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Revealing tissue-specific metabolic crosstalk after a myocardial infarction
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33  Abstract/Summary

34  Myocardia infarction (MI) promotes a range of systemic effects, many of which are

35 unknown. Here, we investigated the aterations associated with M1 progression in heart and
36  other metabolically active tissues (liver, skeletal muscle, and adipose) in a mouse model of

37  MI (induced by ligating the |eft ascending coronary artery) and sham-operated mice. We

38 performed a genome-wide transcriptomic analysis on tissue samples obtained 6- and 24-hours
39 post MI or sham operation. By generating tissue-specific biological networks, we observed:
40 (1) dysregulation in multiple biological processes (including immune system, mitochondrial
41  dysfunction, fatty-acid beta-oxidation, and RNA and protein processing) across multiple

42  tissues post MI; and (2) tissue-specific dysregulation in biological processesin liver and heart
43  post MI. Finally, we validated our findings in independent M1 cohorts, using both bulk and
44 single-cell transcriptomic data. Overall, our integrative analysis highlighted both common and
45  specific biological responses to M1 across a range of metabolically active tissues.

46
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51 Introduction

52  Cardiovascular disease (CVD) is the leading cause of death worldwide, accounting for more
53  than 17 million deaths globally in 2016 (WHO, 2019). Myocardial infarction (M1) is one of
54  the most common causes of CVD-related death, and is the result of severe coronary artery

55  disease that develops from tapered arteries or chronic blockage of the arteries caused by

56  accumulation of cholesterol or plague (atherosclerosis). M1 has been linked to multiple

57  behavioral risk factors (including unhealthy diet, physical inactivity, excessive use of alcohol,
58  and tobacco consumption) that can lead to significant alterations in metabolism that are

59 responsble for hypertension, obesity, diabetes, and hyperlipidemia. These abnormalities are
60 known asthe high-risk factors of Ml and CVDsin general.

61

62  Systems biology has been used in many studies to reveal the underlying molecular

63  mechanisms of complex human diseases and to answer important biological questions related
64  tothe progression, diagnosis and treatment of the diseases. The use of systems biology has
65  aided the discovery of new therapeutic approaches in multiple diseases (Mardinoglu et al.,

66  2017b; Mardinoglu and Nielsen, 2015; Nielsen, 2017) by identifying novel therapeutic agents
67  and repositioning of existing drugs (Turanli et al., 2019). Systems biology has also been

68 employed in the identification of novel biomarkers, characterization of patients and

69  dtratification of heterogenous cancer patients (Benfeitas et al., 2019; Bidkhori et al., 2018;

70 Leeetal., 2016). Specificaly, integrated networks (INs) (Lee et al., 2016) and co-expression
71  networks (CNs) (Lee et al., 2017) have been proven to be robust methods for revealing the
72  key driver of metabolic abnormalities, discovering new therapy strategies, as well as gaining
73 systematic understanding of diseases (Bakhtiarizadeh et al., 2018; Mukund and Subramaniam,
74 2017).

75

76  Previously, multiple studies in individual tissues have been performed and provided new

77 insightsinto the underlying mechanisms of diseases (Das et al., 2019; Ounzain et al., 2014,
78  Pedrotty et al., 2012; Williams et al., 2018). However, the crosstalk between different tissues
79  and their dysregulation has not been examined in M1 and other CV D-related complications
80  (Priest and Tontonoz, 2019). Here we performed an integrated analysis of heart and other

81 metabolically activetissues (liver, skeletal muscle and adipose tissue) using a mouse model of

82  MI. Weused several systems biology approaches to obtain a systematic picture of the
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83  metaboalic alterations that occur after an M| (Figure 1A), and validated our findings in human
84  and mouse datasets.
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85 Reaults

86 Differential expression analysis shows a pronounced effect on gene expression 24 h post
87 Mi

88 To study global biological alterations and systemic whole-body effects associated with MI,
89  we obtained heart, liver, skeletal muscle, and white adipose tissue frommice 6 h and 24 h
90  after either an M1 (induced by ligating the left ascending coronary artery) or a sham operation
91 (ascontrol). We generated transcriptomics data and identified differentially expressed genes
92 (DEGs) 6 and 24 h post M1 and sham operation in all tissues, with the most significant
93 differences occurring after 24 h (Table S1, Figure 1B). Principal component analysis (PCA)
94  showed a close clustering between the control (for both time points) and M1 (6 h and 24 h
95  separately) samplesfor heart tissue but clustering by extraction time points (6 h and 24 h
96 clusters) for the other tissues (Figure S1). We present the transcriptional changes associated
97 with Ml in Table Sl and the DEGs (FDR < 5%) using an UpSet plot (Lex et al., 2014) in
98 FigurelC.
99
100  All tissues showed a more pronounced effect in terms of the number of DEGs 24 h post M1
101  (Figure 1C). Asexpected, the most affected tissue was the heart (393 DEGs at 6 h, 3318
102 DEGsat 24 h, and 318 DEGs were the same at both time points). By contrast, 136, 641 and
103 374 genes were significantly changed in liver, skeletal muscle and adipose tissues 24 h post
104  MI compared to control, respectively. More than 33% of the DEGs that significantly changed
105 inthe other tissues also changed in the heart (Figure 1C). Interestingly, more than 97% of the
106  shared DEGs between heart and skeletal muscle changed in the same direction, with
107  corresponding numbers of 88% and 64% in adipose and liver, respectively.
108

109 Functional analysis reveals widespread mitochondrial, fatty acid, immune, and protein and
110 RNA-related alterations post M| with liver shows contrasting trend

111  We performed gene-set enrichment analysis (GSEA) with KEGG pathways (Table S2,

112 Figure 1D) and gene ontology (GO) biological processes (BPs) (Table S3, Figure 2A) to

113  identify altered biological functions and pathways 24 h after an M1. Mitochondrial functions
114  (specificaly, mitochondrial translation, respiratory chain and oxidative phosphorylation) were
115  significantly downregulated in the heart, muscle and adipose tissues but not in the liver.

116  Processes related to oxidative stress were upregulated in the heart and skeletal muscle. Fatty
117  acid beta-oxidation was downregulated in the heart and adipose but upregulated in the liver.
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118  Processes and pathways related to immune systems were significantly upregulated in the heart
119 and skeletal muscle but significantly downregulated in liver. Processes associated with protein
120 and RNA processing, ribosome biogenesis and protein targeting endoplasmic reticulum were
121  upregulated in all tissues except liver whereas protein processing in endoplasmic reticulum
122  and RNA transport pathways were upregulated in all tissues.

