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1 Abstract1

Despite its central role in the proper functioning of the motor system, sen-2

sation has been less studied than motor output in sensorimotor adaptation3

paradigms. This deficit is probably due to the difficulty of measuring sensa-4

tion: while motor output has easily observable consequences, sensation is by5

definition an internal variable of the motor system. In this study we asked6

how well can subjects estimate relevant environmental changes inducing mo-7

tor adaptation. We addressed this question in the context of walking on a8

split-belt treadmill, which allows subjects to experience distinct belt speeds9

for each leg. We used a two-alternative forced-choice perceptual task (2AFC)10

in which subjects report which belt they thought to be moving slower. We11

characterized baseline accuracy in this task for healthy human subjects, and12
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found 75% accuracy for 75 mm/s speed differences. Additionally, we used a13

drift-diffusion model of the task that could account for both accuracy and14

reaction times. We conclude that 2AFC tasks can be used to probe sub-15

jects’ estimates of the environment and that this approach opens an avenue16

for investigating perceptual deficits and its relation to motor impairments in17

clinical populations.18

2 Introduction19

Despite its central role in the proper functioning of the motor system, sen-20

sation has been less studied than motor output in sensorimotor adaptation21

paradigms. This deficit is probably due to the difficulty of measuring sensa-22

tion: while motor output has easily observable consequences, sensation is by23

definition an internal variable of the motor system. For example, there exists24

abundant literature characterizing the adaptation of motor behavior evoked25

by split-belt walking (i.e., legs moving at different speeds) under a variety of26

conditions (e.g. Dietz et al., 1994; Torres-Oviedo and Bastian, 2010; Ogawa27

et al., 2014; Mawase et al., 2014), and for different populations (e.g. Reisman28

et al., 2007; Finley et al., 2015; Sombric et al., 2017), but the contribution of29

sensory information to this task is less understood. Psychophysical studies,30

in which subjects report what they perceive in response to a given physical31

stimuli, have been used to investigate the sensed speed differences that drive32

motor adaptation during split-belt treadmill walking (e.g. Jensen et al., 1998;33

Lauzière et al., 2014; Hoogkamer et al., 2015; Wutzke et al., 2015; Vazquez34

et al., 2015; Statton et al., 2018; Leech et al., 2018). However, the method-35
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ological approaches followed by these studies might be limited for the purpose36

of quantifying sensation.37

Current literature on perception of speed differences fails to consider fac-38

tors influencing people’s responses such. For example, people can report39

difference perception for the exact same sensory stimulus when probed mul-40

tiple times (i.e., the probabilistic nature of perceptual responses). Similarly,41

the time it takes for people to generate a response varies depending on how42

confident the subject is (i.e. subject-specific confidence in their responses).43

These factors are are important for inferring human sensation from percep-44

tual tests (Ehrenstein and Ehrenstein, 1999). During split-belt walking the45

external stimulus which needs to be sensed, which induces adaptation by46

disrupting the gait pattern, is the speed difference between the legs.47

Previous reports have assessed people’s perception of belt speed differ-48

ences through variants of yes/no tasks, in which individuals report when they49

perceive the belts to move at different speeds (i.e. yes, there is a speed differ-50

ence) or the same speed (i.e. no, there is not a speed difference). Regardless51

of the sensory stimuli presentation modality, perceptual responses to yes/no52

tasks depend not only on subjects’ sensation, but also on subject-specific53

decision criteria to convert sensory information into a response (Ehrenstein54

and Ehrenstein, 1999). For example, some subjects are more likely to fa-55

vor a response (e.g. ”yes”) when in doubt. Resulting in different responses56

to identical sensory information for different subjects. Thus, the impact of57

subject-specific decision criteria in these yes/no assessments suggests that58

other perceptual methods, such as the two-alternative forced-choice task,59

might be preferable to study sensation.60
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The two-alternative-choice task (2AFC) is preferable to yes/no tasks be-61

cause it allows us to access what people feel despite of their confidence on62

the stimuli that they are detecting. Notably, on a 2AFC task, subjects are63

asked to judge which of two stimuli contains a certain signal or satisfies a64

certain property. Importantly, subjects are forced to respond between the65

two alternatives, regardless of their confidence on the decision. One might66

consider that it is easier to indicate that something is happening (e.g., yes,67

there is a difference), rather than what is happening (e.g., left side mov-68

ing slower than right one). However, the sensation thresholds determined69

through 2AFC tasks tend to be smaller in magnitude than those determined70

through yes/no tasks (Green and Swets, 1966). Consistently, studies using71

the two-alternative forced choice (2AFC) task that we propose have shown72

that individuals can detect external stimuli without explicit awareness of said73

stimuli (Goldstein, 2009; Ehrenstein and Ehrenstein, 1999). Thus, while the74

declarative aspect of our perceptual task is undeniable, the 2AFC task will75

give us a metric of at least partial sensory information available for sensori-76

motor recalibration.77

Forcing a choice is a method to infer subjects’ sensations that would not78

get reported with other perceptual tests.Critically, 2AFC eliminates subject-79

specific differences in value between the alternative responses that exist for80

the yes/no task, making it simpler to obtain a quantification of sensor acuity.81

