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Abstract 
Over 30 years ago, an intriguing post-translational modification was discovered to be responsible for 
creating concanavalin A (conA), a carbohydrate-binding protein found in the seeds of jack bean 
(Canavalia ensiformis) and commercially used for carbohydrate chromatography. Biosynthesis of 
conA involves what was then an unprecedented rearrangement in amino acid sequence, whereby 
the N-terminal half of the gene-encoded conA precursor is swapped to become the C-terminal half 
of conA. The cysteine protease, asparaginyl endopeptidase (AEP), was shown to be involved, but its 
mechanism was not fully elucidated. To understand the structural basis and consequences of conA 
circular permutation, we generated a recombinant jack bean conA precursor (pro-conA) plus jack 
bean AEP (CeAEP1) and solved crystal structures for each to 2.1 Å and 2.7 Å respectively. By 
reconstituting the biosynthesis of conA in vitro, we prove CeAEP1 alone can perform both the 
cleavage and cleavage-coupled transpeptidation to form conA. CeAEP1 structural analysis reveals 
how it is capable of carrying out both these reactions. Biophysical assays illustrated that conA is 
more thermally and pH stable than pro-conA, consistent with fewer intermolecular interactions 
between subunits in the pro-conA crystal structure. These findings elucidate the consequences of 
circular permutation in the only post-translation example known to occur in nature. 
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Introduction 
Concanavalin A (conA) is a seed lectin of the jack bean plant (Canavalia ensiformis); it is a non-
catalytic protein that binds specific carbohydrates (monomers and oligomers of mannose and 
glucose) reversibly and with high specificity and moderate affinity (Lis and Sharon, 1998). Since its 
discovery just over a century ago (Sumner, 1919), conA has become the most studied lectin largely 
due to interest in its carbohydrate-binding properties in vitro (Bernhard and Avrameas, 1971; Dwyer 
and Johnson, 1981; Goldstein et al., 1997; Lis and Sharon, 1998; Locke et al., 2014), and also due to 
the unusual post-translational circular permutation it undergoes to become the mature form. The 
carbohydrate binding of conA has seen it widely adopted in chromatography where it is frequently 
immobilised on sepharose and used to purify glycosylated biomolecules bearing high-mannose type 
N-glycans, including glycoproteins, polysaccharides and glycolipids (Ogata et al., 1975; Saleemuddin 
and Husain, 1991). Despite a depth of structural knowledge, evidenced by over 60 jack bean conA 
structures in complex with various ligands and metal ions which are necessary for its function, the 
properties of pro-conA and its maturation into conA are not fully understood. 

The hypothesised biological roles of conA include involvement in seed storage and plant defence. 
These are based mostly on its ability to bind certain carbohydrates, and are often inferred from 
conclusions drawn from studies performed on other legume lectins with similar physico-chemical 
properties (Sharon and Lis, 1990). Lectins have been suggested to function as packaging aids as they 
are associated with other storage proteins in the developing protein bodies of seeds (Einhoff et al., 
1986). A lowering of pH during water imbibition was postulated to help lectins dissociate from 
storage proteins, possibly allowing lectins to diffuse out of seedlings and contribute to protection 
against bacterial, fungal, and viral pathogens (Peumans and Van Damme, 1995). A major argument 
for the role of lectins in plant immunity is based on their interactions with glyco-components that 
are absent in plants but are found on the surface of microbes or along the digestive tract of insects 
and animals (Peumans and Van Damme, 1995; Lagarda-Diaz et al., 2017). Several lectins have indeed 
been shown to be resistant to proteolysis by digestive enzymes and to have insecticidal properties 
(Melander et al., 2003; Macedo et al., 2007). As conA is synthesised with an asparagine-linked (N-
linked) glycan that inhibits its carbohydrate-binding ability, but can interact with jack bean storage 
proteins and plant growth hormones in the mature form in vitro, it seems likely that conA function is 
spatially and/or temporally regulated (Edelman and Wang, 1978; Smith et al., 1982). With conA 
making up about 20% of the jack bean seed storage protein content {Dalkin, 1983 #10343}, it could 
function not only as a potent passive defensive mechanism in the metabolically inactive seed, but 
also as a source of amino acids and metal ions during germination.  

The biosynthesis of conA involves a unique series of cleavages and a transpeptidation reaction that 
occur on the carboxyl side of asparagine residues, resulting in conA circular permutation (Figure 1A). 
ConA is synthesised as an inactive glycoprotein precursor (pre-pro-conA) (Herman et al., 1985) 
(Supplemental Figure 1). The N-linked glycan inhibits carbohydrate-binding activity by pre-pro-conA 
in the endoplasmic reticulum and appears to be required for transport of pro-conA out of the 
endoplasmic reticulum (Faye and Chrispeels, 1987), and its removal is carried out by either an N-
glycanase or endoglycosidase H in the protein body compartment of the seed (Sheldon and Bowles, 
1992; Ramis et al., 2001). For brevity, we refer to deglycosylated pro-conA simply as pro-conA. In the 
protein body, an intervening 15-amino acid peptide (VIRNSTTIDFNAAYN) in the middle of the 
protein, where the glycan group was initially attached, is proteolytically excised by asparaginyl 
endopeptidase (AEP, sometimes referred to as vacuolar processing enzyme or legumain), creating 
new N- and C- termini. A new peptide bond is formed between the original N- and C-termini via a 
postulated cleavage-coupled transpeptidation event, wherein nine amino acids (EIPDIATVV) at the 
original C-terminus are removed (Bowles and Pappin, 1988) (Figure 1B). The excision of the 15-
amino acid intervening peptide involves three cleavage reactions (N119, N130, N134); two of which 
(N119, N130) usually occurs before the transpeptidation event. The last cleavage reaction at N134 
occurs much later after transpeptidation. This seemingly complex sequence of processing events 
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resulting in the circular permutation of conA was at the time unprecedented (Carrington et al., 1985) 
and later was evocatively termed “protein carpentry” (Hendrix, 1991). 

Transpeptidation at the N- and C-termini appears to be an inefficient process as roughly half of conA 
in jack bean seeds exist in the two-chain form (Faye and Chrispeels, 1987), which is produced when 
the cleavage reaction is resolved by hydrolysis rather than aminolysis i.e. transpeptidation. The 
hydrolysed two-chain products are not degraded, which contrasts to what was observed in seeds of 
the common sunflower, where transpeptidation produce a macrocyclic peptide, and hydrolysis 
yields a small linear peptide that is degraded (Bernath-Levin et al., 2015). In solution, conA exists in a 
pH- and temperature-dependent, dimer-tetramer equilibrium (McKenzie et al., 1972; Huet and 
Claverie, 1978; Senear and Teller, 1981). ConA dimers consisting of a mixture of two-chain and full 
length protein are less competent at forming tetramers than purified conA consisting only of full-
length protein (Senear and Teller, 1981). As conA in the dimeric and tetrameric forms appear to have 
different biological activities on animal cells in vitro (Gunther et al., 1973), it is possible that AEP-
mediated processing of conA to produce both the two-chain and full length conA may be the result 
of as yet unknown selection pressures. 

After the discovery that conA was circularly permuted, protein engineers began to modify proteins 
or enzymes in a similar way (Goldenberg and Creighton, 1983) to gain insights into protein folding 
(Gebhard et al., 2006) or to modify biophysical properties to overcome limitations (Meister et al., 
2011; Yu and Lutz, 2011; Bliven and Prlić, 2012). Many more examples of circularly permuted 
proteins have since been discovered, but all of these natural examples, like the artificial circular 
permutations, are made at the genetic level. ConA and the closely-related conA-like lectins in the 
Diocleinae subtribe of plants remain the only proteins observed to undergo post-translational 
circular permutation (Cavada et al., 2018). The functional purpose for conA circular permutation 
remains elusive as few biochemical studies have been performed with purified pro-conA. 
Deglycosylation is the only modification necessary for pro-conA to acquire its carbohydrate-binding 
ability (Min et al., 1992; Sheldon and Bowles, 1992; Ramis et al., 2001). Furthermore, the cleaved, 
two-chain form of conA is capable of carbohydrate binding (Faye and Chrispeels, 1987), and 
homologs of pro-conA in other legumes do not undergo circular permutation, making it unclear why 
it occurs for conA (Cunningham et al., 1979; Carrington et al., 1985). 