123  Wealso observed that liver was showing opposite trends compared to the other tissuesin

124  other important functions, such as fatty acid metabolism and immune response. By checking
125 regulation at the gene level, we observed that only 16 DEGs in liver showed opposite

126  regulation compared to the other tissues whereas 97 out of the 136 DEGs in liver were not
127 DEGsin any other tissues (Table $4). Therefore, the differences we observed in liver were
128 mainly due to different DEGs rather than opposite regulation compared to other tissues.

129

130 Tissue-specific altered biological functions point to specificity of metabolic and signaling
131  responsesto Ml

132  Thefunctiona analysis also indicated that several metabolic pathways (including cholesteral,
133  ascorbate and aldarate, linoleic acid, and sphingolipid metabolism pathways) and signaling
134  pathways (including GnRH, FoxO, cAMP and prolactin signaling pathways) were

135 significantly upregulated in heart 6 h after an M1 (Table S2, Figure S2A). We also observed
136  significant down regulation of tryptophan metabolism and upregulation of glycosaminoglycan
137  biosynthesisin heart 24 h after an M1 (Table S2, Figure S2A). Processes related to retinol
138  metabolism were upregulated in heart at both timepoints. Pathways that were previously

139  associated with cardiac hypertrophy and cardiac remodeling (e.g. JAK-STAT, MAPK,

140  estrogen, and TNF signaling pathways, and ECM-receptor interaction) were significantly

141  upregulated in heart 6 and 24 h after an M| (Figure S1B).

142

143  Our analysis also indicated significant metabolic differences in adipose tissue 24 h after an M|
144  (Figure S2B). Fructose and mannose metabolism, glyoxylate and dicarboxylate metabolism,
145 glycolysis/gluconeogenesis, and pentose phosphate pathways, glycine, serine and threonine
146  metabolism and pyrimidine metabolism, as well as endocrine systems (e.g. insulin signaling
147  pathway and regulation of lipolysis in adipocytes) were downregulated in adipose tissue.

148 We observed that the PPAR signaling pathway was upregulated whereas glutathione was

149  downregulated in liver 24 h post-infarction (Figur e S2B). We found that sphingolipid
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150  metabolism and immune-related pathways were upregulated in skeletal muscle 24 h post-
151 infarction (Figure S2B).
152

153 Reporter metabolite analyses show significant alterations in fatty acid, amino acid, retinol,
154  and estrogen metabolism post Ml

155 To predict the effect of the transcriptional changes on metabolism, we performed reporter

156  metabolite analyses (Table S5) using the gene-to-metabolites mapping from the Mouse

157  Metabolic Reaction database (Mardinoglu et al., 2015); resultsin each tissue 24 h after M1 are
158 shownin Figure 2B. In agreement with our analyses above, reporter metabolites related to
159  oxidative phosphorylation, such as ubiquinol, ubiquinone, NADH and NAD+, were

160  downregulated in all tissues except liver. Moreover, linolenoyl-CoA, acetyl CoA, and several
161  other fatty acyl-CoA-related metabolites were downregulated in heart and adipose tissue but
162  upregulated in liver. We also found that several 5-S-glutathionyl metabolite forms, known to
163  berelated to phenylalanine, tyrosine and tryptophan biosynthesis, were downregulated in

164  heart, liver and skeletal muscle. The same pattern of downregulation was also observed for
165 metabolites related to estrogen metabolism, specifically metabolites related to oestrone and its
166  glutathione conjugate derivative. Moreover, 12-keto-LTB4 and 12-oxo-c-LTB3, related to

167  leukotriene metabolism, and hepoxilin A3, an arachidonic acid, were also found to be

168  downregulated in heart, liver, and skeletal muscle.

169

170  Theliver showed the highest alteration in reporter metabolites, which is attributed to itsrole
171  asone of the most metabolically active tissues. We found that several reporter metabolites
172  related to retinol metabolism, namely retinal, retinol, retinoate, and all-trans-18-

173 hydroxyretinoic acid, were significantly downregulated only in liver tissue. Retinol

174  metabolism has been previously associated with M1 (Limaet al., 2018; Palace et al., 1999).

175
176  Network analyses unveil universal and tissue-specific clusters and mechanisms post M

177  The use of co-expression network (CN) analyses can assist in elucidating the functional

178  relationships between genesin a specific cell and tissue (Lee et al., 2017). Here, we

179  performed CN analysis to reveal the functional relationship between the DEGs by generating
180 tissue-specific CNs and selected highly connected genes (the top 5% positively correlated

181  genesthat fulfilled FDR < 0.05) (Table 1). To better define the structure of the networks, we
182  used the Leiden clustering algorithm (Traag et al., 2019) by maximizing the modularity scores


https://doi.org/10.1101/2020.10.28.358556
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.10.28.358556; this version posted October 28, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

183  (Figure 3A-D) and selected the clusters that include more than 30 genes. Next, we

184  superimposed DEGs 24 h post-infarction onto the network (Table S1) and identified the

185 components of the clusters that were affected by an M1. We also used functional analysis with
186 GO BP and KEGG pathways to understand the specific functions associated with each cluster
187 by using the Enrichr algorithm (FDR < 0.05) (Chen et a., 2013; Kuleshov et al., 2016). We
188 summarized the GO BP termswith Revigo (T able S6) (Supek et a., 2011) and checked the
189  average clustering coefficient to define the centrality of each cluster (Table S6) (Lee et al.,
190 2017). Among the clusters, we identified the key clusters as those with the highest average
191 clustering coefficient, allowing usto identify sets of genes whaose time-dependent coordinated
192  changes showed the strongest relationships.

193

194  Interestingly, key clusters contained genes with similar functionalities including RNA

195 processing, transports, and RNA metabolic processes in all tissue-specific CNs (Table S6). In
196 addition, we found that the majority of the DEGs associated with those clusters were

197  significantly upregulated. These observations strengthen the findings of the functional

198 analysisabove (Figure 2A) and further highlight how embryonically distinct tissues display
199 similar functional responsesto M1, with the most highly connected groups of genes preserved
200  between different tissues (Table S6, Figure 3E).

