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Abstract. Objective: ’F0 tracking’ is a novel method that investigates the neural processing of6

the fundamental frequency of the voice (f0) in continuous speech. Through linear modelling, a7

feature that reflects the stimulus f0 is predicted from the EEG data. Then, the neural response8

strength is evaluated through the correlation between the predicted and actual f0 feature. The9

aim of this study was to improve upon this ’f0 tracking’ method by optimizing the f0 feature.10

Approach: Specifically, we aimed to design a feature that approximates the expected EEG11

responses to the f0. We hypothesized that this would improve neural tracking results, because12

the more similar the feature and the neural response are, the easier it will be to reconstruct13

the one from the other. Two techniques were explored: a phenomenological model to simulate14

neural processing in the auditory periphery and a low-pass filter to approximate the effect of15

more central processing on the f0 response. Since these optimizations target different aspects16

of the auditory system, they were also applied in a cumulative fashion.17

Results: Results obtained from EEG evoked by a Flemish story in 34 subjects indicated18

that both the use of the auditory model and the addition of the low-pass filter significantly19

improved the correlations between the actual and reconstructed feature. The combination20

of both strategies almost doubled the mean correlation over subjects, from 0.078 to 0.13.21

Moreover, canonical correlation analysis with the modelled feature revealed two distinct22

processes contributing to the f0 response: one driven by the compound activity of auditory23

nerve fibers with center frequency up to 8 kHz and one driven predominantly by the auditory24

nerve fibers with center frequency below 1 kHz.25

Significance: The optimized f0 features developed in this study enhance the analysis of26

f0-tracking responses and facilitate future research and applications.27
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1. Introduction29

Traditionally, auditory-evoked potentials are evoked by short repetitive stimuli, but research is30

progressing towards the use of continuous speech stimuli. Experiments with these natural stimuli31

are more pleasant for subjects and yield detailed information on auditory processing in day-to-day32

communication (Hamilton and Huth, 2020). As part of this movement, researchers developed33

a framework to analyse neural responses to continuous speech based on linear decoding models34

(e.g. Mesgarani et al. (2009); Lalor and Foxe (2010); Ding and Simon (2012); Crosse et al. (2016);35

Vanthornhout et al. (2018)). A linear decoding model, or backward model, reconstructs a specific36

stimulus-related feature from a linear combination of multi-channel neural responses and their37

time-lagged versions (Mesgarani et al., 2009). These linear models can be constructed for various38

stimulus features and depending on the feature, different aspects of auditory processing can be39

targetted. In this study, we focus on brainstem-dominated responses to the fundamental frequency40

of the voice (f0) in continuous speech, or ”f0-tracking”, as described in Etard et al. (2019) and41

Van Canneyt et al. (2020b). Specifically, we aimed to optimize the feature that is used in these42

paradigms.43

The performance of backward decoding models is evaluated based on the correlation between the44

reconstructed feature, derived from the EEG (or MEG), and the actual feature, derived from45

the stimulus. For f0-tracking, the actual feature is typically obtained by band-pass filtering the46

stimulus (or through empirical mode decomposition (Forte et al., 2017)). However, the EEG47

response is not a perfect reflection of the stimulus and therefore the EEG-derived feature and48

these stimulus-derived features cannot be expected to correlate perfectly. The EEG response49

is shaped by neural processes like adaptation, saturation, and refractory periods, which have50

been extensively studied and can be simulated with models of the auditory system. Moreover,51

researchers have studied the EEG response and its dependency on the evoking stimulus and defined52

important temporal and spectral response characteristics. The goal of this study was to use the53

available knowledge on phase-locked EEG responses to adjust the feature used for f0 tracking,54

such that it is more similar to what is expected from the EEG response. We hypothesized that55

this would improve the correlations obtained with linear modelling, as it would be easier to predict56

the feature from the EEG responses. Typically, correlations for f0-tracking responses are quite57

small, i.e. in the range of 0.03-0.08, so increasing these values is desired.58

Two strategies were set out to optimize the f0 feature. In a first step, we aimed to account59

for a series of neural processes occurring in the auditory periphery. This included frequency-60

specific basilar membrane delays, adaptation effects and refractory effects in the primary auditory61

nerve fibers (ANF). For this purpose, we employed a phenomenological model of the auditory62

periphery (Carney, 1993; Zhang et al., 2001; Bruce et al., 2003; Zilany and Bruce, 2006, 2007;63