In other words, the alternatives in a yes/no task (i.e., ”yes” or ”no”) are82

not necessarily valued in the same way by every person. Thus, individuals83

may set personal decision thresholds adjusting for the value given to each of84

them. In contrast, in the 2AFC method the two alternatives are presented in85

4

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 28, 2020. ; https://doi.org/10.1101/2020.10.28.359281doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.28.359281
http://creativecommons.org/licenses/by-nc-nd/4.0/


a symmetric way, such that there is no additional value in one choice over the86

other. This makes 2AFC the preferred methodological approach to obtain a87

measure of sensory acuity (Green and Swets, 1966).88

While detecting accuracy is considered to be the main outcome measure89

of perceptual tasks, reaction times are key in the process of accumulation of90

sensory evidence before making a decision in a discrimination task (Pardo-91

Vazquez et al., 2019; Henmon, 1911). Moreover, by using a 2AFC task we92

have access to information on subjects’ reaction times, which indicates the93

available sensory information when analyzed through an appropriate model94

of how choices are made. One such mechanistic model that can systematically95

explore both accuracy and reaction times in a discrimination task is the drift-96

diffusion model (e.g. Ratcliff, 1978; Bogacz et al., 2006; Gold and Shadlen,97

2007). In the drift-diffusion model (DDM) for 2AFC an evidence variable98

is used to represent the accumulation of information, and a choice is made99

when one of two alternative choice barriers, corresponding to the two possible100

responses, is reached. Thus, the DDM offers a principled way to link accuracy101

and reaction times in the 2AFC as two expressions of the same mechanism102

for gathering sensory evidence to make a choice.103

Here we rigorously characterized the human ability to detect differences in104

belt speeds on a split-belt treadmill. The focus of our study was to evaluate105

sensory information available to subjects, rather than their confidence levels106

or other decision criteria involved in eliciting responses. Consequently, we107

used a 2AFC task for our perceptual assessment. We present quantifications108

of accuracy, reaction times, and estimates of perceptual thresholds across109

subjects and stimuli magnitude. Further, we used a drift-diffusion model110
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to gain insight into the processes underlying subjects choices and reaction111

times. Our results may be used as normative data to compare to other pop-112

ulations whose sensory acuity may differ or to assess changes in perception,113

for example, as a consequence of sensorimotor recalibration or lesions to the114

nervous system.115
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3 Methods116

3.1 Data Collection117

Participants N = 9 healthy subjects (24.6 ± 3.7 y.o., 6 female) com-118

pleted the protocol. All of the subjects were right-footed (self-reported leg119

used to kick a ball) and two of the subjects were left handed (self-reported).120

The protocol was approved by the University of Pittsburgh’s Internal Review121

Board (IRB) in accordance to the declaration of Helsinki.122

Testing protocol. The overall protocol subjects experienced is depicted123

in Figure 1A. Throughout the whole protocol, participants walked on a split-124

belt treadmill with a mean speed between their legs of 1.05m/s. The subjects125

were initially familiarized with the perceptual task they were going to be per-126

forming throughout the protocol by performing 6 repetitions of the task while127

being provided with both visual (a live graphic of both belts’ speeds) and128

verbal feedback from the experimenters. This ensured subjects understood129

the task and mapping between their actions (key-presses) and the changes130

in the speed of the belts. Following familiarization, subjects performed 2131

to 4 blocks of data collection (as time permitted). Each block consisted of132

interleaved tied-belt walking (i.e., both belts move at the same speed for 25133

strides) and the perceptual tasks at regular intervals. The blocks had a single134

presentation of the non-zero stimulus sizes, defined as an imposed belt-speed135

difference (∆v = vR − vL) at the beginning of each perceptual trial, and two136

presentations of the null trials in pseudo-random order (the same order for all137

subjects). There was a total of 24 trials per block (see figure 1B), where the138

stimulus sizes consisted on any of the following values: 0 (null), ±10, ±25,139
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±50, ±75, ±100, ±125, ±150, ±200, ±250, ±300, and ±350 mm/s. The140

treadmill was only stopped between blocks, but not within them, and sub-141

jects were allowed to rest and move as desired during the breaks. Even blocks142

were mirror images of the odd blocks, so if the +250mm/s was presented first143

in the odd blocks, then the −250mm/s was presented first in the even blocks144

and so on. This ensured balancing of positive and negative perturbations to145

minimize experimentally-introduced biases in responses. We collected a total146

of M = 30 blocks from the N = 9 subjects, with two subjects completing147

just two blocks, two subjects completing 3, and the rest completing 4 blocks148

each.149

Description of the perceptual task. The perceptual task was de-150

signed to assess subjects’ perception of speed differences based on two meth-151

ods: 2-alternative forced-choice followed by speed-matching (see Figure 1,152

panel C). The speed-matching component was a variant from previous per-153

ceptual tasks (Jensen et al., 1998; Vazquez et al., 2015) and is not analyzed154

in this study. Results from this portion of the task will be used in a future155

study comparing methods to track shifts in perception over motor adapta-156

tion. Every perceptual trial started with subjects walking with both belts157

moving at 1.05m/s followed by a sudden transition in belt-speeds to a speed158

difference whose value was unknown to the subjects (i.e., stimulus size). Sub-159

jects walked at this speed difference for a full stride cycle (i.e., time duration160

between two foot landings of the same leg) after which they heard an audio161

cue signaling the beginning of the response window (Figure 1C gray shaded162

area). Upon this audio cue, subjects had to press one of two keys (left or163

right) according to which belt they perceived to be moving slower. Response164
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time (i.e., reaction time) and accuracy in the first key-press was used for the165

