for both known and unknown products. Further, we analyzed 

variations in the BGC structure of particular families encoding for natural products such as 

plipastatin, fengycin, iturin, mycosubtilin and bacillomycin. Our detailed analysis revealed 

multiple GCFs that are species or clade specific and few others that are scattered within or 

between species, which will guide exploration of the chemodiversity within the B. subtilis 

group. Uniquely, we discovered that partial deletion of BGCs and frameshift mutations in 

selected biosynthetic genes are conserved within phylogenetically related isolates, although 

isolated from around the globe. Our results highlight the importance of detailed analysis of 

BGCs and the remarkable phylogenetically conserved errodation of secondary metabolite 

biosynthetic potential in the B. subtilis group. 

 

IMPORTANCE 
Members of the B. subtilis species complex are commonly recognized producers of secondary 

metabolites, among those the production of antifungals makes them promising biocontrol 

strains. However, while there are studies examining the distribution of well-known B. subtilis 

metabolites, this has not yet been systematically reported for the group. Here, we report the 

complete biosynthetic potential within the Bacillus subtilis group species to explore the 

distribution of the biosynthetic gene clusters and to provide an exhaustive phylogenetic 

conservation of secondary metabolite production supporting the chemodiversity of Bacilli. We 

identify that certain gene clusters acquired deletions of genes and particular frame-shift 

mutations rendering them inactive for secondary metabolite biosynthesis, a conserved genetic 

trait within phylogenetically conserved clades of certain species. The overview presented will 

superbly guide assigning the secondary metabolite production potential of newly isolated 

strains based on genome sequence and phylogenetic relatedness.    
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OBSERVATION 
 

Bacilli can be isolated from various environments, plant rhizosphere, animal and human 

digestive system, where secondary metabolites (SMs), metabolites not necessary for primary 

metabolism, play a pivotal role. The Bacillus subtilis group, which includes B. subtilis and its 

closely related species (Fig. 1), comprises common producers of bioactive SMs such as 

antimicrobials and cytotoxic substances, empowering them for a range of industrial 

applications, including plant pathogen biocontrol (1, 2). Members of the B. subtilis group are 

producers of numerous well-known natural products, iturin, mycosubtilin, fengycin/plipastatin, 

or bacillaene. Only recent studies have emerged that investigated species-level distribution of 

the corresponding biosynthetic gene clusters (BGCs) in the B. subtilis group (3). Recent 

reviews provide an overview of various SMs produced by these Bacilli (1, 4). 

 

Here, we significantly expand previous studies by investigating patterns in all complete B. 

subtilis group genomes as of July 2019. We therefore examined phylogenetic distribution of 

BGC families in 310 B. subtilis group genomes (Data S1) by predicting BGCs with a modified 

version of antiSMASH 5 (5), clustering these into gene cluster families (GCFs) with BiG-

SCAPE (6), and visualizing GCF distributions in a phylogenetic tree generated with autoMLST-

derived scripts (7) (Fig. S1, S2). 
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Fig. 1: Phylogenetic tree based on a multilocus sequence alignment of 30 genes with a 
modified version of autoMLST, using IQ-TREE and ultrafast bootstrapping with 1000 
replicates. B. cereus ATCC 14579 and B. megaterium NBRC 15308 were used as an 
outgroup. Absence/presence of GCFs is visualized with a red dot indicating presence and a 
gray dot indicating absence. Fig. S1 includes the complete tree. Strains with disagreements 
in NCBI and GTDB taxonomy are highlighted. 
 

Phylogeny was generated based on a multilocus sequence alignment of 30 conserved single-

copy genes (Fig. 1), generally reflecting NCBI taxonomy, but with certain disagreements in 

the B. velezensis and B. amyloliquefaciens clades (highlighted in Fig. 1 and Materials and 

Methods).  

 

The 3655 BGCs identified using antiSMASH 5 (5) were assigned into 75 GCFs and 62 

singletons with BiG-SCAPE (6) (Fig. S2), GCFs were subsequently mapped to the tree (Fig. 

1). Only one predicted metabolite, a terpene (sesquarterpene), was found in nearly all strains, 

while another, a predicted NRPS/PKS hybrid, was found in most species except B. pumilus 

and B. xiamenensis. Other widespread GCFs are bacillibactin, surfactin, and bacilysin. 