Zilany et al., 2009, 2014; Bruce et al., 2018). The model predicts neural firing patterns in a64
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large population of ANFs based on the input stimulus. By summing together the firing patterns65

over the ANFs, the response on the population level can be estimated. In a previous study, this66

population response has been found to accurately simulate phase-locked responses to stimulus67

envelope modulations (Van Canneyt et al., 2019). Since the f0 manifests as envelope modulations,68

we expect the simulations to approximate the neural response to the f0 in continuous speech as69

well. Therefore, we hypothesized that using the simulated population response as a feature would70

increase the performance of the linear models.71

An additional benefit of using the model of the auditory periphery by Bruce et al. (2018) is72

that relative contributions of neural populations with different center frequencies (CF) could be73

investigated. The adult human f0 ranges from about 80 to 300 Hz, and intuitively one would74

expect the f0 response to be driven by ANF with a CF in this range. However, there is evidence75

(from classic envelope following response (EFR) paradigms) that the f0 response is not primarily76

driven by the stimulus f0 but mostly by its harmonics (Aiken and Picton, 2006; Laroche et al.,77

2013), whose combined response periodicity equals the f0. For this reason, amongst others, ANF78

with larger CF are thought to contribute as well (Dau, 2003). Moreover, the higher harmonics of79

a stimulus can be divided in resolved and unresolved harmonics (Micheyl and Oxenham, 2004).80

Resolved harmonics are low frequency harmonics (< 1 kHz) which are each processed in a separate81

auditory filter in the cochlea. In contrast, unresolved harmonics have higher frequencies and82

multiples of them will occur within a single auditory filter so the auditory system processes them83

in a combined fashion. Several studies have tried to distinguish the contributions of resolved and84

unresolved harmonics to the classic EFR (Krishnan and Plack, 2011; Laroche et al., 2011, 2013),85

with varying results. Recently, findings of Saiz-Alia and Reichenbach (2020) suggested that fibers86

with CFs up to 8 kHz (corresponding to both resolved and unresolved harmonics) contribute more87

or less equally to the continuous f0-tracking response, but the stimulus used in that study has88

unnaturally strong higher harmonics (see discussion in Van Canneyt et al. (2020b)). We used the89

model simulations and canonical correlation analysis (CCA) to verify this finding for speech with90

a more natural speech profile.91

With the model of the auditory periphery, EEG response characteristics up to primary auditory92

nerve are adequately captured. However, the f0 tracking response is predominantly generated93

beyond the ANFs. In our previous work, Van Canneyt et al. (2020b), we have shown that94

the primary sources for the f0 tracking response are located in the brainstem, with possible95

cortical contributions. Therefore, the second strategy focussed on auditory processing higher-96

up the auditory pathway. Auditory models of brainstem processing already exist (Nelson and97

Carney, 2004; Verhulst et al., 2018; Carney et al., 2015; Saiz-Alia and Reichenbach, 2020), but we98

chose to design a new model that is simple, yet highly effective for our purpose, by focussing on the99

spectrum of the response. It is known that the frequency limit for phase-locking decreases along100

the auditory pathway, causing cortical sources to contribute more strongly for stimuli with low f0.101
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This ties together with the fact that f0 (or envelope) following responses decrease in strength with102

increasing stimulus f0 (e.g. Purcell et al., 2004; Gransier, 2018; Van Canneyt et al., 2020a,b). The103

exact relation between response amplitude and stimulus frequency varies widely across individuals,104

and there are many peaks and valleys (Tichko and Skoe, 2017), but we hypothesized that this105

frequency-amplitude relation could be approximated with a Butterworth low-pass filter. Therefore,106

our higher-level model is essentially a low-pass filter for which we optimized the filter parameters,107

i.e. order and frequency cut-off, in a data-driven way. We hypothesized that applying this filter108

to the feature would enhance the backward modelling correlations because the spectrum of the109

EEG and the to-be-predicted feature match more closely.110

In summary, this study aimed to optimize the feature used in linear models to analyse neural f0-111

tracking by incorporating prior knowledge of the f0 response. Two strategies were examined: 1)112

using simulations of the neural population response in the auditory periphery as the feature and 2)113

applying a low-pass filter to the feature to account for the effect of more central processing on the114

spectrum of the response. The two strategies were applied separately as well as combined, and the115

effect on backward modelling correlations was investigated. Additionally, the model simulations116

were used to quantify the relative contributions of ANF with different CF to the f0 response.117

2. Methods118

2.1. Dataset119

The neural responses analysed in this study are part of an existing data set (Accou et al., 2020;120