201

202  Community detection reveals tissue-specific clusters post M|

203 Weinvestigated the tissue specificity of each cluster by performing enrichment analysis with
204  data from the Mouse Gene Atlas (Su et al., 2004), which involved counting the number of
205  tissue-specific genes.

206

207  The heart network showed the highest number of tissue-specific genesin cluster Heart-3 (302
208 genes). Based on DEG analysis, we found that 522 genes were downregulated and 192 genes
209  were upregulated in the cluster. The enriched GO BP terms in the cluster were mitochondrial
210 transport, protein processing and respiratory chain, cardiac muscle cell action potential,

211  response to muscle stretch, and heart contraction (Figur e 3F). We observed that the results of
212  the KEGG pathway enrichment analysis were consistent with those obtained from GO BP
213 analysis(Table S6).

214
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215 Intheliver network, cluster Liver-2 showed the highest tissue specificity (479 genes). In this
216  cluster, wefound that 15 genes were significantly downregulated and 17 genes were

217  significantly upregulated. Based on GO BP enrichment analysis, the genes in this cluster were
218  associated with cholesterol metabolism and homeostasis, lipid transport, glutathione

219  metabolism, lipoprotein metabolism, and glucose 6-phosphate metabolism (Table S6). KEGG
220 enrichment analysis also showed that the genes in the cluster were related to retinol,

221  carbohydrate, lipid and amino-acid metabolism (T able S6).

222

223  The muscle network had two clusters with high tissue specificity: cluster Muscle-4 (276

224 genes) and Muscle-5 (143 genes). M uscle-4 showed association with GO BP terms such as
225  mitochondrial transport, protein processing and respiratory chain, response to muscle stretch,
226  and muscle contraction (Table S6). In contrast, the KEGG pathway in this cluster showed
227  relation to glycolysis/glucogenesis, propanoate metabolism, glyoxylate and dicarboxylate

228  metabolism, and severa signaling pathways (e.g. oxytocin, glucagon, cGMP-PKG and HIF-1)
229 (Table S6). Muscle-5 was enriched in GO BP terms associated with protein

230  dephosphorylation, muscle contraction and intracellular protein transport (T able S6). We also
231 found that insulin, MAPK and Wnt signaling pathways were associated to Muscle-5 from the
232 KEGG enrichment analysis (T able S6).

233

234 The adipose tissue network showed tissue specificity in cluster Adipose-2 (33 genes), which
235 isassociated with GO BP processes including mRNA processing, regulation of mitotic cell
236  cycle phase, ribosome biogenesis, and viral processes (T able S6). We observed that the

237  results of the KEGG pathway enrichment analysis were consistent with those obtained from
238 GO BP analysis, with additional associations with multiple signaling and regulatory pathways
239 (Table S6).

240

241  Tissue-specific clusters show important tissue-specific changes post Ml

242  To understand the specific behavior of each tissue, we further studied the tissue-specific

243  clustersinthe CNs (Figure 4A). Heart specific cluster, Heart-3, was driven by severa central
244  genesincluding Pln, Pdedb, and Atp2a2 (related to regulation of cardiac muscle contraction)
245 and Pdhal and VVdacl (related to mitochondrial functions). These genes were aso found to be
246  significantly differentially expressed in heart 24 hours post M| (Table S1). Genesin the

247  heart-specific cluster were related to multiple other processes/pathways, e.g. oxytocin
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248  signaling pathway, and several metabolic pathways (glycogen, inositol phosphate and purine)
249 (Table S6).

250

251 Mitochondrial dysfunction in the heart leads to disturbance of energy (ATP) production

252 (Kiyunaet al., 2018; Palaniyandi et al., 2010) and, in the presence of oxygen, to

253 accumulation of reactive oxygen species (ROS), which can cause oxidative stress. Vdacl, a
254 key gene for regulation of mitochondria function and one of the central genesin the heart-
255  specific cluster (see above), is significantly downregulated in M1 (Camaraet a., 2017). Vdacl
256 islocated in the outer mitochondrial membrane and is involved directly in cardioprotection
257  (Schwertz et al., 2007) within the cGMP/PKG pathway (Figure S3A). In the same pathway,
258  we also observed down-regulation of the reporter metabolite hydrogen peroxide (Table S5), a
259 ROSthat isrelated to cardioprotection (Schwertz et al., 2007; Yadaet al., 2006). We also
260  observed downregulation of Pdhal, which is known to have a substantial role in both the
261 HIF-1 signaling pathway and the pyruvate metabolism pathway that converts pyruvate to
262  acetyl-CoA in the mitochondria (Figure S3B). Acetyl-CoA is used in the TCA cycleto

263  produce NADH and FADH2, which are both needed for ATP production and were

264  downregulated in our reporter metabolite analysis of the heart. Our findings are thus

265  consistent with dysfunctional mitochondriaand ATP production in the heart in response to an
266  MI. Pdhal has been also been linked to the heart sensitivity during to ischemic stress, where
267 itsdeficiency can compromise AMP-activated protein kinase activation (Sun et al., 2016).
268

269  In skeletal muscle and adipose tissue, we found that central genesin their respective tissue-
270  specific clusters related to fatty acid metabolism and lipid metabolism were significantly

271  dtered (Table S6, Figure5). In liver-specific cluster, we found that their central genes were
272  related to fatty-acid beta oxidation (Cyp4a3l, Cyp4a32) and glutathione metabolism (Gstm?3)
273 (Table S6, Figure 5A). Alterations of fatty acid beta-oxidation and glutathione metabolism
274 have previously been reported in non-alcoholic fatty liver disease, a known risk factor of

275 CVD (Alexander et a., 2019; Mardinoglu et a., 2017a). Moreover, in liver, we also found
276  that retinol metabolism was uniquely related to genesin the liver-specific cluster, mainly

277  driven by four significantly differentially expressed central genes of the clusters, i.e.

278 Cyp26al, Cyp4a3l, Cypda32, and Hsd17b6 (Table S6). A previous study showed that

279  mortality from CVD in older individuals was accompanied by impaired liver ability to store
280 retinol (Limaet a., 2018).