Bacillaene and sublancin 168 families were found in most species, except B. licheniformis, B. 

paralicheniformis, B. pumilus, and B. xiamenensis; however, there are two gaps seemingly 

following clade boundaries in B. subtilis. A similar gap in distribution occurs in bacilysin, which 

is absent in B. spizizenii and B. atrophaeus. 

 

Such apparently clade-linked patterns in absence or presence of GCFs were common - many 

GCFs were distributed according to phylogeny, either linked to clades spanning multiple 

species or limited to a single species. Lichenysin, a clade-specific GCF, was identified only in 

B. licheniformis and B. paralicheniformis. Distribution of the highly similar lipopeptides fengycin 

and plipastatin also followed clade boundaries, with fengycin in B. velezensis and B. 

amyloliquefaciens and plipastatin in B. subtilis and B. atrophaeus. However, as previously 

reported (8), no plipastatin was found in B. spizizenii, but rhizocticin, supporting clade’s 

biosynthetic distinctness. 

 

Other examples of clusters almost or entirely limited to one species in the tree included 

bacitracin, which was present in all examined B. paralicheniformis genomes, and difficidin and 

macrolactin, both found in most B. velezensis (though macrolactin was also present in single 

isolates of other species). Certain species-specific GCFs were found dispersedly, for instance, 

the B. subtilis-specific subtilomycin was apparently linked to certain clades within the species, 

or the ribosomally synthesized and post-translationally modified peptide coding 33_RiPP or 

49_RiPP families that were also species specifics. Additionally, certain families appeared in 
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multiple clades, but in a clade-linked pattern (17_RiPPs in B. velezensis), while others were 

missing in one or more clades (15_Others in B. subtilis). 

 

Finally, other GCFs appeared more scattered within a species, with no link to a certain clade 

evident, such as the 42_NRPS GCF in B. velezensis (Figure S1). Only a few GCFs (e.g. 

39_RiPP), appeared scattered across the entire tree without noticeable link to certain clades. 

Scattered patterns and random occurrences of GCFs outside of key species might be driven 

by  horizontal gene transfer, in accordance with natural competence of  B. subtilis (4) for 

instance, the 42_NRPS family contains the nrs cluster of B. velezensis FZB42, suggested to 

be  acquired via HGT (9). 

 

 
Fig. 2. Comparison of plipastatin/fengycin/iturin families of BGCs. A-C. Similarity networks 
representing the plipastatins, fengycins, and iturin-like BGC families, respectively. The 
different colors represent different species of Bacillus. Iturin like BGCs are grouped based on 
amino acid specificity predictions instead of BiG-SCAPE generated similarity index (Table S1). 
D-E. Selected clusters are shown from different groups of plipastatins and fengycins, 
respectively. The detailed genetic structure of all incomplete BGC families can be found in Fig. 
S3. F. Phylogenetic distribution of different groups of BGCs is presented across selected 
genomes. For a complete list of all genomes and different groups of BGCs, see Fig. S4. 
 
 

Next, we compared the genetic variation within particular GCFs and investigated the 

phylogenetic relation among these variants, selecting families that code for important Bacillus 

SMs, fengycin, plipastatin, iturin, bacillomycin, and mycosubtilin.  
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A total of 128 BGCs were part of the similarity network with BGCs for plipastatin, a 

biodegradable fungicide (1). Based on the similarity network these BGCs were grouped into 6 

groups: PPS, PPS groups B to E and PPS_others (Fig. 2, Data S2). Plipastatins are mostly 

observed in the B. subtilis genus, with exception of group B BGCs in B. atrophaeus. We found 

that 72 BGCs from group PPS and 7 BGCs from group B had all biosynthetic genes (BGs) for 

plipastatin (ppsA to ppsE). In contrast, groups C, D, E and “others” had BGCs missing upto 

three BGs (Fig. S3), consistent with experimental data demonstrating lack of plipastatin 

production in B. subtilis natto BEST195 (10) and B. subtilis P5_B2 (3) (Fig. 2). A similar 

deletion of BGs was found in several other strains. Interestingly, these strains are 

phylogenetically close to each other suggesting such deletions being conserved within a single 

clade (Fig. 2F, Fig. S4). Additionally, in plipastatin BGCs of group E, gene ppsE appeared to 

have missing domains (Fig. S5). Investigation of the nucleotide sequences of ppsE gene 

homologs revealed a deletion at position 232 of reference ppsE gene across all the 16 

members of group E, leading to frameshift (Fig. S5). This frameshift was present in multiple 

strains isolated from distincts geographic locations (Data S2) but belonging to the same 

phylogenetic clade suggesting an evolutionarily conserved frameshift in ppsE gene that could 

lead to loss of function.  