Monesi et al., 2020) that was also used in our previous work (Van Canneyt et al., 2020b). EEG121

responses to continuous speech were measured for 34 young normal hearing participants, who122

were native Flemish (or Dutch) speakers (31 females, 3 males), with ages ranging between 18123

and 24 years old (mean = 22.4 years, standard deviation = 1.4 years). All participants were124

normal hearing (all thresholds < 20 dB HL), which was verified using pure-tone audiometry125

(octave frequencies between 125 and 8000 Hz). The continuous speech stimulus was a Flemish126

story, titled ”Milan” (written and narrated by Stijn Vranken), which lasted 14.6 minutes and had127

a mean f0 of 107 Hz (interquartile range = 34.7 Hz). The experiments were approved by the128

medical ethics committee of the University Hospital of Leuven and all subjects signed an informed129

consent form before participating (s57102).130

2.2. EEG responses131

The EEG responses in the dataset were recorded with a 64-channel Biosemi ActiveTwo EEG132

recording system (fs = 8192 Hz). The 64 Ag/AgCl active scalp electrodes were placed on a133

cap according to the international standardized 10-10 system (American Clinical Neurophysiology134
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Society, 2006). Subjects were seated in an electromagnetically-shielded sound-proof booth and135

instructed to listen carefully to the story, which was presented binaurally through electrically-136

shielded insert phones (Etymotic ER-3A, Etymotic Research, Inc., IL, USA) using the APEX 3137

software platform (Francart et al., 2008). Stimulus intensity was set to 62 dB A in each ear.138

The setup was calibrated in a 2-cm3 coupler (Brüel & Kjaer, type 4152, Nærum, Denmark) using139

stationary speech weighted noise with the same spectrum as the story. To encourage attentive140

listening, participants answered a question about the content of the story after its presentation.141

We applied several preprocessing steps to the raw EEG data from the dataset. First, the data was142

downsampled to a sampling frequency of 1024 Hz. Then, artefacts were removed using a multi-143

channel Wiener filter algorithm with delays from -3 to 3 samples included and a noise weighting144

factor of 1 (Somers et al., 2018). The data was re-referenced to the average of all electrodes and145

band-pass filtered with a Chebyshev filter with 80 dB attenuation at 10 % outside the pass-band146

and a pass-band ripple of 1 dB. The filter cut-offs, i.e. 75 and 175 Hz, were chosen based on the147

f0 distribution of the story. We also applied a notch filter to remove the artefact caused by the148

third harmonic of the utility frequency at 150 Hz (the other affected frequencies did not fall in149

the bandpass filter range). The EEG was normalized to be zero mean with unit variance.150

2.3. Linear decoding model151

The EEG responses were analysed with linear backward decoding models implemented in152

MATLAB R2016b (The MathWorks Inc., 2016) using custom scripts and the mTRF toolbox153

(Crosse et al., 2016). A description of the main methods is provided here, but for details we refer154

to Van Canneyt et al. (2020b). In backward linear modelling or decoding, one reconstructs a155

known stimulus-related feature based on a linear combination of the time-shifted data from the156

EEG electrodes. In this study, time shifts between 0-40 ms in steps of 1/fs (fs = 1024 Hz) were157

included. First, a section of the data (including minimum 2 minutes of voiced data) was set aside158

for testing and the model was estimated based on the remainder of the data. Regularization was159

done using ridge regression (Tikhonov and Arsenin, 1977; Hastie et al., 2001; Machens et al., 2004).160

Then, the estimated model was used to reconstruct the feature for the testing data. Finally, the161

bootstrapped Spearman correlation between the reconstructed feature and the actual f0 feature,162

for the test section, was calculated (median over 100 index-shuffles). Importantly, unvoiced and163

silent sections were removed from the reconstructed and actual feature before correlating, because164

they have no reliable f0 (Forte et al., 2017). To validate the backward decoding results, we used165

a 3-fold cross-validation approach. The final backward correlation, i.e. the median over the folds,166

was compared to a significance level (based on correlations with spectrally-matched noise signals)167

to evaluate its statistical significance (two-sided test, α = 0.05).168
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2.4. The features169

Figure 1: Visualisation of the stimulus and how the features were derived from it. The sentence

shown is ”Elk jongetje is gewoon een jongetje” (translation: ”every boy is just a boy”).