281

10
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282  Multi-tissue modeling reveals key metabolic pathways affected post Ml

283  Toinvestigate the metabolic responsesto Ml in and across tissues in the mice, we constructed
284  amulti-tissue genome-scale metabolic model. The model consisted of five tissue-specific

285  genome scale metabolic models, namely heart, liver, skeletal muscle, adipose, and small

286 intestine. The small intestine model (for which we do not have transcriptomic data) was added
287  toincludeingestion and conversion of dietary nutrients into chylomicrons, which are directly
288  secreted into blood and transport lipids to other tissues (Mardinoglu et al., 2015). The final
289  mouse multi-tissue model included 19,859 reactions, 13,284 metabolites, 7,116 genes and 41
290 compartments. We predicted the metabolic fluxes in mice 24 h after an M1 or sham operation
291 by integrating the dietary input, tissue-specific resting energy expenditure and transcriptomics
292 data

293

294  The modeling showed that oxygen uptake, carbon dioxide production and the oxidative

295  phosphorylation pathway in heart, adipose and skeletal muscle were decreased in MI mice, in
296  agreement with the downregulation of oxidative phosphorylation we observed in these tissues
297 (TableS7). By contragt, liver showed slightly increased oxygen uptake, which might due to
298 thedlightly (not statistically significant) upregulated oxidative phosphorylation (Table S7).
299 Thesefindings indicate that the changes in oxygen and carbon dioxide fluxes and the

300 oxidative phosphorylation pathway could serve as a positive control for predicting the

301 changesdueto Ml in the fluxes.

302

303  Next, weinvestigated the tissue-specific metabolic flux changes in the same model (Table
304 S7). Wefound that the pentose phosphate pathway was upregulated in heart 24 hours post M1,
305 consistent with upregulated glucose metabolism after an MI. Elevated glycolysis could allow
306 the heart to rapidly generate energy under stress conditions, and the enhanced pentose

307  phaosphate pathway could increase the NADPH level, which could help maintain the level of
308  reduced glutathione in heart (Tran and Wang, 2019). We also found that adipose tissue

309 secreted more ketone bodies, including acetoacetate and butyrate, into plasma; the plasma
310 level of ketone bodies has been reported as a stress marker in acute M1 (Miyamoto et al.,

311  1999). Notably, relatively small metabolic changes were found in liver and skeletal muscle,
312  whichis probably due to the small number of transcriptomic changes in metabolic pathways
313  inthesetissues.

314

11
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315 Single-cell analysis highlights cell-type patterns among central genesin a heart-specific
316  cluster

317  Wethen questioned whether and how our gene set from both central and heart-specific

318 clustersidentified by bulk RNA-seq data would perform at the single cell level. We examined
319 the DEGs from most central and heart-specific cluster genes in an independent single-cell
320 dataset of heart failure in human (Wang et al., 2020). We observed that the mgjority of the
321  heart-specific genes clustered together in both cardiomyocyte- (CM) and non-CM-enriched
322  dataduring heart failure, with higher expression levelsin CM-enriched data (Figure $4). On
323  the other hand, the genes from the most central cluster showed no particular clustering

324  pattern. We also analyzed the clustered tissue-specific genes, and found three distinct groups:
325 group 1, which consisted of genes related to the TCA cycle, glycolysisand HIF-1 signaling
326  pathways; group 2, which consisted of genes with higher expression in all cell types and were
327 related to heart-specific functions and propanoate and pyruvate metabolism; and group 3,
328  which consisted of genes related to cholesterol and lipid metabolism and cGMP-PKG

329 signaling pathways.

330

331 Although these gene sets were identified through analysis of bulk RNA-seq data, a clustering
332 analysisthrough UMAP (Mclnnes et a., 2018) highlighted clear distinctions between CM-
333 and non-CM-enriched data at the single-cell level (Figure 6A). We found that CM-enriched
334  cells(consisting of ~43% smooth muscle cells and ~36% fibroblasts) (Figure 6B, top |€eft)
335 were dominated by the mean expression of genes from the heart-specific cluster (Figure 6C),
336  with very high expression of genesin groups 1 and 2 (Figure 6D-E). By contrast, non-CM
337 cellsshowed alarge heterogeneity in terms of cell type (Figure 6B, right). Furthermore, this
338  cluster showed low mean expression of gene groups 1 and 3, and lower mean expression of
339  genegroup 2 than did CM-enriched cells (Figure 6D-F). Approximately 22% of the non-CM
340 cellswere dominated by genes from the most central cluster (Figure 6C), whereas 76% of
341 those cells were endothelia cells. Finally, we observed that the central cluster (Figure 6C
342  orange) tended to display overall lower expression of gene group 2 (Figure 6E bottom

343  right). Altogether, these observations indicate that heart-specific and central clusters tend to
344  display distinct patterns of gene expression and distribution among cell subtypes, both in CM
345 and non-CM-enriched cells.

346
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347  Validating our findings with publicly available datasets

348 We validated our observations in heart tissue in two independent cohorts of bulk RNA-seq
349 datafrom mouse heart (Table S8). We filtered both validation cohorts to get and analyzed
350  only 24 hours post-M| data. We found that there were 2169 DEGs in heart 24 h after

351 infarction from our datawere validated in at least one of the independent cohort (959 in both)
352 (Figure 6G). We also found that 109 out of the 123 most connected genes in our heart-

353  gpecific cluster were also significantly differentially expressed in at least one of the

354  independent cohorts (81 in both). By performing functional analysis of the validation cohorts,
355  wefound that ~61% of GO BP and 84% of KEGG pathways identified in our analysis of the
356 heart were also present in at least one of the validation cohorts 24 h after infarction (Figure
357  6H-I). In both cohorts, we observed downregulation of mitochondrial functions and fatty acid
358  metabolism processes. We also observed upregulation of processes and pathways related to
359 retinol metabolism and inflammatory response in both validation cohorts.

360

361 Identification of driver genesin Ml

362 We observed that FInc, Lgals3, Prkaca and Pprcl showed important response to MI. These
363 geneswere 4 of 16 genesthat were DEGs in at least three tissues and validated in both

364  validation cohorts (Table S9). Finc, Lgals3 and Pprcl were upregulated in heart, skeletal

365 muscle, and adipose, whereas Prkaca was downregulated in these three tissues. We further
366 retrieved their neighbors at each tissue specific CNs, showed their regulations from

367 differential expression results, and performed functional analysisin Table S9.