The maturation process of conA has been shown to involve a protease purified from jack bean seeds, 
which was characterised by Edman degradation of the first 25 residues (Abe et al., 1993; Min and 
Jones, 1994). This was the first enzyme discovered to be capable of forming peptide bonds post-
translationally within the backbone of protein substrates (Min and Jones, 1994). Interest in 
exploiting this function for biotechnological applications, on top of efforts to identify similar 
enzymes capable of peptide backbone transpeptidation, has led to the discovery and engineering of 
AEPs with varying efficiencies in peptide backbone cleavage, transpeptidation and macrocyclisation, 
and AEPs with differing preferences for Asp and Asn residues (Nguyen et al., 2014; Yang et al., 2017; 
Haywood et al., 2018; Harris et al., 2019; James et al., 2019). However, our understanding of the AEP 
domains critical for determining hydrolase and transpeptidase efficiency is far from complete. 

Although recombinant jack bean AEP (CeAEP1) has been shown to be capable of carrying out 
transpeptidation on non-native substrates in vitro (Bernath-Levin et al., 2015), it has not been shown 
beyond doubt to be capable of conA circular permutation. Here, we reconstitute the biosynthesis of 
conA using recombinant pro-conA and CeAEP1, with structural evidence supporting cleavage-
mediated transpeptidation in conA. The vast majority of studies on conA have characterised its 
mature form. Here, we focus on why pro-conA undergoes circular permutation and the structural 
features of CeAEP1 that facilitate this reaction. We compare the carbohydrate binding ability and 
stability of pro-conA and conA by combining structural analyses with circular dichroism and 
isothermal titration calorimetry (ITC). Although circular permutation does not cause structural 
changes in the conA carbohydrate-binding domain, it results in increased thermal and chemical 
stability, which is consistent with fewer atomic interactions between subunits. The structure of the 
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jack bean AEP is consistent with other related AEPs that carry out both cleavage and 
transpeptidation, explaining why only a single enzyme is required to circularly permutate pro-conA 
into conA. 

Materials and Methods 

Pro-conA expression and purification 
A synthetic DNA sequence encoding residues 31-290 of C. ensiformis conA precursor (UniProt ID: 
P02866) was codon optimised for E. coli (GenScript) and included a Gly-Ser linker (encoded by an in-
frame BamHI site) between a six-His tag and tobacco etch virus (TEV) protease recognition site (Glu-
Asn-Leu-Tyr-Phe-Gln-Ser) at the N-terminus. Ser30 of UniProt ID: P02866 was not included because 
TEV cleavage will leave a serine residue at the N-terminus of pro-conA, hence reconstituting the 
native pro-conA protein sequence). Cultures were grown in lysogeny broth containing 100 µg/mL 
ampicillin and 35 µg/mL kanamycin at 30 °C and allowed to cool to 16 °C before inducing expression 
by adding 0.1 mM isopropyl β-D-1-thiogalactopyranoside at OD600 of 0.8-1.0. After 16 hours, cultures 
were harvested by centrifugation and lysed by ultrasonication in MOPS-salt buffer at pH 6.8 (50 mM 
MOPS (3-(N-morpholino) propanesulfonic acid), 12.5 mM sodium acetate, 1 M sodium chloride, pH 
6.8). Cleavage with TEV protease was performed by first dialysing pro-conA into 50 mM sodium 
acetate, 500 mM sodium chloride, 1 mM dithiothreitol, pH 5.8 at 4 °C for 2 hours before 
centrifugation to remove precipitate that formed from the decrease in pH. His-tagged TEV protease 
was added (10% of pro-conA mass content) and the mixture incubated at 4 °C for a further 30 hours. 
To remove the TEV protease and the N-terminal tag cleaved from pro-conA, the mixture was 
dialysed overnight in MOPS-salt buffer then incubated (batch wise) with Ni-NTA resin overnight. 
Purified pro-conA was obtained in flow-through from reverse His-tag purification before a final 
concentration of 1 mM manganese chloride and 1 mM calcium chloride was added to purified pro-
conA. 

Jack bean AEP expression and purification 
A synthetic DNA sequence encoding residues 36-475 of C. ensiformis AEP (UniProt ID: P49046), 
including an N-terminal six-His tag and codon-optimised for E. coli (GeneArt), was sub-cloned into 
pQE30 (Qiagen) before being expressed in T7 Shuffle Express E. coli (New England Biolabs) 
containing the suppressor plasmid pREP4 (Qiagen). Expression was performed as above and cultures 
were harvested and lysed by ultrasonication in Tris-salt buffer (50 mM Tris pH 8.0, 100 mM sodium 
chloride) containing 0.1% Triton X-100. Lysed products were centrifuged and the supernatant 
incubated (batch wise) with Ni-NTA resin overnight at 4 °C. The resin was washed with 50 mL of Tris-
salt buffer and 50 mL of Tris-salt buffer containing 20 mM imidazole before the recombinant protein 
was eluted with 20 mL of Tris-salt buffer containing 300 mM imidazole. Nickel-purified CeAEP1 was 
further purified by anion-exchange chromatography (HiTrap Q HP 5 mL) with gradient of 0 to 500 
mM sodium chloride in 50 mM Tris, pH 8.0 over 90 min, followed by size exclusion chromatography 
(HiLoad 16/600 Superdex 200) in 50 mM Tris, 50 mM sodium chloride. 

Crystallisation and data collection 
CeAEP1 was assessed for purity by SDS-PAGE. Low-resolution diffracting crystals were obtained 
initially using the sitting-drop vapour diffusion method with reservoir condition 100 mM sodium 
HEPES, 15% PEG 20,000 (w/v), pH 7 from the ProPlex crystallisation screen (Molecular Dimensions). 
An additive screen was then performed using the sitting-drop vapour diffusion method with 30 µL of 
reservoir solution (125 mM HEPES, 12.5% PEG 20,000 (w/v), pH 7.5) in a MiTeGen In Situ 1 
crystallisation plate at 16 °C. Crystals were obtained from a condition with 0.5 µL of 16.7 mg/ml of 
protein, 0.4 µL reservoir solution, 0.1 µL additive (10 mM ethylenediaminetetraacetic acid disodium 
salt dihydrate) after 2 weeks. Single crystals were soaked in mother-liquor supplemented with 30% 
glycerol as a cryoprotectant prior to being flash frozen and stored in liquid nitrogen. Data collection 
was performed at 100 K on the Australian MX2 (micro-focus) beamline (McPhillips et al., 2002) using 
a wavelength of 0.9537 Å and diffraction data was collected to 2.7 Å resolution. 
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For pro-conA, a 10 kDa M.W.C.O. centrifugal filter (Amicon) was used to change buffer to 50 mM 
MOPS, 12.5 mM sodium acetate, 200 mM sodium chloride, 1 mM manganese chloride, 1 mM 
calcium chloride. Protein was assessed for purity by SDS-PAGE and concentrated to 28.7 mg/mL. 
Crystal screening was performed using the sitting-drop vapour diffusion method with 60 µL of 
reservoir solution in 96-well Intelli-Plates at 16 °C. Crystals were obtained from sitting drop 
containing 0.2 µL protein, 0.1 µL mother-liquor (10 mM zinc chloride, 100 mM HEPES, 20% PEG 6000 
(w/v), pH 7.0) of the PACT Premier crystallisation screen (Molecular Dimensions). Single crystals 
were soaked in mother-liquor supplemented with 25% ethanediol as a cryoprotectant prior to being 
flash frozen and stored in liquid nitrogen. Data collection was performed similarly to CeAEP1 crystals 
and diffraction data was collected to 2.1 Å resolution. 