2-alternative forced choice analysis. Subjects were also asked had to repeat-166

edly press either key until the two belts felt like they were moving at the same167

speed (speed-matching component). At every key-press, the belt speed dif-168

ference would change by either 6, 8 or 10 mm/s (equally probable, randomly169

chosen) such that the belt speed difference was either reduced (e.g., the sub-170

ject pressed the key corresponding to the belt that was moving slower) or171

increased (e.g., the subject incorrectly pressed the key corresponding to the172

belt that was moving faster). Changes in belt speed were split symmetrically173

across the two belts such that the mean speed across the belts was constant174

throughout the experiment (1.05 m/s). The response window lasted for 24175

strides, after which they would hear a second, different, audio cue indicating176

the end of the perceptual task. Subjects wore noise-cancelling headphones177

and a drape that blocked vision of their feet throughout the protocol to re-178

move any additional auditory or visual information influencing the responses.179

The headphones were also used to provide the start/stop audio cues, as well180

as a clicking sound at each key-press to avoid any impression that the system181

may not be detecting their actions.182

3.2 Perceptual Trial Exclusion183

Trials where subjects did not respond and the first trial in each block were184

excluded from analysis. Non-response trials consisted of 1.1% of all recorded185

trials (8 out of 720), and occurred in small stimulus size trials only (i.e., 5/60186

of ± 25 mm/s trials, 1/60 of ± 50 mm/s trials and 2/120 of ± 0 mm/s trials).187

We also eliminated the first perceptual trial for every block because we re-188
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Figure 1: Protocol and methods for characterizing the perception of belt speed
differences. A) Experimental protocol. Subjects completed one or two familiar-
ization blocks followed by 2 to 4 testing blocks. B) speed difference profile for
odd testing blocks. The profiles took the opposite values for the even blocks. Sub-
jects performed a perceptual task in each of the shaded intervals. C) Perceptual
task description. Tasks begun and ended with audio cues. Upon hearing the cue,
subjects were instructed to identify the belt moving slower, and to make as many
key-presses as necessary until the belts felt as moving at equal speeds. D) Drift-
diffusion model schematic. The drift-diffusion model for 2AFC tasks represents
the temporal evolution of a decision variable as a random-walk (black and gray
jagged lines). Decisions are made when one of the two decision barriers is reached
(dashed lines). Reaction time is composed of a non-decision and decision interval.
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alized that other factors (e.g., distraction) beyond actual perception had an189

impact on the initial accuracy metric for every block. For example, subjects’190

accuracy probed at 250 mm/s (which is a very salient speed difference) was191

much smaller when presented at the beginning than within the block (64%192

and 81% respectively).193

3.3 Perceptual Task Outcome Variables194

From each presentation of the perceptual task, we extracted two outcome195

variables that were subsequently used for analysis, both from the two-alternative196

forced-choice portion of the task: choice (first key pressed) and reaction time197

(time until first keypress). Results from the speed-matching portion of the198

task are not analyzed here. A ‘left’ choice was defined as a ‘left is slower199

than right’ response. A ‘right’ choice is defined analogously. Choices were200

converted to accuracy scores for some analyses. A response was considered201

accurate if the subjects’ choice indicated correctly the belt that moved slower.202

Accuracy was not defined for null trials (i.e. 0 mm/s stimulus size), as there203

is no correct choice. Reaction time was defined as the interval between the204

starting audio cue and the first keypress. Different from accuracy, reaction205

time is defined for all trials, including null ones.206

3.4 Quantification of Perception Through the 2AFC207

Task208

Perceptual thresholds (JNDs) and point of subjective equality (PSE).209

We used the 2AFC task to estimate two important quantities in the charac-210
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terization of perception: the just noticeable difference or differential threshold211

(JND), and the point of subjective equality (PSE). The JND or threshold is212

defined as the minimum magnitude difference between two stimuli that can213

be reliably perceived by the subject as distinct (e.g. Green and Swets, 1966).214

If we adopt a deterministic view of sensation, where a specific stimulus is215

either always detected or never detected, this definition matches the notion216

of a transition point between detection and non-detection. However, this all217

or nothing assumption rarely conforms to observations in perceptual stud-218

ies, (Ehrenstein and Ehrenstein, 1999), requiring a probabilistic definition219

of thresholds. Thus we adopt the midpoint threshold definition (Goldstein,220

2009), which is the stimulus value when probability of detection first exceeds221

the midpoint between its lowest and its largest possible values. In a 2AFC222

task such as the one used here, 75% accuracy is commonly used, given that223

subjects can be 50% accurate from merely guessing at the task. The point224

of subjective equality (PSE) is defined as the stimulus for which subjects225

choose equally between two options (50/50 choice ratio). This is a metric226

that quantifies potential biases in sensation (i.e., subjects are more likely to227

choose left than right or vice versa) and has been used in studies characteriz-228

ing changes in perception following split-belt walking (Vazquez et al., 2015;229

Statton et al., 2018; Leech et al., 2018).230

Both PSE and JND can be directly estimated by finding the stimuli231

values for which subjects select between the two alternatives with 50/50 and232

75/25 ratios. While this is feasible in principle, accuracy estimates for each233

stimulus are very noisy, especially at the individual level were each stimulus234

was presented at most 4 times. Consequently, we decided against the direct235
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approach and used responses for all stimuli presented to obtain a smooth236

estimate of the relationship between stimuli and responses in the task (i.e.,237

psychometric function).238

Psychometric curve fitting. As stated in the previous section, esti-239

mation of the PSE and JND was predicated on first characterizing the choice240

vs. stimulus size curve in this task. We did this through a maximum like-241

lihood fit to the binary responses for both individual and group-averaged242

data. Specifically, we fit the binary left/right responses (not accuracy) data243

from each individual using a parametric logistic regression approach. The244

responses were modeled as coming from a binomial distribution with param-245

eter p, where said parameter was taken to be a logistic function of a linear246

combination of the factors of interest (summarized in the function µ), as247

shown in Eq. 1.248

p =
1

1 + eµ
(1)