368

369  Flnc, which encodes filamin-C, was part of heart and skeletal muscle-specific CN cluster and
370  also part of gene group 2 at the single-cell level (Figure $4). Its neighbor genes were found to
371 besignificantly (FDR < 0.05) associated to several functions, including TCA cycle, pyruvate
372  metabolism, glycolysis pathway, and involved in mitochondrial functions. Specifically, they
373  wererelated to heart-specific processes in heart, VEGF signaling pathway in muscle,

374  carbohydrate metabolism in adipose, and to MAPK signaling pathway and muscle contraction
375  inheart and muscle.

376

377  Lgals3 (encodes galectin-3) and Prkaca were among the most central genesin central clusters
378 (Table S6). The neighbors of Lgals3 were significantly related to cell cycle and protein

379 digestion and absorption pathway in all tissues, and to RNA and mRNA related-processesin
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380 muscle and adipose tissue. The neighbors of Prkaca were related to insulin signaling pathway
381 inheart and adipose, and several mitochondrial functions in adipose. Pprcl was part of most
382 central clustersin heart and adipose tissue CN, and its neighbors were related to ribosomal
383  RNA processing and ribosome biogenesis.

384

385 The median expression of these genes at the single-cell level is shown in Table S9, Figure
386 S5. We found that all genes were expressed in all cell typesin CM and non-CM enriched
387  cdlls, except Pprcl. In CM cells, Finc showed highest median expression in macrophages,
388  whilst Prkaca showed highest median expression in fibroblasts. Lgals3 had similar median
389 expressionin al cell types. More heterogeneity was seen in non-CM cells: FInc showed high
390 median expression in macrophages and fibroblasts, whilst Lgals3 were observed to have high
391 median expression in fibroblasts.

392

393
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394 Discussion

395 CVD hasacomplex etiology and is responsible for arange of systemic effects, hindering our
396 understanding of its consequences on different tissues. Here, we took advantage of the

397 technological advancesin high-throughput RNA-seq and applied integrative network analyses
398 to comprehensively explore the underlying biological effects of MI. Specificaly, we

399 generated RNA-seq data from heart, liver, skeletal muscle and adipose tissue obtained from
400 mice 6 and 24 h after an MI or sham operation. We used transcriptomics data analyses

401  (differential expression, functional analysis, and reporter metabolites analysis) to determine
402  the systemic effects of the M| across multiple tissues. Moreover, we performed CN analyses
403 to pinpoint important key and tissue-specific clusters in each tissue, and identified the key
404  genesin each cluster. Finally, we used awhole-body modelling approach to identify the

405 crosstalk between tissues and reveal the global metabolic aterations, before finally validating
406  our findings with publicly available independent M1 cohorts.

407

408 Based on our analyses, we observed downregulation of heart-specific functions and

409  upregulation of lipid metabolism and inflammatory response in heart, muscle, and adipose
410 tissue after an M1 (Figure 4B). Liver showed a distinct response with respect to the other
411  threetissues, including downregulation of inflammatory response. We observed that fatty acid
412  metabolism was downregulated in heart and adipose tissue, whereas fatty acid beta-oxidation
413  was upregulated and glutathione metabolism was downregulated in liver. We also observed
414  upregulation of oxidative stressin heart and skeletal muscle. We also observed

415  downregulation of mitochondrial functions in heart, muscle, and adipose tissue. Furthermore,
416  we found upregulation of retinol metabolism in heart and downregulation of retinol

417  metabolitesin liver (Figure4B).

418

419 We hypothesized that downregulation of fatty acid metabolism from adipose tissue was due to
420 exchange of fatty acids with other tissues (liver and muscle) (Figure 4B). We also observed
421  theflow of retinol from liver to heart during M1, consistent with previous reports (Palace et
422  al., 1999). These Ml-associated alterations lead to dysfunctional mitochondria and decreased
423  energy production, especially in heart and skeletal muscle.

424

425  Wefurther examined our results with single cell RNA-seq data. Although our gene set was
426  extracted from bulk RNA-seq data analysis, it still had a strong presence at the single cell
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427  RNA level, in both CM and NCM cells. We aso validated our results with publicly available
428 M| datasets generated in separate independent studies. The validation results strengthened our
429  findings on the altered functions/pathways and the important heart-specific genes after an M1.
430

431  Importantly, our analyses of gene clusters highlighted multiple key genesin the response to
432 Ml indifferent tissues. Specifically, we observed that FInc, Prkaca, Lgals3, and Pprcl

433  showed important responses in heart, skeletal muscle, and adipose tissue. Moreover, FInc,
434  Lgals3, and Prkaca showed strong presence at the single cell level. Fincisinvolved in actin
435  cytoskeleton organization in heart and skeletal muscle, and previous studies have shown that
436 thisgenehascritical rolein CVD (Hal et a., 2020; Zhou et al., 2020). Similarly, Prkaca, an
437  important metabolic gene, has also been shown to play an important function during CVD
438 (Bers, 2008; Diviani et a., 2011; Turnham and Scott, 2016). Lgals3, related to acute

439 inflammation response, has been studied intensively in recent years as akey genein CVD,
440 and as apotential CVD therapy target (Suthahar et a., 2018; Zhong et al., 2019). Lastly,

441  Pprcl, asimportant regulator of mitochondrial biogenesis, has not been explored for its direct
442  relationship with CVD; however, mitochondrial biogenesis appears to be an important

443  responseto CVD (Piantadosi and Suliman, 2012; Ren et al., 2010; Siasos et ., 2018).

445  In summary, we systematically unveiled the deregulation of biological processes and

446  pathways that resulted from M1 in heart, liver, muscle, and adipose tissue by integrating

447  transcriptomic data and the use of biological networks. We also identified the key clusters and
448  central genes using generated tissue-specific CNs. In this study, we demonstrated a strategy to
449  utilize multi-tissue transcriptomic data to identify alteration of biological processes and

450 pathways to systemically explore the effect of a disease.

451

452  Limitation of the Study

453  Werecognized several limitations to be noted on this research. First, only transcriptomic data
454  was analyzed in this research, hence the sensitivity might be limited especialy for short

455  timepoint, e.g. 6 hours after MI. Second, we focused our analysisin this research only on

456  protein-coding genes. Third, to explore more about the shift in metabolism due to MI, longer
457  timepoints needs to be explored. This opens new opportunities for future research, including
458  analyzing the non-protein-coding gene signatures and longer timepoints.