To investigate how the neural system tracks the f0, the linear modelling approach requires a f0170

feature, i.e. a waveform reflecting the instantaneous f0 of the stimulus. In previous f0-tracking171

work (Van Canneyt et al., 2020b; Etard et al., 2019), f0 features were obtained by bandpass filtering172

the stimulus (’default’). The aim of this study was to develop a more optimal method to create173

the feature. A first strategy we explored, was to use a model of the auditory periphery to obtain174
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the feature (’model’). A second strategy was to apply an additional low pass filter, that roughly175

simulates neural processing beyond the auditory periphery, either to the default feature (default176

+ low-pass) or to the model feature (’model + low-pass’). The four features (the default feature,177

the model feature, the low-passed default feature and the low-passed model feature) are visualised178

in figure 1. Below the calculation of each of the features is discussed in detail. Importantly,179

unvoiced and silent sections were set to zero in all features before normalizing to zero mean and180

variance of 1. We performed linear decoding analysis of the data with each of the four features and181

compared the resulting correlations. Feature-induced differences between backward correlations182

were statistically evaluated in R (version 3.6.3., R Core Team (2018)), using linear mixed models183

(package lme4, version 1.1.21, Douglas et al. (2015)) with a random intercept per subject.184

2.4.1. The default feature The ”default” feature was based on band-pass filtering of the stimulus.185

Specifically, we used a Chebyshev bandpass filter with 80 dB attenuation at 10 % outside the pass-186

band and a pass-band ripple of 1 dB. The filter cut-offs, i.e. 75 and 175 Hz, were chosen based187

on the f0 distribution of the story. This filter is identical to the one applied to the EEG (see188

above). The amplitude response of the band-pass filter, as well as the resulting default feature, is189

visualized in Figure 1.190

2.4.2. The model-based feature The model-based feature is generated with a phenomenological191

model of the auditory periphery (Carney, 1993; Zhang et al., 2001; Bruce et al., 2003; Zilany192

and Bruce, 2006, 2007; Zilany et al., 2009, 2014; Bruce et al., 2018). The model simulates spike193

patterns from a population of auditory nerve fibers in response to an input stimulus. Here, the194

model simulated 20 different center frequencies (CFs) logarithmically spaced between 250 and195

8000 Hz and for every CF, there were 50 nerve fibers with different spontaneous firing rates: 10196

low (0.1 spikes/s), 10 mid (4 spikes/s) and 30 high (70 spikes/s). For a detailed description of the197

model as well as the model code, we refer to Bruce et al. (2018). However, two important changes198

were made to the model to increase the temporal resolution of the output: the window length of199

the smoothing Hamming window in the post-stimulus time-histogram (PSTH) was decreased from200

128 to 32 samples and the amount of bins over which the PSTH was integrated was decreased201

from 10 to 5. The process to obtain the model-based f0 feature is visually represented in figure202

1: the model received the Flemish story as input and produced simulated spike patterns for ANF203

at each of the CF, which can be visualised in a neurogram. The spike patterns were summed204

across all CFs (i.e. summing along the y-axis of the neurogram) to obtain the neural response at205

population level. Finally, the same band-pass filter as discussed in section 2.4.1 was applied to206

extract the neural response to the f0.207
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2.4.3. The low-pass filtered features We applied a low-pass filter to the feature such that the208

spectrum of the feature better resembled the spectrum of the expected f0 response, i.e. with209

reduced amplitude for higher frequencies. To avoid unwanted side effects of the filtering, especially210

in the stopband, we used a Butterworth filter. The order and cut-off frequency were determined211

in a data-driven way: for each subject, we calculated linear decoding models based on the default212

feature, low-pass filtered with different filter orders (1, 2, 4, 6, 8, 10, 12) and filter cut-offs (75,213

80, 90, 100, 110, 120, 130, 140, 155, 175 Hz). Including a wider range of cut-offs made little sense214

because the features are already filtered by a bandpass filter that strongly attenuated frequencies215

outside this range (see earlier). The results of this optimisation are discussed in detail in section216

3.2. In summary, we found a 8th (or higher) order filter with a cut-off frequency of 110 Hz to217

be optimal. The amplitude response of this filter is shown in figure 1. The same optimization218

process was performed for the model-based feature leading to nearly identical results, which were219

therefore not reported. As shown in figure 1, the optimized low-pass filter was applied to both220

the default and the model-based feature to create the two low-passed features.221

2.5. The relative contribution of nerves with different center frequencies222

The model simulations produced neural firing patterns for a group of 50 ANF at 20 CF, which223

were all summed together to obtain the model-based feature. In an additional analysis, we224

investigated the response at different CFs separately using a canonical correlation analysis (CCA).225