Structural determination, refinement and model building 
For both pro-conA and CeAEP1, diffraction data were processed using XDS programme package 
(Kabsch, 2010) and scaled with AIMLESS from the CCP4 programme suite (Winn et al., 2011). Pro-
conA crystallised with space group I 1 2 1 and unit cell dimensions a = 59.94 Å, b = 90.42 Å, c = 86.86 
Å, β = 91.13°. The structure of pro-conA was solved by molecular replacement using MOLREP, with 
conA (PDB: 1JBC (Parkin et al., 1996)) as the search model. CeAEP1 crystallised with space group 
I 1 2 1 and unit cell dimensions a = 106.99 Å, b = 88.88 Å, c = 109.85 Å, β = 111.72°. The structure of 
CeAEP1 was solved by molecular replacement using MOLREP, with Arabidopsis thaliana legumain 
(PDB: 5NIJ (Zauner et al., 2018b)) as the search model. For both pro-conA and CeAEP1, manual 
building and refinement was performed in iterative cycles using COOT (Emsley et al., 2010) and 
REFMAC5 of the CCP4 programme suite. Coordinates and structure factors were deposited into the 
Protein Data Bank (PDB) under accession code 6XT6 (pro-conA) and 6XT5 (CeAEP1). Figures 
illustrating both structures were generated using PyMol. PyMol was used to calculate r. m. s. d. 
values. For comparison of pro-conA and conA functional sites, only the residues involved in the 
respective functions were aligned. CheckMyMetal (http://csgid.org/metal_sites) (Zheng et al., 2017) 
was used to evaluate the assignment of the metal binding sites in pro-conA. 

Confirming pro-conA maturation by CeAEP1 in vitro 
Pro-conA maturation was performed by incubating 1 mg/mL of pro-conA with 0.1 mg/mL of CeAEP1 
in MOPS storage buffer at pH 6.8 for 24 hours. Concentrations of pro-conA and conA were measured 
by absorbance at 280 nm with a NanoDrop, with protein extinction coefficient of 33920 M-1cm-1 and 
32430 M-1cm-1, respectively, and molecular weight of 28.22 kDa and 25.57 kDa, respectively. 
Reaction was stopped by incubating in 5X sample loading buffer (20% (v/v) glycerol, 15% (w/v) 
sodium dodecyl sulfate, 312.5 mM Tris, 10 mM ethylenediaminetetraacetic acid disodium salt, 0.05% 
(v/v) β-mercaptoethanol, 0.05% (w/v) bromophenol blue, pH 6.9) at 37 °C for 15 minutes. Samples 
were run on SDS-PAGE containing 10 mM reduced glutathione in the running buffer. Samples were 
loaded to have roughly similar band intensity for the band of interest to enable better estimation of 
relative protein size (recombinant pro-conA: 0.75 µg, conA (Sigma): 1.5 µg, CeAEP1-processed conA: 
6 µg). Samples were electrophoresed on a Bolt 4-12% Bis-Tris Plus gel, electroblotted onto 
Immobilon-PSQ PVDF membrane in Towbin buffer (25 mM Tris, 192 mM glycine, 10% (v/v) 
methanol) (Towbin et al., 1979) at 200 mA for 2 h in an ice water bath. Immobilon-PSQ PVDF 
membrane was then stained with 0.025% Coomassie Brilliant Blue R-250, 40% methanol. N-terminal 
Edman degradation of the first 8 amino acids was performed by Proteomics International (Perth, 
Australia). 

Circular dichroism 
Pro-conA was concentrated to 10 mg/mL using 10 kDa M.W.C.O. centrifugal filter (Amicon) in MOPS-
salt buffer. Concanavalin A purified from C. ensiformis (Type VI, lyophilised powder, Sigma-Aldrich, 
Cat No. L7647) was solubilised to 10 mg/mL in MOPS-salt buffer with 1 mM manganese chloride and 
1 mM calcium chloride. Proteins were then diluted 100 times in water to 0.1 mg/mL, pH 6.5 
immediately before CD melt curve analysis. Melt curves were measured at 218 nm with a 
temperature slope of 1 °C/min from 25-95 °C, 4 -second response time, 5 nm bandwidth. A biphasic 
curve (GraphPad Prism, version 8.00) was fitted to the data. No-heat controls for pro-conA and conA 
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were performed by measuring ellipticity at 25 °C for the same duration as the heat analysis. For pH 
stability analysis, pro-conA and conA were prepared in 20 mM Tris, pH5.8, 1 M sodium chloride, 1 
mM calcium chloride, 1 mM manganese chloride before diluting 100 times for CD analysis. CD 
measurements were performed in triplicate using JASCO J-810 spectropolarimeter with quartz 
cuvette of 1 mm path length, 100 millidegree sensitivity, 1 nm data pitch, 100 nm/min scanning 
speed, 2 second response time, 4 nm bandwidth, 3 accumulations, between 190-260 nm at room 
temperature (24 °C). 

Isothermal titration calorimetry 
Microcal iTC200 from GE healthcare was used to perform ITC analysis. Pro-concanavalin A (pro-conA) 
and Concanavalin A (conA),  were dialysed in 50 mM MOPS, 12.5 mM sodium acetate, 1 M sodium 
chloride, 1 mM calcium chloride, 1 mM manganese chloride, pH 5.8, and concentrated down to 
449.4 µM and 439.5 µM, respectively. The ligand, methyl-α-D-mannose, was dissolved to 8 mM with 
the same buffer used in protein sample dialysis. Protein samples were placed in the sample cell (cell 
volume = 200 µL) and titrated with methyl-α-D-mannose. Titrations were performed at 25 °C with a 
stirring speed of 750 rpm. Methyl-α-D-mannose was injected 76 times from a computer controlled 
syringe, at a volume of 0.5 µL over one second for each injection, with a spacing of 150 seconds 
between injections. Only 0.25 µL was injected for the first injection and ignored in analysis to 
minimise potential errors from preparation. Experimental data were fitted to a theoretical titration 
curve using the Origin software (version 2002, OriginLab Corporation). A ‘one site model’ was used 
to generate the curve, with ΔH (enthalpy change), Ka (association constant) and the stoichiometry of 
the protein-ligand complex set as variable parameters.  

Results 

Pro-conA structure 
To determine the structural differences between pro-conA and conA, we expressed recombinant 
pro-conA (residues 30-290; UniProt ID: P02866) in E. coli (Supplemental Figure 2). We obtained a 
protein crystal which diffracted to 2.1 Å by X-ray diffraction. The crystal structure was solved by 
molecular replacement using conA (PDB: 1JBC (Parkin et al., 1996)) as the search model, yielding a 
homodimer in the asymmetric unit. Superposition of the two monomers yields an r. m. s. d. of 0.4 Å 
over 225 Cα-atoms. Considerable chain mobility is inferred from poor electron density of the C 
terminus (residues 250-260) of both monomers. The C terminus is in close proximity to a solvent 
exposed loop (residues 65-70) which are involved in different crystal contacts in the two monomers. 
Residues at the functional sites discussed below are clearly visible in electron density (Supplemental 
Figure 3). 