459
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473  FigurelLegends

474 Figurel (A) Overview of this study (B) Number of differentially expressed genes for each
475  tissue at each time point. Effect of MI shown to be more pronounced after 24 h. (C) UpSet
476  plot to show intersection between differentially expressed genes (FDR < 5%) in different

477  tissues. The plot showed that each tissue has its specific set of genes that wer e affected by MI.
478 (D) KEGG pathway analysis (FDR< 0.05in at least 3 tissues) for 24 hours post Ml

479  compared toits control for each tissue. We observed that 141 (5 upregulated) and 125 (14
480 upregulated) pathways are significantly altered in heart 6 and 24 h after infarction,

481  respectively. For other tissues, we found that 24 (9 upregulated), 61 (54 upregulated) and 48
482 (15 upregulated) pathways are altered in liver, muscle, and adipose, respectively.

483 Figure2 (A) Functional analysiswith GO (FDR < 0.05% in at least 3 tissues) reveal ed that
484 944 (919 upregulated) and 1019 (970 upregulation) BPs are significantly altered in heart 6
485 and 24 h after infarction, respectively. The results also showed 38 (16 upregulated), 376 (357
486  upregulated) and 193 (116 upregul ated) BPs are significantly altered 24 h after infarctionin
487  liver, muscle and adipose, respectively. Most tissues show significant alterationsin multiple
488  biological processes, including mitochondrial functions, RNA processes, cell adhesion,

489  ribosome and immune systems. The results of this analysis showed alterations concor dant
490  with those observed for KEGG pathways. (B) Reporter metabolites analysis shows significant
491  alternation in important metabolites. Our analysis revealed that 169, 324, 118 and 51

492  reporter metabolites are significantly altered in heart, liver, skeletal muscle and adipose

493  tissues, respectively, at 24 h post-infarction (Table $4)

494  Figure 3 Network analyses. (A) Heart co-expression network clusters with superimposed
495 DEGs 24 h post-infarction (Blue = down-regulated, Red = up-regulated) marked with the
496 cluster numbers. The edges between the clusters were aggregation of the inter-cluster edges
497  (B) Liver. (C) Muscle. (D) Adipose. (E) Intersection of the most central clustersin all tissues
498  shows that the central architecture of the network was conserved in all tissues. We found 4
499  sub-clusterswithin the network intersection. Top 10 most connected genes are marked in
500  black. (F) Enriched GO BP in heart-specific cluster generated by Revigo.

501

502 Figure4 (A) Smilarity of functionsin the most central cluster and specific functions of each
503 tissue-specific cluster. (B) Functional analysis for each tissue and hypothesized flow of

504  metabolites
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505 Figure5 (A) Sgnificantly differentially expressed central genes of each tissue-specific cluster
506 to fatty acid metabolism, as one of the most affected metabolic process. (B) Lipid metabolism.
507 Red = upregulated, blue = downregulated.

508 Figure 6 (A-C) UMAP clustering of the single cell RNA-seq data with our gene set based on
509 the CM enrichment, cell types, and network gene cluster type (D-F) colored based on the
510 mean expression of the gene groups (G) DEGs intersection of our data and validation cohort
511 (H) & (1) Intersection of functional analysisresults (GO BP and KEGG Pathways) of our
512  dataand validation cohort

513
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514 Table

515 Table 1 Properties of the co-expression network

# of Modularity
Tissue | # of Genes | Edges # of Clusters Scores
Heart 8793 | 1570898 7 0.540179085
Liver 7760 | 1103589 6 0.577273459
Muscle 8834 | 1660603 7 0.521239124
Adipose 10790 | 2636378 8 0.495469439

516
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STAR Methods
| nduction of Ml

10-week-old male C57BI/6N mice were fasted for 4 h before induction of myocardial
infarction. The mice were then anesthetized with isoflurane, orally intubated, and connected
to asmall-animal ventilator (SAR-830, Geneq, Montreal, Canada) distributing a mixture of
oxygen, air and 2—3% isoflurane. ECG electrodes were placed on the extremities, and cardiac
rhythm was monitored during surgery. An incision was made between the 4th and 5th ribs to
reveal the upper part of the anterior left ventricle (LV) wall and the lower part of the left
atrium. Myocardial infarction was induced by ligating the | eft anterior descending (LAD)
coronary artery immediately after the bifurcation of the left coronary artery 1. The efficacy of
the procedure was immediately verified by characteristic ECG changes, and akinesis of the
LV anterior wall. After verification of the infarction, the lungs were hyperinflated, positive
end-expiratory pressure was applied, and the chest was closed. Sham mice were handled
identically, but no ligation of the LAD coronary artery was performed (and thus, no ischemia
was induced in these mice). The mice received an intraperitoneal injection of 0.1 ml
buprenorphine to relieve postoperative pain and were allowed to recover spontaneously after
stopping isoflurane administration. Mice were killed with an overdose of isoflurane 6 h or 24
h after occlusion or sham operation. We collected the left ventricle (the whole left ventricle
containing mainly infarcted tissue) of the heart, whereas white adipose tissue (WAT) was
collected from the abdomen and musculus soleus was taken as the muscle tissue. Mouse
hearts and biopsies from the liver, muscle and WAT were snap-frozen in liquid nitrogen and
stored at -80°C until analysis. All mice studies were approved by the local animal ethics
committee and conform to the guidelines from Directive 2010/63/EU of the European

Parliament on the protection of animals used for scientific purposes.

Echocardiography in mice

Echocardiographic examination, using VisualSonics VEVO 2100 system (VisualSonics Inc,
Ontario, Canada), which includes an integrated rail system for consistent positioning of the
ultrasound probe was performed 6 and 24 h after an M| to determine the size of the MI. We
calculated infarct size based on wall motion score index (WMSI) 24 h after myocardial
infarction by a 16-segments model on 3 short axisimages, as 0 for normal, ¥ for reduced wall
thickening and excursion in a segment and 1 for no wall thickening and excursion in a

segment. WM Sl was calculated as the sum of scores divided by the total number of segments.
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550 Hair removal gel was applied to isofluorane-anesthetized (1.2%) mice chest to minimize
551 resistance to ultrasonic beam transmission. The mice were then placed on a heating pad and
552  extremities were connected to an ECG. A 55 MHz linear transducer (M S550D) was used for
553 imaging. An optimal parasternal long axis (LAX) cine loop of >1000 frames/s was acquired
554  using the ECG-gated kilohertz visualization technique. Parasternal short axis cine-loops were
555 acquired at 1, 3, and 5 mm below the mitral annulus. Infarct size was calculated based on wall
556  motion score index 6 and 24 hours after myocardial infarction by a 16-segments model on
557 LAX and 3 short axis images view, as 0 for normal, % for reduced wall thickening and
558 excursion in a segment and 1 for no wall thickening and excursion in a segment. The data
559  were evaluated using VevoStrain™ software system (Visual Sonics Inc, Ontario, Canada).