In preparation for the CCA, the spike patterns at each of the CF were filtered with the same226

bandpass filter specified earlier in section 2.4.1 and normalized to be zero mean. Moreover, the227

silent and unvoiced section were removed. Whereas linear backward decoding models are trained228

by finding the weighted combination of EEG channels that maximally correlates with a fixed229

feature, canonical correlation analysis (CCA) optimizes the correlation by applying weights to230

both the EEG channels and a set of features. In this case, the CCA assigned weights to the231

simulated response at each of the CFs, which is indicative of the relative importance of nerves232

with that CF for the f0 response. The CCA also determined weights for the EEG channels233

and their time-shifted versions (0-40 ms with 1/fs steps (fs = 1024 Hz)), but interpreting these234

’backward’ weights as a spatial distribution of the response is not reliable. As argued by Haufe235

et al. (2014a), large weights may be paired with channels unrelated to the signal of interest while236

channels containing response energy may receive small weights. These misleading effects occur237

because the linear model attempts to suppress noise components. To resolve this issue, Haufe238

et al. (2014a) proposed to transform backward models into forward models. In forward modelling,239

the EEG data in each recording channel is predicted based on the feature and its time-shifted240

versions. This method is less powerful than backward modelling, but since each EEG channel is241

treated separately, noise suppression cannot take place so the forward modelling weights can be242

reliably interpreted.243
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CCA estimated as many canonical components (sets of weights) as there are elements in the244

smallest set, which in this case was determined by the amount of CFs included in the model,245

i.e. 20. Each of these components was estimated under the constraint that they are uncorrelated246

with the previous components. The 20 resulting models, or CCA components, were applied to 2247

minutes of unseen voiced data and bootstrapped Spearman correlations between the reconstructed248

features and the actual f0 features were calculated (median over 100 index-shuffles). To assess the249

significance of each of the components, significance thresholds were estimated in the same way as250

for the linear decoding models.251

To understand the spatio-temporal characteristics of the canonical components, the significant252

components were transformed to a forward model, following Haufe et al. (2014a). This was done253

by weighing the model simulated responses at different CFs according to the weights estimated254

by CCA (instead of equal weighting in the default case) and summing it together to obtain a255

new f0 feature. This new feature and its time-shifted versions (-20 to 80 ms with 1/fs steps (fs256

= 1024 Hz)) were then used to predict the EEG response in each channel. The weights of the257

forward model can be interpreted through temporal response functions (an average over channels258

in function of time), which reflect the impulse response of the auditory system, and also through259

topoplots, which reveal the spatial distribution of the response at specific time lag. Because of the260

large degree of autocorrelation present in the f0 feature, response energy is spread in time, both261

in the TRFs and the topoplots. To help with interpretation, we calculated Hilbert TRFs, but the262

underlying autocorrelative smearing should be kept in mind. For more details on Hilbert TRFs263

and other aspects of the forward modelling, we refer to our previous work: Van Canneyt et al.264

(2020b).265
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3. Results266

3.1. Comparison of backward decoding results267
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Figure 2: Comparison of correlations for all subjects obtained with each of the features. The

dashed lines indicate the significance level. *** indicates a significant difference with a p < 0.001.

We performed linear decoding analysis of the same neural data with four different features: the268

default feature, the model-based feature, the low-passed default feature and the low-passed model-269

based feature. Figure 2 compares the backward correlations obtained for all subjects with each270

of the features. Visual comparison indicates that analysis with the model based-feature produced271

larger correlations compared to analysis with the default feature. Moreover, adding the low-272

pass filter improved correlations both for the default and the model-based feature. Significance273

levels are highly similar across features (dashed lines). The only feature that provided significant274

correlations for all subjects is the low-passed model-based feature. A linear mixed model with275

random intercept per subject was used to statistically evaluate the relative performance of the276

features. There was a significant difference between the correlations obtained with the default277

and the model-based feature (β = 0.030, df = 102, t = 10.7, p < 0.001). Moreover, there was a278

significant difference between the correlations obtained with the default and low-passed feature279

(β = 0.036, df = 102, t = 12.8, p < 0.001). Finally, the combination of the low-pass filter and the280

model-based feature resulted in significantly different correlations compared to the model-based281

feature on its own (β = 0.022, df = 102, t = 8.0, p < 0.001).282

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted October 29, 2020. ; https://doi.org/10.1101/2020.10.28.359034doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.28.359034


Enhanced neural tracking of the fundamental frequency of the voice 11

3.2. Optimisation of the low-pass filter283
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Figure 3: Results of the optimisation of the low-pass filter applied to the default feature A. Change

in backward correlation caused by applying a low-pass filter with the specified order and cut-off

frequency to the default feature, averaged over subjects. B. Change in backward correlation by

altering the filter order with the cut-off frequency fixed at 110 Hz, for each subject separately. C.

Change in backward correlation by altering the filter cut-off frequency with the filter order fixed

at 8, for each subject separately.