Like other lectins, pro-conA is made up of two large β-pleated sheets consisting of a flat six-stranded 
antiparallel β-sheet and a curved seven-stranded antiparallel β-sheet (Figure 2A). Pro-conA (chain A) 
and the conA monomer (PDB 1JBC) are very similar, with an r. m. s. d. of 0.5 Å over 221 Cα-atoms 
(Supplemental Figure 4). There is weak electron density for the 15-amino acid intervening peptide 
that gets cleaved off during conA maturation. Crystals of pro-conA were therefore dissolved and run 
on an SDS-PAGE gel to confirm presence of full-length protein, demonstrating that weak electron 
density for the 15-amino acid intervening peptide is due to disorder rather than spurious cleavage by 
other enzymes during expression or purification (Supplemental Figure 2). 

Structural features involved in conA activity 
It is not known if conA circular permutation changes the structural domains involved in carbohydrate 
binding. Here we see that the monosaccharide binding site of pro-conA and conA are very similar, 
with an r.m.s.d. of 0.2 Å for the three residues involved (Supplemental Figure 3A). The 
monosaccharide specificity loop of pro-conA and conA have an r.m.s.d. of 1.1 Å for the six residues 
involved (Supplemental Figure 3B). Differences in the sidechain positions of Leu233 and Tyr234 of 
the monosaccharide specificity loop, which has a nearby ethanediol molecule in the pro-conA 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 29, 2020. ; https://doi.org/10.1101/2020.10.28.360099doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.28.360099
http://creativecommons.org/licenses/by-nc-nd/4.0/


7 

structure, are unlikely to affect carbohydrate binding as only their main chain atoms interact with 
carbohydrates (Kanellopoulos et al., 1996b; Hamodrakas et al., 1997). Other residues involved in 
carbohydrate recognition, including Tyr146-Ile151 (Tyr12-Ile17 in conA) and Thr108-Leu111 (Thr226-
Leu229 in conA) (Loris et al., 1998; Cavada et al., 2018), are also structurally unchanged after circular 
permutation. 

ConA carbohydrate-binding activity is highly dependent on the binding of a transition metal, typically 
manganese, and a calcium ion (Sumner and Howell, 1936; Kalb and Levitzki, 1968; Shoham et al., 
1973). The presence of transition metal ions and calcium has also been shown to improve conA 
structural stability (Blumberg and Tal, 1976; Doyle et al., 1976). In this structure, a manganese ion is 
coordinated by Glu142, Asp144, Asp153, His158 (Glu8, Asp10, Asp19, His24 in conA) and two water 
molecules, and a calcium ion is coordinated by Asp144, backbone of Tyr146, Asn148, Asp153 (Asp10, 
Tyr12, Asn14, Asp19 in conA) and two water molecules. The binding of these two metals has been 
shown to stabilise the active ‘locked’ conformation in conA (Brown et al., 1977; Brewer et al., 1983; 
Bouckaert et al., 2000), which is observed here in metallated pro-conA as well (Supplemental Figure 
3C). As proposed in the conA structure by Bouckaert and colleagues, in pro-conA the coordination of 
Asp144 and Tyr146 (Asp10 and Tyr12 in conA) to the calcium ion induces a bend in the β-sheet 
holding Thr145 (Thr11 in conA), causing a steric clash between Thr145 and Asp90 (Asp208 on conA) 
and inducing a trans-to-cis isomerization between Ala89 and Asp90 (Ala207 and Asp208 in conA). 
The key residues indicating a locked conformation in pro-conA is similar to those of conA, with an 
r.m.s.d. of 0.8 Å for the five key residues highlighted in Supplemental Figure 3c. 

There is a small possibility that the transition-metal-binding site may be occupied by a nickel ion 
rather than a manganese ion. Although we cannot rule out the presence of nickel in the model, as 
nickel was used in pro-conA purification, the overall geometry of the metal binding sites have been 
shown to be essentially independent of the nature of the transition metal (Emmerich et al., 1994). 
Zinc and calcium ions were modelled at four other locations in the homodimer and are not part of 
the metal binding loop. There is potentially a mixture of metals in these locations, but these metals 
are unlikely to have a biological role and are likely present due to crystallisation conditions. 

A hydrophobic cavity conserved in conA-like lectins has been hypothesised by some to bind to 
secondary metabolites (Delatorre et al., 2007; Bezerra et al., 2011). An ethanediol (cryoprotectant) is 
observed in this cavity in the pro-conA structure, and the local structure appears unchanged when 
compared to a conA structure containing ethanediol in this position (PDB:4PF5 (François-Heude et 
al., 2015)), with an r.m.s.d. of 0.2 Å over three residues Supplemental Figure 3D). 

Pro-conA and conA interact differently in protein crystals 
In contrast to the well-established dimer-of-dimers complex (i.e. tetramer) observed in the conA 
crystal structure (Figure 2B), pro-conA monomers in the crystal structure assemble in an atypical 
dimer-of-dimers complex (Figure 2C). The asymmetric unit contains a dimer, composed of very 
similar interactions as observed in the principal dimer of conA (involving residues 3-21, 57-65, 99, 
222-224 and 248-252 in pro-conA). Application of crystal symmetry to the coordinates yields a 
possible tetrameric structure. PDBePISA (Krissinel and Henrick, 2007) was used to predict the free 
energy of assembly-dissociation (ΔGdiss) for pro-conA, indicating that pro-conA is likely capable of 
forming a stable dimer (ΔGdiss = 5.0 kcal/mol) and tetramer (ΔGdiss = 17.2 kcal/mol) in solution. 
Positive values of ΔGdiss indicate that an external driving force should be applied to dissociate the 
assembly, therefore assemblies with ΔGdiss>0 are thermodynamically stable. For comparison, high 
resolution structures of conA (e.g. PDB: 1JBC) also predict a stable dimer (ΔGdiss = 8.6 kcal/mol) and 
tetramer (ΔGdiss = 9.6 kcal/mol) in solution. Compared to conA, however, pro-conA has a smaller 
buried surface area and fewer interface residues, especially between the dimers (Supplemental 
Table 1). PDBsum (Laskowski et al., 2018) was used to analyse the number of non-covalent contacts 
with a distance cut-off of 4 Å, and this showed that pro-conA has fewer inter-dimer contacts than 
conA in the crystal structure (Figure 3). As shown in Figure 2C, 3A and 3C, the C-termini of the pro-
conA subunits are wedged between the dimers and are therefore heavily involved in the inter-dimer 
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interactions. These termini are cleaved off and shortened into a loop during circular permutation to 
form conA. Although the region spanning four β-sheets (residues 183-210) is involved in inter-dimer 
interactions in both pro-conA and conA, they have different interacting partners. The residues in this 
β-sheet region in pro-conA interact with the wedged C-termini, while in conA they interact with the 
β-sheet region of the opposing subunit (Figure 3). Pro-conA also has substantially fewer interactions 
spanning residues 69-78. 

Reconstituting conA biosynthesis in vitro 
To determine whether CeAEP1 alone can perform separate cleavage and cleavage-coupled 
transpeptidation reactions to make conA, we sought to reconstitute conA biosynthesis in vitro with 
recombinant pro-conA. Recombinant pro-conA (residue 30-290 of UniProt ID: P02866) was 
incubated with CeAEP1 at a molar ratio of 10:1 pro-conA:CeAEP1. The pro-conA band was converted 
to several lower MW proteins after digestion (Figure 4A). The product of interest in the lane of the 
pro-conA digest was the top-most band, which has a slightly smaller MW than pro-conA, consistent 
with a circularly permuted conA. This protein band was sequenced by N-terminal Edman 
degradation and this yielded two N-terminal sequences; AAYNADTI and ADTIVAVE. These 
overlapping sequences obtained by Edman degradation both prove that the C-terminal half of conA 
has been circularly permuted to become the N-terminal half, and concurs with the slightly larger 
MW observed for band I (Figure 4; Supplemental Figure 5). In jack bean seeds, the removal of the 
AAYN tetrapeptide preceding the N-terminus of conA occurs very slowly (Bowles et al., 1986), 
explaining why in this in vitro experiment we observed both species. This AAYN tetrapeptide was 
also observed in conA extracted from immature jack bean seeds (Wang et al., 1971; Carrington et al., 
1985). More than half of pro-conA appears to undergo cleavage rather than transpeptidation at the 
termini (Figure 4A). This inefficient transpeptidation reaction was also observed in conA extracts 
from jack bean seeds (Carrington et al., 1985). The bottom three MW bands represent the cleaved 
products (Sheldon et al., 1996) (Supplemental Figure 1). 