Initially, we considered two main factors that explain subject choices at249

each trial: a bias (intercept) term, and the stimulus size (∆Vk). We then250

considered the possibility that three exogenous factors may affect subject251

choice and consequently our JND estimate: task learning, habituation, and252

dominance. To control for these spurious effects we included three additional253

factors to our regression: previous stimulus size (∆Vk−1), a current stimulus254

by block number interaction (∆Vk × bj, where bj ∈ [0, 1, 2, 3] indicates the255

block number), and a term that depends solely on absolute stimulus size256

(|∆Vk|). This results in a five-factor model as shown in Eq. 2.257
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µk = β0 + β1∆Vk + β2∆Vk−1 + β3∆Vk × bj + β4|∆Vk| (2)

The intercept (β0) term quantifies a potential bias in responses. The sec-258

ond term (β1) quantifies sensitivity to stimulus size. The third term (β2)259

quantifies subjects’ habituation to previously presented belt speed differ-260

ences. That is, because of prior experience subjects responses may be chang-261

ing. In its simplest form, this can be taken as the responses to each stimulus262

being affected by the immediately preceding stimulus size. A negative value263

represents that having two stimuli of the same sign makes the second one264

more difficult to identify, while a positive value represents the opposite. The265

fourth term (β3) quantifies learning in the task, such that subjects would have266

a better performance in perceptual tasks presented later in the experiment.267

A significant value of β3 indicates a change in the slope of the psychometric268

functions for different blocks. A positive value would represent subjects get-269

ting increasingly better at the task (sharper transition between left and right270

choices) which is the expected effect, if any. Finally, the absolute stimulus271

size term (β4) would indicate a dominance effect. That is, it would indicate272

a higher sensitivity to one specific belt moving faster.273

The model was first fit to all responses (pooled across subjects), to select274

the relevant factors among those considered. The model fitting was done275

using Matlab’s (The Mathworks, Inc., Natick, Massachussets, United States)276

fitglm function. A stepwise procedure was used to drop non-significant terms277

from the model one at a time. The criterion for dropping terms was a p-value278

larger than 0.05 for the likelihood ratio test of the model with and without279

the corresponding term, under a χ2 distribution with one degree of freedom.280
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This procedure is implemented by Matlab’s stepwiseglm using the deviance281

criterion. Group regression results showed that only the bias and stimulus282

size factors (β0 and β1) were significant. Consequently, we fitted individual283

choice models considering those two factors only, as shown in Eq. 3.284

µk = β0 + β1∆Vk (3)

Estimation of the JND. Given the psychometric fits described above, it285

can be shown that for an unbiased subject 75% accuracy happens at stimuli286

values of ≈ ±1.1β−1
1 . Consequently, we use the estimate JND = 1.1β−1

1 .287

More generally, this JND quantification can be interpreted as the increase in288

stimulus needed to go from 50/50 response proportion to a 75/25 proportion289

(in favor of either response) if all other parameters and factors are held290

constant.291

Estimation of the PSE. For the same psychometric fits described292

above, the belt speed difference for which subjects show equal proportion293

of responses is PSE = −β0/β1. We note that for healthy subjects the PSE294

in this task is expected to be close to 0 mm/s, such that if both belts are295

moving at the same speed, half of the time subjects will choose left and the296

other half right.297

3.5 2AFC Decision Making as a Drift-Diffusion Pro-298

cess299

The drift-diffusion model (DDM) is a model of decision making with noisy300

evidence. In this model, subjects are assumed to accumulate evidence in301
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time until sufficient evidence is gathered and a decision is made. Here we302

consider the simplest form of DDMs for a two-alternative choice task. The303

evidence gathered up until time t is represented as the continuous variable304

x(t). Whenever x(t) goes above the barrier a(t) we say that a left choice305

has been made, and whenever it goes below b(t) we say a right choice has306

been made (see Figure 1D). Whenever the first barrier crossing happens, the307

trial terminates. We assume starting point is unbiased (i.e. that the starting308

point is equidistant to both decision thresholds, and thus subjects have no309

preference for either response), and fixed decision barriers in time. Thus,310

without loss of generality we take the starting point of the decision variable311

to be x = 0 and the barriers taken to lie symmetrically so a(t) = −b(t) = a.312

The simplest DDM can then be characterized by three additional parameters:313

the noise level (σ), the drift-rate (r), and the non-decision time (tnd). The314

model separates the evolution of x(t) into two stages. First there is a non-315

decision stage, representing a delay (tnd) in the beginning of the evidence316

gathering (Eq. 4).317

x(t) = 0, t ≤ tnd (4)

In the following stage the evidence gathering process is modeled as a contin-318

uous stochastic process with the following evolution (also known as a Wiener319

or Brownian motion process with drift):320

dx = r.dt+ σ.dw, t > tnd (5)

Where r and σ are constants (for a given stimulus), dx refers to the change in321

accumulated evidence for an infinitesimal time interval dt, and dw is a zero-322
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mean normal process such that dw ∼ N(0, dt) for that same time interval.323