As described in the methods, the parameters of the Butterworth filter, used to filter the features,284

were defined in a data driven way. In figure 3, the results of this optimization are presented. We285

identified the filter parameters that induced the largest increase in correlation, compared to the286

correlation obtained with the default non-filtered feature. The results indicated that the largest287

increase in correlations, on average over subjects, occurred for a filter of 8th (or higher) order with288

a cut-off frequency of 110 Hz (panel A). For the majority of the subjects, increasing the order of the289

filter up to 8, while keeping the cut-off frequency fixed at 110 Hz, resulted in a monotonic increase290
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of the correlation. Using filter orders larger than 8 did not further enhance the correlations (Panel291

B). With a fixed filter order of 8, a cut-off frequency of 110 Hz was most optimal for the majority292

of the subjects (n = 19), but for some subjects a cut-off of 100 Hz (n = 9), 120 (n = 5) or 130 Hz293

(n = 1) was better (Panel C). For filter cut-off frequencies near 175 Hz, the change in correlation294

induced by low-pass filtering approached 0, because in those cases the attenuation of the low-pass295

filter fell outside the bandpass-filter (applied earlier), and therefore had no effect. In contrast,296

filter cut-offs below 80 Hz tended to decrease the correlation, indicating the importance of the297

lower frequencies. Optimisation of the low-pass filter on the model-based feature led to highly298

similar results and was therefore not shown.299

3.3. The relative contribution of nerves with different center frequencies300

To estimate the relative contribution of auditory nerve fibers with different CF to the f0 response,301

we performed CCA with the simulated spike patterns per CF. Out of the 20 estimated CCA302

components, the first two provided correlations that were larger than the significance level for303

the majority of the subjects (Figure 4, panel A). The median correlation over subjects obtained304

for the first component (0.099) is similar to what was found with the model-based feature in305

regular linear decoding (0.106), while the median backward correlation of the second component306

is smaller (0.076). The variance over subjects is also similar to what was observed for regular307

linear modelling. Panel B and C of figure 4 indicate the weight pattern for the first and second308

component, respectively. Note that the sign of these weights can be reversed without a change309

in meaning, as long as it is done for all the weights. The estimated weight patterns are highly310

similar across subjects. The first component revealed positive weights to all CFs except the lowest311

one, i.e. 250 Hz, which had a large negative weight. The second component is divided between312

positive weights for CFs below 1 kHz and smaller, (mostly) negative weights above 1 kHz. Weight313

patterns for non-significant CCA components were not analysed.314

Through forward modelling using features assembled from the neurogram according to the315

weightings displayed in panel B of Figure 4, the spatio-temporal characteristics of the canonical316

components was analysed. Panel C of Figure 4 presents the Hilbert TRFs for the two significant317

canonical components. The TRF for the first component peaks around 12.3 and 18.4 ms and is318

highly similar to the TRF of the regular model feature (black dotted line). This is not suprising319

as the CCA weights approximate equal weighting across CFs. However, the second component320

has a more narrow and earlier peak at 9.22 ms. The topoplots in panel D of Figure 4 indicate321

the spatial distribution of the response energy at these peak lags and these are highly similar322

to what was reported in Van Canneyt et al. (2020b). The second component seems to have less323

temporo-mastoidal activity which, together with the narrower and earlier TRF, indicates less324

cortical contributions compared to component 1.325
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Figure 4: Results of the CCA using the spike patterns per CF and the EEG (+ time shifted

versions) A. Backward correlations for each of the subjects and for each of the 20 canonical

components. The significance level is indicated with a dashed line. B. CCA weights across CFs

for the first and second component respectively, for each of the subjects (thin line) and in the

median case (thick line). C. Hilbert TRFs for the two significant canonical components and the

regular model (black dotted line). The peaks lags at which topoplots were plotted in panel D are

indicated with vertical dashed lines. D. Topoplots at the peaks lags of the TRFs in panel C.
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4. Discussion326

The goal of this study was to enhance the analysis of f0-tracking responses to continuous speech by327

optimizing the feature used in the linear decoding models. Backward correlations for f0-tracking328

responses reported in earlier studies are typically quite small, i.e. in the range of 0.03 - 0.08.329

Larger correlations would facilitate the detection and interpretation of group differences (less floor330

effects) and make f0-tracking analysis more robust. We hypothesized that better results would be331

obtained when the feature better resembled the expected neural response, as predicting the one332

from the other would be easier.333

A first strategy to optimize the feature was to use a model of the auditory periphery to simulate334

the neural response to the stimulus at the level of the primary auditory nerve. In a prior study, Van335