Thermal and pH stability of pro-conA and conA 
Circular dichroism analysis showed that conA is more stable than pro-conA under heat stress at 
pH 6.5 and at various other pH conditions without heat stress, revealing a functional consequence of 
conA circular permutation. During heat stress at pH 6.5, where temperature was increased at a rate 
of 1 °C /min, there was an increase in the magnitude of ellipticity at 218 nm for pro-conA at the 60-
70 °C range before decreasing from 70 °C onwards (Figure 5A). In contrast, only a decrease in 
magnitude of ellipticity was observed for conA. This suggests that, under heat stress, pro-onA 
undergoes an increase in the amount of β-structure relative to conA. Controls showed no change in 
ellipticity for pro-conA and conA when no heat is applied Supplemental Figure 6A). SDS-PAGE 
analysis was carried out to illustrate the precipitation observed for both pro-conA and conA during 
the heat analysis (Supplemental Figure 6B). A previous study combining CD analysis with scattered 
light intensity analysis showed that conA begins to aggregate before any conformational change 
occurs during heat stress (Maeda et al., 1989), which may explain why we do not see an increase in 
magnitude of ellipticity for conA in our CD analysis. Even though pro-conA and conA appear to react 
differently to heat stress, it is clear that conA has better heat tolerance as pro-conA begins to 
undergo changes in conformation and/or begins precipitating at a lower temperature than conA at 
pH 6.5, and also appears to approach complete precipitation at a lower temperature than conA 
(Figure 5A). The melt curve for conA agrees with a previous study that observed conA aggregation 
from 60 °C onwards (Doyle et al., 1976). 

To examine pH stability, pro-conA and conA were incubated at various pH conditions (pH 2 to 9.8) 
for two hours before CD analysis at the respective pH. CD spectra analysis showed that conA 
maintains its general structure throughout the pH range tested for the two-hour period of the 
analysis, whereas pro-conA is more prone to precipitation at lower pH conditions (Figure 5B). 
Precipitation occurred similarly to what was observed during heat stress (data not shown). Beyond 
the two-hour time frame, conA undergoes pH-dependent conformational changes as well (McCubbin 
et al., 1971; Zand et al., 1971). 
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The high similarity of the recombinant pro-conA structure that we obtained to that of conA indicates 
that recombinant pro-conA folds into the correct conformation in our E. coli expression system. The 
different sources for pro-conA and conA, E. coli and jack bean, respectively, are therefore an unlikely 
contributing factor to the differences observed in the biophysical assays. It should be noted that 
conA (Sigma) contains a small, unquantified amount of the two-chain form (Figure 4A), representing 
the products that have undergone cleavage rather than transpeptidation. 

Circular permutation has no effect on conA binding to methyl-α-D-mannose 
To determine if conA circular permutation affects carbohydrate binding, we investigated the ability 
for pro-conA and conA to bind to mannose, the preferred ligand in vitro, using ITC. The results were 
similar for pro-conA and conA, with association constants (KA) of 8270±74.0 M-1 and 8240±74.0 M-1, 
respectively, for methyl-α-D-mannose (Supplemental Figure 7). The KA we obtained for conA was in 
close agreement with that obtained by Loka et al. (2015) and Chervenak et al. (1995), with both 
studies obtaining a KA of 7.6 X 103 M-1 for methyl-α-D-mannose. 

Jack bean AEP Structure 
To understand the enzymatic basis for conA maturation, we expressed CeAEP1 (residues 36-473; 
UniProt ID: P49046) in E. coli (Supplemental Figure 8). We obtained a protein crystal which diffracts 
to 2.7 Å by X-ray diffraction. The crystal structure was solved by molecular replacement using 
Arabidopsis thaliana legumain γ (AtLegγ) as the search model, yielding a CeAEP1 homodimer in the 
asymmetric unit. The superposition of the two monomers yields an r. m. s. d. of 0.4 Å over 424 Cα-
atoms. Residues at the catalytic site and the substrate binding pockets are clearly visible in electron 
density (Supplementary Figure 9A and 9B). Differences between monomers are only at solvent-
exposed residues in or adjacent to loop regions. Electron density shows clear differences at residues 
283-289 and 347-360, which can be attributed to different crystal contacts. Electron density shows 
static disorder at residues 318-330, which contains the linker region that is cleaved off upon CeAEP1 
autoactivation. Missing electron density at residues 323-329 when contoured at 1σ point to the 
highly flexible nature of this linker. 

CeAEP1 is structurally similar to previously solved plant AEP structures: Helianthus annuus AEP1 or 
HaAEP1 6AZT (Haywood et al., 2018), AtLegγ 5NIJ (Zauner et al., 2018b), Oldenlandia affinis AEP1 or 
OaAEP1 5H0I (Yang et al., 2017), Viola yedoensis peptide asparaginyl ligase 2 or VyPAL2 6IDV (Hemu 
et al., 2019), and butelase1 6DHI (James et al., 2019) with an r. m. s. d. of 1.0-1.1 Å over 400-430 Cα-
atoms between CeAEP1 and the other published structures (Supplemental Table 2). The zymogen is 
made up of a ‘core’ domain (Glu38-Asp313) linked to a C-terminal ‘cap’ domain (Arg336-Ala474) via 
the flexible linker, which has weak electron density (Figure 6A). The core domain consists of a six-
stranded β-sheet surrounded by five major α-helices, and is highly structurally conserved with an r. 
m. s. d. of 0.5-0.7 Å over 270-280 Cα-atoms between CeAEP1 and the other published structures 
(Supplemental Table 3). The cap domain, consisting of five α-helices, improves core domain 
stability, acts as the dimer interface and modulates enzymatic activity by occluding the active site in 
the zymogenic form (Zauner et al., 2018b). 

CeAEP1 active site residues are strictly conserved 
The catalytic residues His158 and Cys200 form the catalytic dyad, with Asn53 sometimes included to 
make up a catalytic triad (Supplemental Figure 9A). These three residues are conserved across all 
AEPs (Supplemental Figure 10). The His158 imidazole deprotonates Cys200, which becomes more 
reactive and catalyses the enzymatic activity. Electron density at Cys200 indicates a dual 
conformation, which is also observed in the near-atomic resolution structure of a HaAEP1, likely 
representing conformational flexibility that can occur during catalysis (Haywood et al., 2018). 
Mutagenesis study on HaAEP1 shows that the asparagine residue of the catalytic triad (Asn53 in 
CeAEP1; Asn73 in HaAEP1) influences the ratio of cyclic to acyclic product, but is not a strict 
requirement for cleavage or transpeptidation (Haywood et al., 2018). We modelled a succinimide 
intermediate (SNN) at Asp157 to obtain a better fit with the electron density at this position 
(Supplemental Figure 9A). The presence of SNN is consistent with all other plant structures except 
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OaAEP1 (Yang et al., 2017; Haywood et al., 2018; Zauner et al., 2018b; Hemu et al., 2019; James et 
al., 2019), although OaAEP1 does have electron density suggesting that succinimide may in fact be 
present (James et al., 2019). Gln335, which is part of the cap domain, occupies the S1 pocket of the 
active site in the zymogen (according to nomenclature by Schechter and Berger where P1, P2 and so 
on refer to residues N-terminal to the cleavage site, whereas P1′, P2′ and so on are C-terminal to it, 
and where the corresponding binding sites on the protease are termed S2, S1, S1′, S2′, etc.) 
(Schechter and Berger, 1967) (Supplemental Figure 9A). It was hypothesised that cleavage does not 
occur at Gln335 even though it is similar to asparagine because the glutamine backbone is kept 
further away from the catalytic cysteine by virtue of the longer side chain (4.9 Å in CeAEP1) (Zauner 
et al., 2018a). 