This equation can be interpreted as a process that accumulates evidence324

linearly (in time) through the given drift rate r, but is affected by additive325

noise also accumulated in time.326

We note that despite there being four parameters for the model (a, σ,327

r, and tnd) the model is scale-invariant, such that proportionally scaling the328

values of a, σ, and r by the same amount results in the same predicted329

behavioral outcomes. Hence, without loss of generality we define ”a” to be330

equal to 1 (Wagenmakers et al., 2007). Then the probability of the process331

hitting one particular decision barrier (e.g., the probability of a left choice332

being made, PL, which corresponds to the positive or upper decision barrier;333

Figure 1D), and the mean reaction time have closed-form expressions (Bogacz334

et al., 2006; Wagenmakers et al., 2007) given by:335

PL =
1

1 + e
2r
σ2

(6)

336

mean td =
1

2r
(2PL − 1) (7)

By extension, the probability of hitting the other barrier is PR = 1−PL. We337

note that the choice probability in the task if fully determined by r and σ,338

and satisfies 2r
σ2 = log

(
1−PL
PL

)
.339

Given the protocol design, where subjects experience the decision task340

for different stimulus sizes, it is necessary to establish the dependency of the341

model parameters (r, σ, tnd) to the different experimental conditions (i.e.,342

different stimulus sizes). The experimental condition kept the mean speed343

as a fixed number (v = vR+vL
2

). Therefore, it is possible to simplify the344
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analysis on the dependency of the model parameters and the stimulus size345

such that the stimuli will be characterized jointly through their difference346

∆v = vR−vL. Furthermore is is assumed that: 1) The non-decision time tnd347

is independent of ∆v. 2) Noise or diffusion rate is symmetric; that is, that348

a transposition of vR and vL leads to the same diffusion rate. The simplest349

such relation is to assume that the diffusion rate σ depends on the stimuli350

as σ = σ0 + k∆v2, where σ0 is a baseline noise and k scales the dependence351

on the stimuli. This relation can be interpreted as a second-order (Taylor)352

approximation of a more general relation that is symmetrical on the stimuli353

(i.e., that the diffusion rate is invariant to flipping the speeds of the two belts).354

3) Finally, we assume that choice in the task must scale with stimulus size.355

Because choice is completely determined by 2r
σ2 , the simplest such relation is356

2r
σ2 = b+ c∆v, where b represents a bias term and c a scaling term. The drift357

rate r is then implicitly related to the stimuli. Similar to before, this can be358

interpreted as a first-order approximation of a more general dependency of359

2r
σ2 on ∆v. We note that the model then has five scalar degrees of freedom360

(b, c, tnd, σ0, and k).361

Using these definitions, the model was fit through a two-stage procedure:362

First, we find the maximum likelihood fit to choices (left/right), which de-363

termines the parameters b and c (Eq. 6). Second, we perform a least-squares364

fit to mean reaction times, which results in estimates of tnd, σ0 and k (Eq.365

7). We will consider the special case with absence of signal-dependent noise366

(k = 0 and σ = σ0 is a constant), where the drift in the DDM is the only367

model parameter dependent on the stimulus size. Moreover, we analyzed the368

case in which k 6= 0, where both the drift and the diffusion term in the DDM369
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are dependent on the stimulus size (i.e., there is signal-dependent noise). Pa-370

rameters were fit to each individual separately, but the resulting models are371

presented by averaging across all subjects for visualization purposes.372

3.6 Data and Code Availability373

Perceptual data and the code used for all analyses and creation of figures in374

this work are available at [THIS HAS BEEN ANONYMIZED, WILL RE-375

PLACE WITH PROPER URL AFTER MANUSCRIPT ACCEPTANCE]Kinematic376

and kinetic data from subjects while performing the task is available upon377

request.378
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4 Results379

4.1 Characterization of Sensation Through the 2AFC380

Task381

To answer the question of what factors could influence subjects’ perception382

of the speed at which their legs moved, subjects performed the 2 alterna-383

tive forced choice task described in the methods. We fitted a logistic re-384

gression function to the averaged pooled responses (Figure 2A, black solid385

line), considering the effect of several factors beyond stimulus size. How-386

ever, only stimulus size (β1 = 0.012 ± 0.001, mean ± standard error) sig-387

nificantly influenced subjects’ choices (p = 2.45x10−34). The intercept coef-388

ficient (β0 = 0.192 ± 0.098, mean ± standard error) almost reached signif-389

icance (p = 0.051), indicating a potential group bias. However, this effect390

was mainly driven by a single subject with a large bias, and thus, should be391

interpreted carefully. This term is kept in the model for better fitting of the392

data on an individual level. Lastly, the other factors that were studied did393

not significantly affect subjects’ responses, such as leg dominance (p = 0.93),394

previous stimulus size (p = 0.25), or stimuli habituation (i.e., stimulus size395

by block number interaction, p = 0.17).396

JND (group level) The JND was estimated by smoothing available397

data and finding the point at which the logistic model, fitted to the subjects’398

pooled data, crossed the 75% accuracy value. The group-level threshold (see399

methods) is 95 mm/s (equivalent to a 9.1% Weber fraction). The Weber400

fraction for this sensory modality is given by the threshold as a fraction401

of the mean belt-speed (i.e., w = ∆v/v̄). We note that the grouped data402
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Figure 2: Choice, accuracy, and mean reaction times vs. stimulus size. A) choice
as a function of stimulus size. Circles indicate group average responses across
subjects (± standard error of the mean), thin gray lines represent logistic fits
to individual data (see Methods), thick black line represents the average of the
individual logistic fit curves (not the logistic fit to group averaged data). B)
Top: accuracy as a function of absolute stimulus size. Both the data and model
fits are the same as in the left panel, but averaged across positive and negative
stimuli. Circles indicate experimental data (group average ± standard error).
Bottom: mean reaction time as a function of absolute stimulus size. Circles
indicate experimental data (group average ± standard error). C) mean reaction
time vs. accuracy. Circles indicate experimental data (group average ± standard
error). Note that the color gradient in the circles among B and C depend on the
absolute stimulus size.