Canneyt et al. (2019), we showed how simulated population responses constructed through this336

model reliably predict neural responses to envelope modulations. Here, the simulated population337

responses were used as a feature in the linear decoding models. The model-based feature improved338

the mean correlation over subjects from 0.079 to 0.109, compared to the default feature. The model339

simulated auditory processing up to the primary auditory nerve, but f0-tracking is generated in340

the brain stem, with possible cortical contributions (Van Canneyt et al., 2020b). To account for341

the higher processing stages, we focussed on simulating the limitations of phase-locking. Phase-342

locking is less reliable for higher frequencies and the higher up the auditory pathway, the lower the343

maximum frequency that can be phase-locked to. This leads to a decreasing amplitude-frequency344

relation for the neural response, which we simulated through low-pass filtering. As shown in figure345

2, low-pass filtering the default feature improved the mean correlation over subjects from 0.079 to346

0.115. Since the two strategies target processes from different sections of the auditory pathway,347

it made sense to evaluated their combined effect. The combination of both strategies delivered348

the best results with significant correlations for all subject and almost a doubling of the mean349

correlation across subjects, from 0.079 to 0.130.350

Importantly, the newly developed features differ in the time and computational resources necessary351

to obtain them. Depending on the duration of the continuous speech stimulus, calculating the352

simulated neural responses with the phenomenological model is computationally very expensive.353

In experimental settings where the same stimulus is presented to many subjects, use of the model354

is feasible as the model simulation can be reused for all subjects. However, the process to obtain355

the model-based feature is likely too slow for real-time applications. In contrast with the model-356

based feature, the addition of a low-pass filter is a quick and simple operation, which is easy357

to implement and likely possible in real-time. Moreover, even though this approach is relatively358

rudimentary, our results indicate it still provides a substantial benefit. Alternatively, one could359

account for auditory processing beyond the auditory nerve, by using a model of the auditory360

pathway up to the brainstem, as proposed by Verhulst et al. (2018) or Saiz-Alia and Reichenbach361
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(2020). This way, neural responses at the level of the brainstem are simulated. However, these362

models are even more computationally expensive than the model of the auditory periphery.363

The parameters of the filter used for the low-passed features were determined in a data-driven way.364

On a group-level, the backward correlations improved the most when the feature was filtered with365

a 8th (or higher) order Butterworth filter with a cut-off at 110 Hz. The order of the filter could be366

further increased without impacting the correlations but the optimal cut-off frequency was rather367

specific: varying it more than 10 Hz up or down reduced the correlations. It is also possible to368

use the optimal filter parameters for each subject individually, however this barely improved the369

correlations on a group-level (from 0.1145 to 0.1172 for the low-passed default feature and from370

0.1309 to 0.1313 for the low-passed model-based feature). The optimization process was time-371

intensive and useful to develop the new feature, but does not necessarily need to be repeated for372

new data/stimuli. From explorations on different datasets with different evoking stimuli, we have373

learned that the optimal filter order is usually situated between 4 and 8, with voices with higher f0374

favouring lower order filters. The optimal filter cut-off usually falls a little (e.g. 40-50 Hz) above375

the lower cut-off chosen for the bandpass filter, which is determined based on the f0 distribution376

of the story. Essentially, the filter should be designed such that the frequencies in the lower range377

of the f0 distribution of the stimulus are left untouched and higher frequencies are gradually more378

attenuated.379

This study also included an investigation of the relative contributions of ANF with different CFs380

to the neural f0 tracking response. In this analysis, the simulated responses at different CF were381

assigned weights to optimize the correlation with a linear combination of the multi-channel and382

time-lagged EEG. The first CCA component indicated mainly positive weights, which confirms383

the findings by Saiz-Alia and Reichenbach (2020) that the f0-tracking response is generated by a384

collective of neurons with CFs up to 8kHz. The backward correlations obtained for this first CCA385

component were highly similar to the correlations obtained for the regular model-based feature,386

which makes sense since the weight pattern strongly resembles the uniform weighting used in387

the regular model-based feature. The CCA weights do indicate a steady decrease in relative388

contribution towards larger CF, which contrast the finding of Saiz-Alia and Reichenbach (2020)389

where CF up to 8 kHz were considered to contribute equally. Potentially, this difference is related390

to the fact that the stimulus of Saiz-Alia and Reichenbach (2020) has stronger higher harmonics391

than the stimulus of the present study. The observation that nerves with higher CF contribute to392

the neural f0 tracking response, not just the ANF with CF near the f0, follows the results of Dau393