CeAEP1 substrate binding pockets 
With such high structural similarities amongst plant AEPs, CeAEP1 catalytic preference and efficiency 
can be explained only by subtle variations in the substrate-binding pockets. The S1 pocket (Arg55, 
His56, Glu198, Ser228, and Asp250), as designated by a previous study on AtLegγ (Zauner et al., 
2018a), is conserved (Supplemental Figure 9C) and accommodates the P1 asparagine residue at all 
pro-conA cleavage and transpeptidation sites. His158, Gly159, Gly160, Cys200 and Glu201 make up 
the S1′ pocket (Zauner et al., 2018a; Hemu et al., 2019) and is highly conserved with notable 
variability in side chain positioning of Glu201 (Supplemental Figure 9D). Val163, Gly165, Phe171 and 
Tyr173 make up the S2′ pocket, with only Gly165 strictly conserved (Supplemental Figure 9E). The 
Phe171 equivalent in HaAEP1 (His191) adopts a different conformation from the corresponding 
residues in the other five AEP structures. This may be due to the interaction with a nearby glycerol 
molecule, or an effect of the charged histidine side chain as opposed to the usual hydrophobic side 
chain in this location in the other AEPs. The vast majority of the residues in the S2′ pocket in CeAEP1 
and other AEPs are otherwise hydrophobic. The Arg278-Met294 region, which was designated the 
Marker of Ligase Activity by Jackson et al. (2018), is generally hydrophilic in CeAEP1, similar to that 
of HaAEP1 (Supplemental Figure 10).  

Discussion 
It is just over 100 years since the discovery of conA. Despite conA being the subject of many studies 
and seeing daily use in laboratories worldwide, only now do we have a structure for pro-conA; this 
allows us for the first time to understand how circular permutation of pro-conA affects this long-
studied protein. 

Circular permutation affects conA crystal packing 
The structure of pro-conA confirms the long-standing suspicion that circular permutation of conA 
occurs without any large changes in the three-dimensional structure (Carrington et al., 1985) 
(Supplemental Figure 4). We observed a difference, however, in the number of inter-dimer 
interactions between the pro-conA and conA crystal structures (Figure 3; Supplemental Table 2). 
Even though conA in the de-metallated and the saccharide-bound form have different crystal 
packings, both forms adopt the typical dimer-of-dimers assembly (Kanellopoulos et al., 1996a). In 
pro-conA, the C-terminus is heavily involved in inter-dimer interactions (Figure 2C; Figure 3A and C). 
During circular permutation, the N- and C- termini undergo cleavage-coupled transpeptidation and 
are therefore present as a shortened loop that does not interfere with the formation of the typical 
dimer-of-dimers assembly in the conA crystal structure (Figure 2B; Figure 3B and D). It is likely that 
the inability for pro-conA to form the typical dimer-of-dimers assembly in the crystal structure is 
attributable solely to the presence of the termini. Glycinin, a seed storage protein in soybean, exists 
as a trimer before cleavage at an asparagine residue by an AEP triggers hexamer formation (Jung et 
al., 1998; Adachi et al., 2001; Adachi et al., 2003). Even though glycinin and conA are structurally 
different, in both cases AEP processing results in the dislocation of a peptide chain that appears to 
interfere with the formation of a higher oligomeric state. It would be interesting to see if the typical 
dimer-of-dimers conformation forms if pro-conA termini underwent AEP-mediated cleavage rather 
than transpeptidation. 
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Binding domains in pro-conA remain unchanged after circular permutation 
The requirement for conA to be in the ‘locked’ conformation to effectively bind carbohydrates has 
been explained in detail by in-depth structural analyses by Bouckaert et al. (2000). Here we obtain a 
structure of pro-conA which is similar to the ‘locked’ conformation (Supplemental Figure 3C), which 
explains why circular permutation is not required for carbohydrate binding and that the binding of 
Mn2+ and Ca2+, even in pro-conA, is sufficient for carbohydrate-binding activity (Ramis et al., 2001). 
This was corroborated with ITC analysis showing no difference in association constant between pro-
conA and conA when assayed with methyl-α-D-mannose. The similar conformation of both the 
monosaccharide specificity loop and the monosaccharide binding site between pro-conA and conA 
indicates that circular permutation does not affect carbohydrate specificity either. A conserved 
hydrophobic cavity, hypothesised by Bezerra et al (2011) and Delatorre et al. (2007) to play a role in 
plant defence in their study of conA-like lectins, also remains unchanged by circular permutation. 

Circular permutation improves conA stability 
Artificial circular permutation has on only one occasion led to a slightly more stable version of 
protein (Topell et al., 1999); this explorative modification otherwise tends to result in proteins that 
are either less or equally stable as the parent protein (Heinemann and Hahn, 1995). Here, we 
discover a clear improvement in stability resulting from protein circular permutation. We 
demonstrate that conA circular permutation increases conA thermal and pH stability (Figure 5) 
without affecting in vitro binding to the carbohydrate methyl-α-D-mannose (Supplemental 
Figure 7). The exceptional pH stability of conA was indeed a useful property for its initial discovery, 
as conA was readily separated from other seed proteins using a protocol involving a range of pH 
(Sumner, 1919). A more comprehensive binding analysis with various carbohydrates of different 
oligomeric forms may be useful, but the carbohydrate-binding function of conA in vivo has so far 
only been supported by in vitro characterisation rather than direct functional evidence in jack bean 
plants. 

CeAEP1 prefers serine over alanine as nucleophile in conA circular permutation 
AEP cleavage at the pro-conA intervening peptide at Asn130 and Asn134 generates new alanine N-
termini (Ala131 and Ala135) which do not undergo transpeptidation with Asn119 despite their close 
proximity. This selectivity was also observed in Sunflower Trypsin Inhibitor-1 (SFTI-1), where 
transpeptidation occurs when the incoming N-terminal nucleophile in native SFTI-1 is glycine, but a 
Gly1 to Ala1 mutation inhibits transpeptidation (Bernath-Levin et al., 2015). In silico docking 
simulations performed by Zauner et al. (2018a) indicate that an ionic interaction may facilitate 
transpeptidation between the N-terminal nucleophile and Glu220 of AtLegγ (Glu201 in CeAEP1) in 
the S1′ pocket (Supplemental Figure 9D). Transpeptidation in pro-conA occurs with an incoming N-
terminal serine, which is similar in size to alanine. It is therefore possible that the polar sidechain of 
serine facilitates transpeptidation by CeAEP1 via ionic interactions, whereas the hydrophobic, non-
polar property of Ala131 and Ala135 in pro-conA hinders the formation of this ionic interaction, 
thereby preventing transpeptidation by CeAEP1. 