estimated over the 75 mm/s stimulus, has a group accuracy of exactly 75%403

(Figure 2B, top panel). We conclude that the perceptual threshold defined by404

75% accuracy in the task is on average located approximately at 7% (Weber405

fraction) across the population tested.406

Individual differences in accuracy, PSE, and JND Individual sub-407

jects displayed a large range of behaviors in the 2AFC, with accuracy varying408

from 65% to almost 95% for individual subjects across all trials (see Figure409

3A. Large reaction time differences were also observed, with mean values410
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Figure 3: Individual variability in belt speed difference perception. A) mean re-
action times (± standard error) vs. mean accuracy for each subject (numbered)
and the whole Group across all stimulus sizes. B) estimates of point of subjec-
tive equality (PSE, thick bars) and 95% confidence interval (CI, errorbars) from
logistic regression models. Best estimate and approximate confidence intervals
are propagated from β0 and β1 estimates (PSE=−β0/β1) presuming fixed β1 to its
maximum likelihood value. C) just noticeable difference (JND) estimate with 95%
CI (errorbars). Values are computed as 1.1/β1. Confidence intervals are computed
by applying the same transformation to the edges of the CI of β1. This results in
skewed CIs.

ranging from approximately 2.5 to 5.5 s. For PSE and the JND determi-411

nation, choices were modeled for each individual considering the same two412

factors as in the group level (stimulus size and intercept, Figure 2A, gray413

lines). A representation of individual parameter estimates is shown in Fig-414

ure 3 (Panel B: PSE; Panel C: JND). Only one of the subjects showed a415

significant bias (PSE, Subject 2), which we believe was driving the intercept416

term in the group level regression. A large range of values is observed for417

the JND estimate obtained from this model, implying that some subjects418

have much sharper discrimination curves than others. The observed thresh-419

old range was 18 to 191 mm/s, with an average of 96 ± 59 mm/s (mean ±420

standard deviation).421
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The drift-diffusion model can explain accuracy and reaction422

times in this task. This model represents the decision-making process423

in the 2AFC task as the random walk of a variable quantifying the evidence424

accumulated over time. A choice is made once the evidence exceeds some425

pre-determined values (see Figure 4, top). The drift-diffusion model (DDM)426

could adequately fit experimental results. Figure 4 shows group-averaged427

data along with group-averaged model predictions. Model parameters were428

fit to each individual separately, assuming a linear relation between stimuli429

(belt speed difference) and drift rate.430

We note that a DDM with fixed noise could be fitted to adequately explain431

accuracy or reaction times (RT), but it was not possible to describe both432

outcomes simultaneously (results not shown). For the parameters that best433

fit RT, the expected subject accuracy was higher than the empirical one.434

Conversely for the parameters that best fit accuracy the expected RT curve435

was flatter than the observations. We conclude that the DDM as presented436

is sufficient to characterize both subjects’ accuracy and reaction times if the437

model’s noise, or diffusion rate, is allowed to be stimulus-dependent.438
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Figure 4: Drift diffusion models with fixed noise are insufficient to fit 2AFC task
data. A) Left panel: accuracy vs. absolute stimulus size. Black line represents
the model fit, circles indicate experimental data (group average ± standard error).
Middle Panel: mean reaction time (RT) vs. absolute stimulus size. Right
Panel: mean RT vs. accuracy. B) The model with fixed noise could be fitted to
adequately explain accuracy (Blue line) or mean reaction time (Red line). Left
Panel: accuracy vs. absolute stimulus size. Middle Panel: mean reaction time
(RT) vs. absolute stimulus size. Right Panel: mean RT vs. accuracy.
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5 Discussion439

5.1 Quantification of Belt Speed Difference Sensation440

Through a 2AFC Task441

This work presents a rigorous assessment of subjects’ sensation of differences442

in belt speeds on a split-belt treadmill. Specifically, we present results on443

the accuracy of subjects in identifying which belt was moving faster than444

the other as a function of the magnitude of belt speed differences. Differ-445

ent from prior studies on the topic that relied on variants of a yes/no task446

(Lauzière et al., 2014; Hoogkamer et al., 2015; Wutzke et al., 2015), we uti-447

lized a two-alternative forced-choice (2AFC). Yes/no task responses depend448

on both available sensory information and of subject’s valuation of the two449

alternative responses. For example, when asked if belts are moving at the450

same speed, subjects favor one response when in doubt, while others may451

prefer the alternative answer. However, none of the prior studies explicitly452

account for this decision criteria. The 2AFC presents alternative responses453

in a symmetric design, so differences in value between the alternatives can be454