 

The fengycin family network contained 123 BGCs from B. velezensis and B. amyloliquefaciens 

species, in addition to 5 isolates likely misclassified as “B. subtilis”, which based on MLSA 

data should be assigned as  B. velezensis strains (Data S2, Fig. S4). The fengycin BGCs 

could be divided into 4 groups, with 96 BGCs containing all BGs (fenA to fenE). BGCs from 

groups B, C and others contained incomplete BGCs with upto three of the BGs missing (Fig. 

S3). The strains harboring these incomplete fengycin BGCs were also found to be 

phylogenetically close, similar to plipastatins, suggesting these deletions being conserved 

within a single clade (Fig. 2F, Fig. S4). As above for ppsE gene, many phylogenetically close 

strains harboring group B of fengycin contained a frameshift at positions 3126-3127 of fenD 

gene suggesting a possible evolutionary trait of the clade (Fig. S6).  

 

Unlike above, sequence similarity alone could not divide the 141 iturin-like BGCs into distinct 

groups due to conserved BG sequences, which differ only in the individual amino acid 

substrate specificities leading to production of diverse lipopeptides like iturin A, bacillomycin 

D-F-L, and mycosubtilin (11) different levels of bioactivity (4). Therefore, antiSMASH predicted 

amino acid substrate specificity for all NRPS adenylation domains was used to group the 

BGCs into iturin A, bacillomycin D-F-L, mycosubtilin and “others” that have less than 7 (typical 

of iturins) amino acid substrates (Table S1, Data S2). Mapping these data onto the  

phylogenetic tree revealed that each group is conserved in closely related strains. Mycosubtilin 
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group detected in B. atrophaeus and few B. subtilis (mostly in subspecies spizizenii), 

bacillomycin in 3 of B. inaquosorum, whereas iturin A, bacillomycin D and bacillomycin F was 

spread across different B. velezensis and B. amyloliquefaciens isolates, confirming previously 

proposed species and strain level presence of iturinic lipopeptides (11).  

 

Our detailed BGC comparison identified variations in particular GCFs to be phylogenetically 

conserved. Such phylogenetic correlation of different BGC groups and particular frameshifts 

suggest evolutionary relationships among production capabilities of Bacillus strains. 

Therefore, our workflow combining comparative analysis of BGCs and phylogenetic 

relationships revealed how a particular BGC is evolved within species. This knowledge, and 

closer examination of the exceptions, may guide selection of specific strains as antimicrobial 

producers within underexplored groups of SM producers. 

 

MATERIALS AND METHODS 
 
Genome selection. Initially, all genomes of B. amyloliquefaciens, B. atrophaeus, B. 

licheniformis, B. paralicheniformis, B. pumilus, B. subtilis, B. velezensis, B. xiamenensis and 

a few related Bacillus sp. strains with assembly status “complete” or “chromosome” publicly 

available from NCBI in July 2019 were selected. Additionally, the type strains of B. cereus 

and B. megaterium were included as outgroups. The strain list was then curated to remove 

duplicates. Further, the genomes of engineered B. subtilis and strains were removed(B. 

subtilis BEST7613, B. subtilis delta6, B. subtilis IIG-Bs27–47-24, B. subtilis PS38, and B. 

subtilis PG10, as described in (12), as well as B. subtilis BEST7003, B. subtilis QB5413, B. 

subtilis QB5412, B. subtilis QB928, and B. subtilis WB800N). After preliminary tree 

reconstruction, B. subtilis HDZK-BYSB7 was found to clade with B. cereus rather than the 

other B. subtilis strains and was therefore removed; it has since been reclassified as B. 

anthracis. Initial examination of results also found BGCs to be split by the origin in B. 

velezensis Hx05; for ease of analysis, this strain was therefore dropped. Subsequently, B. 

velezensis AGVL-005 was found to contain many  frame-shifted proteins; however, it was 

retained. A further 13 in-house genomes of B. subtilis and one of B. licheniformis (13) were 

included. This led to a final count of 310 genomes.  
 

Genome acquisition and strain name annotation. Genomes were downloaded in 

genbank format with the ncbi-acc-download tool (https://github.com/kblin/ncbi-acc-

download). As many of the genbank entries did not contain strain information in the “Source” 

or “Organism” features, which are required by the autoMLST and BiG-SCAPE tools to 

distinguish the individual strains, the Python script rename_strainless_organisms.py (found 
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in the tree and matrix construction pipeline, see below) was employed to transfer strain 

information from the “strain” field to these fields. 
 