CeAEP1 is predominantly a protease 
The jack bean AEP structure not only provides a structural image of the enzyme responsible for conA 
circular permutation, but also improves our understanding on AEPs, a family of enzymes that are 
becoming recognised as a tool for protein engineering (Hemu et al., 2016; Yang et al., 2017; Tang et 
al., 2020). The structural features that make AEP favour hydrolysis or transpeptidation remains a 
matter of debate. Recent work by Du et al. (2020) uncovered a plant AEP with one of the highest 
transpeptidase activities despite predictions, based on previously published AEPs, that it would be a 
hydrolase. Here we compared CeAEP1 structure to butelase1, an extremely efficient transpeptidase 
with efficiency up to 1,340,000 M-1s-1, and to VyPAL2, OaAEP1, AtLegγ, and HaAEP1, which have 
intermediate to low transpeptidase efficiency. Enzymatic assays have shown that CeAEP1 favours 
hydrolysis over transpeptidation in a non-native substrate (Bernath-Levin et al., 2015). A few 
structural features of AEPs have been explored by several research groups, allowing us to better 
understand what makes CeAEP1 capable of transpeptidation, in addition to its proteolytic activity. 
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Residue 230 appears to be an important determinant for hydrolysis/transpeptidation. It belongs to a 
trio of residues (residue 229-331) that were designated Ligase-Activity Determinant 1 by Hemu et al. 
(2019) (Supplemental Figure 10). CeAEP1, like HaAEP1 and AtLegγ, is an inefficient transpeptidase 
with a glycine in this position. Transpeptidation efficiency was successfully enhanced by a cysteine to 
alanine mutation in this position in OaAEP1 (Yang et al., 2017). In contrast, a cysteine to 
valine/isoleucine mutation at the equivalent position in OaAEP1 abolished transpeptidase activity 
even though efficient transpeptidases butelase1 and VyPAL2 have valine and isoleucine respectively 
at this position (Yang et al., 2017). The effect of residue 230 on catalytic activity therefore appears to 
be dependent on a complex interplay with nearby residues. A glycine in this position, however, 
seems to be a good indicator of predominant protease activity. The same conclusion can be reached 
based on sequence comparison of other biochemically characterised AEPs (Hemu et al., 2019). 

Hydrophobic S2′ pocket facilitates transpeptidation 
The hydrophobic nature of both the P2′ residue of pro-conA (isoleucine) and the S2′ pocket of 
CeAEP1 (Val163, Phe171, Tyr173) (Figure 6B) suggests that CeAEP1 might bind to the peptide 
residues C-terminal of the cleavage site. This would be crucial for preventing water molecules from 
entering the active site, therefore facilitating aminolysis instead of hydrolysis (Bernath-Levin et al., 
2015; Zauner et al., 2018a). Consistent with this hypothesis, hydrophobic residues are present in the 
S2′ site of HaAEP1 (Val183, Val193), AtLegγ (Val182, Tyr190, Tyr192), OaAEP1 (Val180, Tyr188, 
Tyr190), VyPAL2 (Tyr185, Tyr187) and butelase1 (Val170, Tyr178, Ala180), and at the P2′ residue of 
their native substrate, SFTI-1 in sunflower (P2′ leucine), kalata-B1 in O. affinis (P2′ leucine), V. 
yedoensis cyclotide precursors (P2′ leucine) and C. ternatea cyclotide precursors (P2′ valine). There is 
no known peptide/protein in A. thaliana that undergoes AEP-mediated transpeptidation, but AtLegγ 
has also been shown to perform transpeptidation on non-native substrates with valine as the P2′ 
residue (Zauner et al., 2018b). Molecular dynamic simulations performed on VyPAL2 also showed 
that the S2′ pocket favours hydrophobic P2′ residues (Hemu et al., 2019). Gly165 conservation in the 
S2′ site appears to be essential to maintain a cavity in this hydrophobic S2′ pocket (Figure 6B; 
Supplemental Figure 10) as a glycine to serine mutation in HaAEP1 was shown to severely affect 
catalytic activity (Haywood et al., 2018). 

Facilitating N-terminal nucleophilic attack for transpeptidase activity 
Previously, we proposed that residues around the catalytic cysteine facilitate N-terminal nucleophilic 
attack in transpeptidation (Haywood et al., 2018). This includes Glu201, Pro161, Gln225 and Asn227 
of CeAEP1 (Figure 6C). Although in silico docking studies show that Glu201 forms an ionic bond with 
the incoming N-terminal nucleophile (Zauner et al., 2018a), this residue does not appear to be a 
major determinant of transpeptidation efficiency as glutamate is found in this position in AEPs that 
have differing transpeptidase efficiencies (Supplemental Figure 10). The nearby Gly160 (Figure 6C), 
which is one of the two residues designated as Ligase-Activity Determinant 2 by Hemu et al. (2019), 
is a highly conserved residue as most plant AEPs have a Gly or Ala at this residue (Supplemental 
Figure 10). At this position, a tyrosine to glycine mutation in VyPAL3 and a tyrosine to alanine 
mutation in Viola Canadensis AEP were shown to enhance the catalytic activity of transpeptidation. 
Any side chain bigger than alanine at residue 160 may therefore sterically interfere with the binding 
of peptide substrate residues C-terminal of the cleavage site, allowing water to enter to complete 
the cleavage reaction by hydrolysis.  

Pro161, Gln225 and Asn227, on the other hand, have been hypothesised to sterically hinder the 
incoming N-terminus from interacting with Glu201 to initiate transpeptidation (Haywood et al., 
2018). These three residues lining the active site are the same in CeAEP1 and HaAEP1, both of which 
are inefficient transpeptidases. In contrast, the smaller side chains in butelase1 (Gly167, Ala168, 
Gly232, Ser234) likely contribute to its high transpeptidase efficiency, and is also likely why it will 
accept most N-terminal amino acids for transpeptidation (Nguyen et al., 2014). The intermediate 
transpeptidation efficiency of AtLegγ, OaAEP1, and VyPAL2 relative to CeAEP1, HaAEP1 and 
butelase1 corroborates with the intermediate amino acid sizes (AtLegγ: Gly179, Pro180, Glu244, 
Ser246; OaAEP1: Ala177, Ala178, Thr242, Ser246; VyPAL2: Ala174, Pro175, Thr239, Gly241). 
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Although Gln225 and Asn227 in CeAEP1 and HaAEP1 may sterically interfere with transpeptidation, 
their long, polar side chains may allow for redundancy in interacting with the N-terminal 
nucleophile, as was observed in the absence of Glu201 (Haywood et al., 2018).  

Conclusion 
Our investigations show that the mature form of conA is more stable than its precursor, pro-conA, 
revealing a functional consequence for the only known naturally-occurring circular permutation, 
which was discovered about 30 years ago. Structural evidence shows that no change occurs at the 
carbohydrate binding site, and ITC analysis shows that monosaccharide binding is not affected. The 
difference in crystal packing between pro-conA and conA indicates that changes induced by circular 
permutation occur at the quaternary rather than the tertiary level. Using purified recombinant 
proteins, we show that jack bean AEP is capable of carrying out both cleavage and transpeptidation 
reactions to circularly permutate pro-conA. Although CeAEP1 has been shown to be predominantly a 
protease, this was determined with a non-native substrate (Bernath-Levin et al., 2015). Here, 
structural analysis and recently-generated knowledge from other AEP structures allow us to 
understand how a protease like CeAEP1 is capable of transpeptidation. Although CeAEP1 is capable 
of conA circular permutation, cDNA analysis suggests the presence of AEP isoenzymes with unknown 
relative abundance (Takeda et al., 1994), so there is possible redundancy or involvement of another 
dedicated protease/transpeptidase for conA circular permutation in vivo. 
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Figure Captions 

 