560

561 RNA extraction and sequencing

562 Total RNA was isolated from homogenized heart tissue using RNeasy Fibrous Tissue Mini
563  Kit (Qiagen). cDNA was synthesized with the high-capacity cDNA Reverse Transcription Kit
564  (Applied Biosystems) and random primers. mRNA expression of genes of interest was
565 analyzed with TagMan real-time PCR in a ViiA™ 7 system (Applied Biosystems). RNA
566  sequencing library were prepared with Illumina RNA-Seq with Poly-A selections.
567  Subsequently, the libraries were sequenced on NovaSeg6000 (NovaSeq Control Software
568 1.6.0/RNA v3.4.4) with a 2x51 setup using ‘NovaSegXp’ workflow in *S1’ mode flow cell.
569 The Bcl was converted to FastQ by bcl2fastq v2.19.1.403 from CASAVA software suite
570  (Sanger/phred33/lllumina 1.8+ quality scale).

571
572 RNA-sequencing data analysis

573  Theraw RNA-sequencing results were processed using Kallisto (Bray et al., 2016) with index
574  file generated from the Ensembl mouse reference genome (Release-96) (Zerbino et al., 2017).
575  The output from Kallisto, both estimated count and TPM (Trancript per kilobase million),
576  were subsequently mapped to gene using the mapping file retrieved from Ensembl BioMart
577  website, by filtering only protein coding genes and transcripts. Genes with mean expression
578 lessthan 1 TPM in each condition were filtered. For data exploration, we used PCA from

579  sklearn package (Pedregosaet al., 2011) in Python 3.7 and used TPM values as the input.

580  Subsequently, we performed differential gene expression analysis using DESeg2 packagein
581 R. Weutilized the capabilities from DESeg2 to normalize the rounded estimated count data

582  and to correct for confounding factors (such as time). To define a gene as differentially
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583 expressed (DEGS), agene has to fulfill a criterion of FDR < 5%. The results of differential
584  expression analysis were then used for functional analysis.

585

586  We checked the tissue specificity of the DEGs in each tissue with the data from Mouse Gene
587 Atlas(Suetal., 2004). For all the tissue-specific genes, we also checked their human-

588 homolog genesin the human secretome database (Uhlén et al., 2019).

589

590 Functional analysis

591 We performed functional analysis using the R package PIANO (Vé&remo et al., 2013). As the
592  input, we used the fold changes and p-values from the DESeq2, and also GO BP and KEGG
593  pathways gene-set collections from Enrichr (Chen et al., 2013; Kuleshov et al., 2016), and
594  metabolites from Mouse Metabolic Reaction database (Mardinoglu et a., 2015). To definea
595  process or pathway as significant, we used a cut off of FDR < 5% for the distinct direction of
596  PIANO (both up and down).

597
598  Co-expression network generation

599  We generated the co-expression network by generating gene-gene Spearman correlation ranks
600  within atissue type, using spearmanr function from SciPy (Jones et al., 2001) in Python 3.7.
601 Using the same environment, we performed multiple hypothesis testing using Benjamini-

602 Hochberg method from statsmodels (Perktold et al., 2017). Correlation data were filtered with
603 criterion of adjusted p-value < 5%.

604

605 Thetop 5% of filtered correlation results were then loaded into iGraph module (Csardi and
606  Nepusz, 2006) in Python 3.7 as an unweighted network. To find the subnetworks, we

607 employed the Leiden clustering algorithm (Traag et a., 2019) with ModularityVertexPartition
608 method. Each cluster was analyzed by using Enrichr (Chen et al., 2013; Kuleshov et a., 2016)
609 to get the enriched GO BP and KEGG pathways. Criterion FDR < 0.05 were used to find the
610 significantly enriched terms. Clusters with less than 30 genes were discarded, to be able to get
611 significant functional analysis results. Since GO BP was relatively sparse, we used Revigo
612  (Supek et a., 2011) to summarize the GO BP into a higher level. Revigo was further

613 employed to build a GO BP network. Clustering coefficient was calculated based on the

614  averagelocal clustering coefficient function within iGraph.

615
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616  Multi-tissue metabolic modeling

617 We combined tissue-specific models (of heart, liver, muscle, adipose and small intestine)

618  constructed previously (Mardinoglu et al., 2015) in a multi-tissue model by adding an

619 additional compartment representing the plasma, which alows the exchange of metabolites
620 among different tissues. Blocked reactions that could not carry fluxes (and the unused

621 metabolites and genes linked to these reactions) were removed from the models. In addition,
622 thedietary input reactions and constraints were added to the small intestine model to simulate
623 thefood intake (Table S7). Specifically, we assumed that the mice weighed 30 g and

624  consumed 4.5 g chow diet per day (15 g/100 g body weight) based on a previous study

625 (Kummithaet al., 2014). We also calculated the tissue-specific resting energy expenditures
626 and set them as mandatory metabolic constraints based on previous studies and resting energy
627 expenditure for other tissues was incorporated by including a mandatory glucose secretion
628  flux out from the system with the lower bound calculated based on ATP (Table S7)

629 (Kummithaet al., 2014).

630

631 To simulate the metabolic flux distribution in the sham-operated mice, we set the lipid droplet
632 accumulation reaction in adipose tissue (m3_Adipose LD_pooal) as the objective function so
633 that the energy additional to the resting energy expenditure will be stored as fat; we used

634  parsimonious FBA to calculate the flux distribution. To simulate the flux distribution after an
635 MI, we used the previously developed method Relative Metabolic Difference ver. 2

636 (RMetD2) (Zhang et al., 2019) to integrate transcriptomic data. In brief, RMetD2 calculates
637 the expected fluxes of reactions based on their reference fluxes and fold changes of gene

638  expression, and searches for aflux distribution that is close to the expected fluxes while

639  subject to the model constraints.