assumed to be nonexistent. This allows for inference about the sensory in-455

formation used to arrive at a response without needing to consider subjects’456

decision criteria, making 2AFC the preferred task when the objective is to457

assess sensory information and processes (Green and Swets, 1966). Conse-458

quently, we believe the results from our work represent the most accurate459

report to date on healthy young persons’ sensation on this task.460
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5.2 Middle Point JNDs are a More Meaningful Metric461

of Sensitivity than Null Hypothesis JNDs462

The just noticeable difference (JND) is a useful metric to summarize sensa-463

tion of a particular physical stimulus. Three prior reports on sensation of464

belt speed differences in split-belt walking explicitly estimate JNDs in this465

context (Lauzière et al., 2014; Hoogkamer et al., 2015; Wutzke et al., 2015).466

However, these studies are not always explicit about what they define as the467

JND, which makes interpretation of experimental results harder. In this work468

we adopted and quantified our results through one commonly used definition:469

the middle point threshold. An alternative definition is the one given by the470

null hypothesis threshold (Goldstein, 2009). Both definitions (middle point471

threshold and null hypothesis) quantify different notions of what a JND is,472

and either or both may be adopted to characterize probabilistic relation be-473

tween detection and stimulus size. However, we believe that the middle point474

JND quantification is more meaningful when characterizing sensitivity.475

The null hypothesis JND can be qualitatively defined as the point below476

which stimuli are not reflected in sensory information that is available to477

subjects’ response mechanisms. Consequently, belt speed differences below478

this threshold should result in chance-level (50%) choices. Here we found that479

subjects, when taken as a group, were able to detect above chance levels, belt480

speed differences as small as 25 mm/s when the mean belt speed was 1.05481

m/s. This corresponds to a 2.4% Weber fraction. Subjects’ accuracy in482

determining belt speed differences of 10 mm/s (the smallest tested here) was483

60%, but this value was not significantly different from chance. These results484

suggest that the null hypothesis threshold in this context is certainly below485
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2.4%, and possibly lies between 1 and 2.4%.486

While null hypothesis JND may make intuitive sense, it is impossible to487

positively prove its existence. Any negative findings (i.e., chance-level accu-488

racy for some non-zero stimuli) can be explained away as a lack of statistical489

power to assess true accuracy. In our case, if the true underlying accuracy for490

10 mm/s differences is 60% (as estimated here), then experimental determi-491

nation of this value to be above chance levels with 80% power and a 5% type492

I error rate would require over 150 samples. Hence, one possible interpreta-493

tion of our results is that the experiment was underpowered to detect a 60%494

accuracy rate for 10 mm/s differences in belt speeds. Of course, this problem495

can be controlled if a definition exists of what is the minimum accuracy level496

that we deem to be meaningfully above chance (e.g., defining that accuracy497

below 55 % is not meaningfully above chance even if it may be statistically498

significant for a large enough sample size). Thus, we believe estimation of499

accuracy rates for any particular stimulus size (e.g., defining estimates and500

confidence intervals of accuracy for any given belt speed difference) is a more501

meaningful way to describe sensation than ascertaining the existence of a502

precise cutoff point.503

The middle point JND corresponds to the point at which subjects are504

more likely than not to correctly identify belt speed differences. In our task505

this point corresponds naturally to the 75% accuracy point in the accuracy506

vs. stimulus strength. This definition has the advantage of being a good507

descriptor of perceptual sensitivity, regardless of whether thresholds in the508

null hypothesis sense exist. Using this metric we found a threshold of 9.1%509

for group-averaged accuracy data. Further, we were able to quantify this510
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for individual subjects, and we found a wide range of sensitivities at the511

individual level, with a population average also of 9.1% ± 5.6 % (mean ±512

standard deviation). Although the results from the psychometric fits suggest513

a threshold of 9.1%, the grouped data suggests a lower threshold (Figure514

2B, top panel). Note that the grouped data estimated over the 75 mm/s515

stimulus has an accuracy of exactly 75%, suggesting that the group-level JND516

is at most 75 mm/s and the psychometric fit is overestimating the threshold.517

Notably, these estimates are well below previously reported perceptual belt518

speed thresholds.519

Because of differences in threshold definitions, along with the previously520

mentioned methodological differences, comparisons between studies should521

be made cautiously. A summary of prior reports on split-belt treadmill JNDs522

is given in Table 1. Wutzke et al. (2015) explicitly use a middle point defini-523

tion. The two other reports (Lauzière et al., 2014; Hoogkamer et al., 2015)524

implicitly adopt a non-probabilistic approach, quantifying thresholds from a525

single, or at most two, independent measurements. This approach appears526

more consistent with a null hypothesis framework, in which stimuli fall in527

either the undetectable (chance level accuracy) or the detectable (100% ac-528

curacy) categories. Whatever the definition, our results reflect higher sensory529

acuity from healthy subjects than had previously been implied. This is con-530

sistent with prior observations that subjects require less stimulus information531

to make a decision in forced-choice tasks (Ehrenstein and Ehrenstein, 1999).532

Throughout this report we have presented metrics of sensitivity to belt533

speed differences as a Weber fraction, or % of mean belt speed. This normal-534

ization procedure is based on the finding, across several sensory modalities,535
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Authors Population Procedure JND
Lauzière et al. (2014) healthy elderly y/n ascending limit 12.8%
Lauzière et al. (2014) healthy elderly y/n descending limit 16.2%
Wutzke et al. (2015) chronic poststroke y/n staircase 26%