Genome mining. In a first step, all downloaded genomes were initially mined for SMs with 

antiSMASH 5.0 (5). As antiSMASH collapses gene clusters that are encoded in close 

proximity, such as the iturin and fengycin clusters in Bacilli,into a single biosynthetic “region”, 

a modified version of antiSMASH (https://github.com/KatSteinke/dmz-antismash) was 

developed that contains the additional functionality to split known clusters at a user-defined 

gene, resulting in two independent “regions”. In all other respects, this version of antiSMASH 

is identical to antiSMASH 5.0.0. The modified version of antiSMASH was run as an 

antiSMASH fast run with the default parameters. The genes selected to split between 

adjacent clusters were dacC and yngH for the plipastatin/fengycin clusters, and yxjF and 

xynD for the iturin clusters. For assigning the plipastatin/fengycin boundary genes, homologs 

from several species were selected to reflect species variations: dacC homologs from B. 

velezensis, B. subtilis, B. amyloliquefaciens and B. atrophaeus and yngH homologs from B. 

subtilis and B. atrophaeus. These were selected so that the cut would yield the intersection 

of both clusters as found on MIBiG, from dacC to yngH, as other boundaries led to incorrect 

splits, either failing to cut the cluster or cutting it twice. The genes are identified by a BLAST 

search in the examined genome, with coverage and identity of at least 90% each needed for 

identification. During this step, errors in the Genbank file of B. licheniformis PB3 

(NZ_CP025226.1) were detected, as they caused subsequent errors in antiSMASH; the 

erroneous portions, CXG95_RS00005 and CXG95_RS00010, were consequently deleted.  
 

GCF identification and clustering. To identify families of homologous gene clusters 

present in multiple species (gene cluster families, GCFs), BiG-SCAPE (6) was used at 

default settings. In order to automatically identify any known compounds, reference clusters 

from the MIBiG database (14) were included in the networking analysis. Singleton clusters 

were not returned. As this produced almost exclusively GCFs split along species lines, even 

for compounds known to be found in all species, connected components were identified with 

the NetworkX library (15) using a similar approach as in (16). However, as BiG-SCAPE was 

left at default options, duplicated entries were later merged.  
 

Tree building. For getting a highly resolved phylogeny of the closely related Bacillus strains, 

maximum likelihood trees were constructed with a pipeline based on autoMLST (7), and 

using autoMLST defaults to the greatest extent. A modification was introduced to autoMLST 

that skipped the automated search and inclusion of similar genomes and thus only 

processed the supplied genomes. Subsequently, the pipeline identifies all conserved single-

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 28, 2020. ; https://doi.org/10.1101/2020.10.28.358507doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.28.358507
http://creativecommons.org/licenses/by/4.0/


 

 9 

copy genes from these genomes. Additionally, the gbk2sqldb.py script in autoMLST, which 

was employed in the pipeline, was patched to use the same hmm database 

(reducedcore.hmm) as the main automlst.py script. The modified version is available at 

https://github.com/KatSteinke/automlst-simplified-wrapper.  
Both for the short tree shown in Fig. 1 and the full tree (Fig. S1), this yielded 30 single-

copy/housekeeping genes for each tree; however, not all of these were identical between the 

trees. For generating the multi-locus alignment, each individual gene was aligned with MAFFT 

(17) and the alignment trimmed using trimAl (18); then, all alignments were concatenated. As 

in autoMLST, the tree was generated with IQ-TREE (19), using Ultrafast Bootstrap (20) with 

1000 replicates. 

The resulting tree was rerooted in ETE3 (21) during the visualization step, using B. 

megaterium NBRC 15308 and B. cereus ATCC 14579 as an outgroup. 

Based on our analysis, in line with the recently released genome-based taxonomy in GTDB 

(22, 23), these strains should be designated B. velezensis or B. amyloliquefaciens, 

respectively. In our global analysis of all 310 genomes, a total of 28 strains whose genome-

based taxonomy conflicts with their assigned species names were identified (Fig. S1, Data 

S1). Additionally, strains designated B. subtilis subsp. inaquosorum and B. subtilis subsp. 

spizizenii by NCBI form their own clades, consistent with their recent promotion to species 

status. (8) The tree thus appears to reflect genome-based taxonomy well. 