640

641 Validation of theresults

642 We validated our findings by performing similar steps of RNA sequencing and functional

643 anaysisfor the publicly available mouse M| datasets GSE104187 and GSE52313 (Ounzain et
644 al., 2014; Williams et a., 2018). Single-cell RNA-seq human data for heart failure was

645 retrieved from GSE109816 (Wang et al., 2020). Hierarchical clustering of the single-cell data
646  was performed with clustermap function from seaborn module in Python.

647
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Data and code availability

All raw RNA-sequencing data generated from this study can be accessed through accession
number GSE153485. Codes used during the analysis are available on
https://github.com/sysmedicine/ArifEtAll_2020_ MultiTissueM|
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652 Supplementary Tables

653 Table Sl Differential Expression Analysis Results
654 Table S2 KEGG Pathways

655 Table S3 Gene Ontology Biological Processes

656 Table S4 DEG comparison between Liver and other tissues
657 Table S5 Reporter Metabolite Analysis
658 Table S6 Enrichment Analyses of Clusters, Clusters properties

659 Table S7 Food Intake, Energy Expenditure, and Flux Balance Analysis (FBA) of Whole-Body
660 Modeding

661 Table S8 Validation Result (Differential Expression and Functional Analysis)
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Figure S2 KEGG pathway analysis results for each tissue (A) Heart 6- and 24- hours post Ml (B)
Liver, Muscle, and Adipose tissue 24 hours post M.


https://doi.org/10.1101/2020.10.28.358556
http://creativecommons.org/licenses/by-nc-nd/4.0/

| coMPPKG SIGNALING PATHWAY |

h pS: //doi.org/10. 1101/2020 10.28.358556; this version posted October 28, 2020. The copyright holder for this preprint
funder, who has granted bioRxiv a license to display th&g;ntsggﬁmt in perpetuity. It is made
'Ia_Te under aCC-BY-NC-ND 4.0 Intematl@ense.

bioRxiv preprint dai:

= B - Reduced cardiac
™l Cn | #[ NEAT O— m — ™ hypertrophy
Ca FP Decrease in N DH& [Tnc |
intrace lular AN TRPC
free calotur \
GATAA
——————————— » Transcription
1P3 Calciura
signaling pathwazy
Sarcoplasric
Sabun 8%y
—0 «— PR | P ity e i D trace llul:
______ — _——— PR _———— release frora store ecreasemm e llular
| m Increased calcium free calon
sequestration Caz*
Myosin
& [MLC ]——» Swmoothmusle
e N 5y MS |- Srehn
[ enF ] e
5~ ncP ]
CNP
H202 '@— — Vascular smooth
‘ \ rauscle contraction
CNG |~ — — # Phototransduc tio:
Leer e Im"’fedf"" —
Phototransduction § / | N. 000 % LV AN\N 0 0 ™ — ey T » Cardioprotec tion
[ Pxcel |
PKCez
[ac 1}
cAMP [rok ate |
O [ s-GC Mitoc hondria
NO
BE antl ¢ - Decreased activit,
NO profeins. v fcaspam 3 o e Tten el
ioi +P,
Opioids PI3K-Akt — m Decreased release ~
Adenosine signaling pathway of cytochrore C

(s [ msr = ms ] rox = s =

______ — Cell growth and differentiation
Platele t inhibition

+p
+p +p
PA%, cignah T vy | [Fafl 1 —=[ WEK [ ERK ] ————® Plateletactivation

04022 6/4/19
(c) Kanehisa Laboratories

| HIF-1 SIGNALING PATHWAY

______________ |
STAT3 DNA
— — [ E Py
- NF-«B
HIF-1a. aARNA —

E3 ubiquitin ligase
corplex
VHL | Rhxl
= CuL2 i Increase oxygen delivery
D i N B IO b » Erythuopoissis

[TFRC | —— ™ Iron e tabolisra
N

Reduce oxygen consump tion

_______ . Promote anaerobic
netabolisr

S e le——— o SN e _p Inbibits TCA cycle
Va e tabolisri
7
e
»
O— ot |—> —
Glucose Acetyl-Cols
- Proroote anaerobic
Mitoc hondrion metabolisr
Regulate ife rati
- gand apoptosis
04066 715/19
(c) Kanelisa Laboratories

Figure S3 (A) cGMP-PKG & (B) HIF-1 signaling pathway with overlay data from differential
expression and reporter metabolites analysis.


https://doi.org/10.1101/2020.10.28.358556
http://creativecommons.org/licenses/by-nc-nd/4.0/

Cluster

Group 1

Group 2

1

<

X

o
Group 3

4ANaD
SIVYNOVO
| ¥PNOS
[l 14vOS
fzfif: LdIYLS
f:: R A | 100av
) ) f (WA (A a1 VIINYD
fifif;f A_ ;: :; f‘ ;: f f _f<mIo_
f:

f::

7::7 1 1 T A« PA 1)
:7:77 AIRTATIN [l ‘ - geavy
:: :7 7 i 777 : 77777::77mororomh

7 [ I _A

:? f :7:77

I fii 7 | fi; | v6lZINV4

f ) T fifzf f (A ZaLA9d LV
f | LA 1 ZINOM
(NI U1 7vf f | [ Z0d0
I T f f [ f | LANY3ad
0 LTI W0 I yMisv4

o
2
m
(]
<

[ 1] [l Tl apNDs

7:77::fff f f fiff<mm§m§h
f: f f f f Fmoam
:A (] | ff:ffiff A e VINGM
[T ;f ; 7i 7£; f:::;: INLY
) L1l ff Il fzmuh:a
i | | ‘ 1dVIN
[ I :‘ff): | f £VdO
T | [ if | ezxaa
LA LY [ L INAIN
| | e I B M R M NS
77:f777f7: IR <ToYa | NE|
fiifvz: NDAd
[ ; L1 g4v4nanN
LI D viaian
(IR 7va<@40
Il ¥1OND
IERI
::FINm

' 10DAd
L IXNAT
Y0LDOD
6000
Zr1duIN
LOANS
JIMNSD
{FZJGm
¥0davd

adA1 1190
payouu3-No

° 3
— Q ] [©)
= S 023%%
Q

D = 2 E£38 €3
=1 Co, >2828 g 8¢
- - owF2 FSLE2 5468
[=2] = s

S o DI L 1 |
=l O (&) (&)

Figure S4 Expression level of central genes from most central and tissue-specific clusters and

their hierarchical clustering on the single cell level.activation after an MI.
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