Hoogkamer et al. (2015) healthy young y/n ascending limit 13%
Hoogkamer et al. (2015) cerebellar y/n ascending limit 17.6%

this study healthy young 2AFC < 9%

Table 1: Summary of split-belt perceptual thresholds reported in the literature,
presented as a fraction of mean belt speed as a normalization procedure (Weber
fraction, w = ∆v/v̄).

that the ability to perceive a difference between two stimuli scales linearly536

with stimulus magnitude (Goldstein, 2009). This notion was not directly537

tested here, but prior reports on this context offer support for this normal-538

ization. Specifically, thresholds corresponding to equivalent Weber fractions539

have been found in studies using varied walking speeds (Lauzière et al., 2014).540

Verification of this relation is left for future studies.541

5.3 The Drift-Diffusion Model is Sufficient to Describe542

Choices and Reaction Times in the 2AFC Task543

Drift-diffusion models (DDMs) have been successfully used to describe a wide544

range of perceptual tasks (Ratcliff, 1978; Gold and Shadlen, 2007). One545

of the appeals of DDMs is that it offers a framework to relate perceptual546

outcomes (choice) with reaction times, which are not clearly related to the547

task objective, through a computational description that depends on only a548

few parameters. Further, the DDM can be interpreted as a formalization of549

a process of statistical inference based on sequentially acquired information550

Bogacz et al. (2006); Gold and Shadlen (2007). In our task DDMs with noise551
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levels that are stimulus-dependent were able to describe both accuracy or552

reaction times as a function of stimulus strength. This validates the use of553

DDMs in this type of perceptual task, which differs from prior applications554

in that it is a movement task, and in which decisions are made over seconds555

to tens of seconds, rather than in hundreds of milliseconds.556

Recent work has suggested (Pardo-Vazquez et al., 2019) that this type557

of decision-making models, when combined with experimental results made558

under different stimuli combinations, can be informative about the neural559

coding of said stimuli. Thus, it is of interest to understand if relations such560

as Weber’s law hold in this context too.561

Relatedly, it would be interesting to study the problem of optimal decision562

barriers on this task as a function of a time vs. accuracy trade-off across563

different stimuli. The study of these potential modifications to the model is564

left for future studies.565

References566

Bogacz, R., Brown, E., Moehlis, J., Holmes, P., and Cohen, J. D. (2006).567

The physics of optimal decision making: A formal analysis of models of568

performance in two-alternative forced-choice tasks. Psychological Review,569

113(4):700–765.570

Dietz, V., Zijlstra, W., and Duysens, J. (1994). Human neuronal interlimb571

coordination during split-belt locomotion. Experimental Brain Research,572

101(101):513–520.573

Ehrenstein, W. and Ehrenstein, A. (1999). Psychophysical methods. In574

30

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 28, 2020. ; https://doi.org/10.1101/2020.10.28.359281doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.28.359281
http://creativecommons.org/licenses/by-nc-nd/4.0/


Modern Techniques in Neuroscience Research, chapter 43, pages 1211–575

1241. Springer, Berlin.576

Finley, J. M., Long, A., Bastian, A. J., and Torres-Oviedo, G. (2015). Spatial577

and temporal control contribute to step length asymmetry during split-belt578

adaptation and hemiparetic gait neurorehabilitation. Neurorehabilitation579

and Neural Repair, 29(8):786–795.580

Gold, J. I. and Shadlen, M. N. (2007). The neural basis of decision making.581

Annual Review of Neuroscience, 30:535–574.582

Goldstein, E. B. (2009). Encyclopedia of Perception. SAGE Publications,583

Inc, 9th edition.584

Green, D. M. and Swets, J. A. (1966). Signal Detection Theory and Psy-585

chophysics. John Wiley and Sons.586

Henmon, V. (1911). The relation of the time of a judgment to its accuracy.587

Psychological Review, 18(3):186–201.588

Hoogkamer, W., Bruijn, S. M., Potocanac, Z., Van Calenbergh, F., Swin-589

nen, S. P., and Duysens, J. (2015). Gait asymmetry during early split-belt590

walking is related to perception of belt speed difference. Journal of Neu-591

rophysiology, 114:1705–1712.592

Jensen, L., Prokop, T., and Dietz, V. (1998). Adaptational effects during593

human split-belt walking: influence of afferent input. Experimental Brain594

Research, 118(1):126–130.595

31

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 28, 2020. ; https://doi.org/10.1101/2020.10.28.359281doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.28.359281
http://creativecommons.org/licenses/by-nc-nd/4.0/


Lauzière, S., Miéville, C., Duclos, C., Aissaoui, R., and Nadeau, S. (2014).596

Perception threshold of locomotor symmetry while walking on a split-597

belt treadmill in healthy elderly individuals. Perceptual and motor skills,598

118(2):475–90.599

Leech, K. A., Day, K. A., Roemmich, R. T., and Bastian, A. J. (2018).600

Movement and perception recalibrate differently across multiple days of601

locomotor learning. J Neurophysiol, 120:2130–2137.602

Mawase, F., Shmuelof, L., Bar-Haim, S., and Karniel, A. (2014). Savings in603

locomotor adaptation explained by changes in learning parameters follow-604

ing initial adaptation. Journal of Neurophysiology, 111(7):1444–1454.605

Ogawa, T., Kawashima, N., Ogata, T., and Nakazawa, K. (2014). Predic-606

tive control of ankle stiffness at heel contact is a key element of locomotor607

adaptation during split-belt treadmill walking in humans. Journal of Neu-608

rophysiology, 111(4):722–732.609
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