(2003). Moreover, it also is in line with previous findings that claim that the EFR/f0-response is394

driven by both resolved and unresolved harmonics of the stimulus, not just the f0 (Jeng et al., 2011;395

Laroche et al., 2011, 2013; Van Canneyt et al., 2020a). Finally, the fact that higher harmonics396

are important drivers of the response could partly explain why the model feature outperforms the397

default feature: the model takes the full stimulus spectrum as input and can process the relative398
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strengths of the higher harmonics and estimate their contribution to the f0 response, whereas the399

default feature only takes the energy around the f0 into account.400

Remarkably, the CCA brought up a second component with (smaller) significant correlations,401

which is per definition uncorrelated to the first. CCA components differ in the weights assigned402

to the CF, but also have different temporal-spatial patterns, i.e. the weighting of different403

EEG channels at different time-shifts. Therefore, a second significant component could indicate404

an additional neural process underlying the f0-tracking response, possibly with different neural405

generators. The weights for the second component are large and positive for ANF with lower406

CF (<1000 Hz) and smaller and mostly negative for higher CF. This pattern could indicate that407

the process behind the second component focusses on the resolved harmonics in the stimulus and408

disregards the unresolved harmonics which typically occur above 1000 Hz. To learn more about409

the neural origin of this second response component, and how it differs from the first component,410

we applied Haufe et al. (2014b)’s suggestion to turn a backward model into a forward model.411

The results for the first component are highly similar to what was found for the regular model412

feature and to what was reported in our previous work (Van Canneyt et al., 2020b): TRFs with413

two peaks at lags around 13 and 18 ms and a topoplot with central and right temporo-mastoidal414

activity, suggestive of generators in the brainstem and right auditory cortex. The second process415

has a similar predominantly central spatial pattern but reduced tempero-mastoidal activity as416

well as only one and earlier TRF peak around 9 ms. This suggests that this second process occurs417

predominantly in the brainstem, without cortical contributions. These findings seem in line with418

the theory put forward by Laroche et al. (2011, 2013) that resolved and unresolved harmonics are419

processed in different but interacting pathways that converge in the upper brainstem.420

5. Conclusion421

In summary, this study has enhanced neural f0-tracking by optimizing the f0 feature such that422

it better resembles the expected neural response. Our recommendations are as follows: when423

fast and flexible implementation is required, low-pass filtering the feature is a great tool to boost424

correlations. When the stimulus is fixed and heavy computations are possible, the model-based425

feature, combined with a low-pass filter is preferred. Finally, if one wants to increase precision at426

the cost of even more computational power, one should consider a more extensive model of the427

auditory system that includes the brainstem (and ideally the primary auditory cortex as well).428

Besides, model simulations combined with CCA indicated that f0-tracking might be generated by429

two uncorrelated processes of which the first dominant one is driven by ANF with a broad range of430

CFs (up to 8 kHz) and the second smaller one is driven mostly by ANF responding to unresolved431

harmonics (CFs below 1 kHz). Cortical contributions are larger for the first process compared to432

the second.433
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Verhulst, S., Altoè, A., and Vasilkov, V. (2018). Computational modeling of the human auditory547

periphery: auditory-nerve responses, evoked potentials and hearing loss. Hearing Research,548

360:55–75.549

Zhang, X., Heinz, M. G., Bruce, I. C., and Carney, L. H. (2001). A phenomenological model for550

the responses of auditory-nerve fibers: I. Nonlinear tuning with compression and suppression.551

The Journal of the Acoustical Society of America, 109(2):648–670.552

Zilany, M. S. A. and Bruce, I. C. (2006). Modeling auditory-nerve responses for high sound553

pressure levels in the normal and impaired auditory periphery. The Journal of the Acoustical554

Society of America, 120(3):1446–1466.555

Zilany, M. S. A. and Bruce, I. C. (2007). Representation of the vowel /epsilon/ in normal and556

impaired auditory nerve fibers: model predictions of responses in cats. The Journal of the557

Acoustical Society of America, 122(1):402–417.558

Zilany, M. S. A., Bruce, I. C., and Carney, L. H. (2014). Updated parameters and expanded559

simulation options for a model of the auditory periphery. Journal of the Acoustical Society of560

America, 135(1):283–286.561

Zilany, M. S. A., Bruce, I. C., Nelson, P. C., and Carney, L. H. (2009). A phenomenological562

model of the synapse between the inner hair cell and auditory nerve: Long-term adaptation563

with power-law dynamics. The Journal of the Acoustical Society of America, 126(5):2390–2412.564

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted October 29, 2020. ; https://doi.org/10.1101/2020.10.28.359034doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.28.359034