 

Absence/presence matrix. An automated tree and matrix construction pipeline was 

established that tied together the individual steps of the analysis. The script for this pipeline 

takes as arguments the location of a base directory in which analysis results are to be 

placed, the location of a file listing accession numbers to be downloaded, the name of the 

final tree to be output and optionally outgroups to be used. It creates all the files and 

directories necessary for the subsequent analysis (see below). The script can be 

downloaded at https://github.com/KatSteinke/AbsPresTree. 
From the connected component GCFs, a matrix counting occurrence of each GCF in each 

strain was computed. GCFs were subsequently clustered according to their occurrence in 

each strain using SciPy’s clustering package (24); hierarchical clustering was performed. 

Subsequently, the absence/presence matrix was reordered to reflect the clustering of GCFs. 

It must be noted, however, that the connected component GCFs are based on placement of 

gene clusters in a network, and even incomplete or inactive clusters may be included if they 

pass the threshold for clustering. The tree and matrix were visualized in ETE3 using ETE3’s 

clustering module. Subsequently, matrix columns were manually arranged to follow phylogeny 

of the strains primarily represented per column.  
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Variations within particular GCF. Based on the similarity networks of plipastatin and 

fengycin GCF, we created groups within a GCF. The fengycin GCF was split into 4 groups 

and plipastatin GCF into 6 groups. The genetic structure variations among groups with few 

missing BGs are shown in Figure S3. The genes ppsE from plipastatin group E and fenD  

from fengycin group B are further selected for multiple sequence alignment (Fig. S5 and S6). 

For the iturin-like lipopeptide GCF, substrate specificities of A-domain were collected from 

antiSMASH annotations. Based on the individual amino acid specificities the BGCs from this 

GCF are further classified into iturin A, bacillomycin D, F, L and mycosubtilin (Table S1). The 

script used to analyze the variations in GCF can be downloaded at 

https://github.com/OmkarSaMo/GCF_variation_Bacillus. 
 
Data availability. The data with NCBI accession IDs and information on all detected gene 

clusters is available in supplementary Data S1 and S2. Code used to generate the data is 

available at https://github.com/KatSteinke/AbsPresTree. The script used to analyze the 

variations in GCF is available at https://github.com/OmkarSaMo/GCF_variation_Bacillus.  
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SUPPLEMENTAL MATERIAL 
 

Fig S1 Phylogenetic tree and presence absence of different BGC families across Bacillus 

group 

 

Fig S2 Similarity network overview of all BGCs detected across Bacillus genome visualized 

using Cytoscape (Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, 

Schwikowski B, Ideker T, Genome Res 13:2498–2504, 2003).  

 

Fig S3 Genetic structure variations in partial BGCs of plipastatin and fengycin families 

 

Fig S4 Phylogenetic tree distribution of different fengycins and iturins across 310 genomes 

of Bacillus sp. 

 

Fig S5 Conserved frameshift in the ppsE gene across strains harboring group E plipastatin 

BGCs. A. BGCs from group E of plipastatins with missing domains in ppsE gene. B. Part of 

the phylogenetic tree including plipastatin group E strains (Complete tree in Figure S4). C. 

Nucleotide sequence alignment with conserved deletion at position 232 that lead to 

frameshift. The nucleotide fasta sequences of these selected homologs are aligned using 

MUSCLE (Edgar RC, Nucleic Acids Research 32:1792–1797, 2004) and the alignments are 

visualized using Jalview (Clamp M, Cuff J, Searle SM, Barton GJ, Bioinformatics 20:426–

427, 2004). 

 

Fig S6 Conserved frameshift in the fenD gene across strains harboring group B fengycin 

BGCs. A. BGCs from group B of fengycins with missing domains in fenD gene. B. Part of the 

phylogenetic tree including fengycin group B strains (Complete tree in Figure S4). C. 

Nucleotide sequence alignment with conserved deletion at positions 3126-3127 that lead to 

frameshift. 

 

Table S1 Amino acid specificity prediction-based groups of iturin like BGCs 

 

Data S1 Excel table with information on all the genomes, GTDB phylogeny, MLST genes, 

BGCs detected and BiG-SCAPE defined GCFs along with singleton BGCs  

 

Data S2 Excel table with information on BGCs from families encoding fengycins, plipastatins 

and iturinic lipopeptides 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 28, 2020. ; https://doi.org/10.1101/2020.10.28.358507doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.28.358507
http://creativecommons.org/licenses/by/4.0/