Figure 1 | Concanavalin A maturation by circular permutation. (A) During maturation, the N-
terminal half (Chain B) of pro-conA becomes the C-terminal half of conA and vice versa. Grey 
segments are cleaved off during maturation. (B) Peptide bond cleavages (blue arrow), and peptide 
bond formation i.e. transpeptidation (red arrow) within pro-conA are both required to make conA. 
The cleavage and transpeptidation events all occur on the carboxyl side of asparagine residues. The 
N-terminal ER signal of pre-pro-conA and the N-linked glycan, which are removed before circular 
permutation of pro-conA, are not shown. 
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Figure 2 | Pro-conA and conA have similar 
monomeric structures but different 
tetrameric structures in protein crystals. (A) 
Pro-conA consists of interleaved β-sheets 
(β1-β13) from chain A (pink) and chain B 
(green). Transpeptidation occurs between the 
N-terminus (black dot) and a residue near the 
C-terminus (red dot). ‘Metal binding loop’ 
and ‘monosaccharide specificity loop’ are a 
single loop each whereas the 
‘monosaccharide binding site’ consists of 
residues from three loops. The ‘hydrophobic 
cavity’ consists of residues from β1, β13 and 
a nearby loop. Fifteen flexible residues linking 
chains A and B (blue dashed line); ions of 
calcium (yellow sphere); manganese (purple 
sphere); zinc (orange sphere). This tertiary 
structure is similar to conA (Supplemental 
Figure 3). (B) In conA, monomers I and II 
interact so that the flat six-stranded β-sheet 
from each monomer aligns to form a 
contiguous 12-stranded β-sheet. Monomers 
III and IV dimerises in a similar manner. The 
two dimers then interact via the 12-stranded 
β-sheets to form a dimer-of-dimers. (C) Pro-
conA adopts a dimer-of-dimers conformation 
with a larger cavity. The pro-conA termini 
interfere with the formation of the typical 
dimer-of-dimers. N- and C-termini of pro-
conA monomers are shown in black and red, 
respectively. The equivalent residues in conA 
are coloured similarly. 
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Figure 3 | The pro-conA tetramer has fewer inter-dimer contacts than the conA tetramer in crystal 
structures. Pro-conA (A and C) has 94 non-bonded contacts between dimers in a dimer-of-dimers 
complex. ConA (B and D) has 194 non-bonded contacts between dimers in a dimer-of-dimers 
complex. In pro-conA, the C-termini interfere with the inter-dimer interactions that would exist 
between the opposing β-sheets of conA. Residues involved in non-bonded contacts are shown as 
sticks. The ‘front’ view shows all four subunits of the dimer-of-dimers. ‘Side’ view is obtained with a 
90° anti-clockwise turn when viewed from the top. The N- and C- termini are highlighted in black and 
red respectively. 
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Figure 4 | In vitro reconstitution of conA maturation using recombinant CeAEP1 and pro-conA. (A) 
SDS-PAGE of recombinant pro-conA (Lane 1), conA (Sigma-Aldrich, Cat No. L7647; Lane 2), and pro-
conA processed by CeAEP1 (Lane 3). N-terminal sequence of Band I (red box) was determined by 
Edman degradation. The slightly larger size than conA is due to the presence of the AAYN 
tetrapeptide, which is cleaved off at a slow rate, on the N-terminus of circularly permuted conA 
(Supplemental Figure 1). Band III and Band IV are present in jack bean extract as well (Lane 2) and 
represent fragments that have undergone cleavage instead of transpeptidation (Sheldon et al., 
1996). Band II likely represents cleaved fragment containing N-terminal AAYN tetrapeptide and/or 
the C-terminal EIPDIATVV peptide. (B) Pre-pro-conA sequence with ER signal (black), chain B (pink), 
chain A (green), and residues removed during circular permutation (grey). To facilitate comparison 
with pro-conA structure and previous studies, residue numbering starts after N-terminal ER-signal, at 
S1. Pro-conA is synthesised with a glycosylated N123 residue. Deglycosylation is the first post-
translational modification. Cleavage by CeAEP1 occurs at N119, N130 and N134. N252 is either 
cleaved or transpeptidated to S1. The two N-terminal sequences from Edman degradation are 
underlined in blue and orange. 
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Figure 5 | ConA is more stable than pro-conA. (A) Melt curve generated from circular dichroism 
analysis of pro-conA and conA in water with a temperature slope of 1 °C/min. Pro-conA begins 
changing conformation and precipitates from solution (Supplemental Figure 8B) at a lower 
temperature than conA. The decrease in ellipticity for pro-conA but not conA indicates that these 
two proteins have different pathways of unfolding and/or aggregation. (B) Circular dichroism spectra 
of pro-conA and conA after 2-hour incubation in water at pH 2, 4, 5.7, 7.8, 9.8. ConA remains stable 
from pH 2 to pH 9.8 whereas pro-conA is less stable at neutral and low pH. 
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Figure 6 | Jack bean asparaginyl 
endopeptidase 1 (CeAEP1) structure. (A) 
Inactive CeAEP1. Core domain (orange); cap 
domain; Active site (blue residues); Low 
electron density in linker region (dashed 
grey). (B) Gly165 in S2′ pocket forms a deep 
cavity, possibly facilitating the binding of 
peptide substrate and preventing 
replacement with water molecules. (C) 
Residues G160, P161, E201, Q225 and N227 
likely interfere with incoming N-terminus of 
peptide substrate during nucleophilic attack, 
resulting in poor transpeptidase efficiency. 
C200 is the catalytic residue. Incoming N-
terminus of pro-conA with nucleophilic 
serine (blue dashed arrow) attacking the 
acyl-enzyme intermediate at the catalytic 
cysteine; Residues N-terminal to cleavage 
site on pro-conA (brown dashed line); 
Residues C-terminal to cleavage site of pro-
conA (red dashed line).
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Table 1 | Summary of crystallographic data and refinement statistics for pro-conA and CeAEP1. 
Values in parentheses are for the highest resolution shell. 

Data collection Pro-conA CeAEP1 
Space group I 1 2 1 I 1 2 1 

Unit cell dimensions:   
a, b, c (Å) 59.94, 90.42, 86.86 106.99, 88.88, 109.85 
α, β, γ (°) 90.00, 91.13, 90.00 90.00, 111.72, 90.00 

Wavelength 0.9536 0.9840 
Rmerge (%) 12.0 (61.9) 7.5 (76.5) 

I/σI 6.5 (1.8) 9.6 (1.4) 
Completeness (%) 98.8 (92.6) 98.8 (94.0) 

Redundancy 3.4 (3.3) 3.4 (3.6) 
CC 1/2 0.994 (0.743) 0.997 (0.662) 

Refinement   
Resolution (Å) 48.88-2.10 45.57-2.69 
No. reflections 26657 26353 

Rwork/Rfree 0.196/0.245 0.202/0.271 
No. Atoms 3845 6794 

Protein 3697 6762 
Ligand 68 0 
Water 80 32 

Wilson B (Å2) 28.1 71.8 
Average B factor (Å2) 33.0 75.0 
R. m. s. deviations:   
Bond lengths (Å) 0.0079 0.0038 
Bond angles (°) 1.5268 1.3552 

Ramachandran analysis   
Favored (%) 97 91 
Allowed (%) 3 7 
Outliers (%) 0 2 
PDB code 6XT6 6XT5 
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Supplemental Figures 

 

Supplemental Figure 1 | Sequence from pre-pro-conA to conA and conA fragments. Pre-pro-conA 
where chain B (pink) forms the N-terminal half and chain A (green) forms the C-terminal half of the 
protein. Pre-pro-conA contains an N-linked glycan group (grey ball-and-stick) at N123. ER-signal 
(black) is cleaved off to form pro-conA. N-linked glycan is typically included when describing pro-
conA. For brevity, we describe deglycosylated conA as just conA. Residues cleaved off during circular 
permutation to form conA are in grey. Residue numbering for pre-pro-conA starts after N-terminal 
ER-signal to match pro-conA numbering. Residues renumbered in conA as chain A is circularly 
permuted to become the N-terminal half and chain B becomes the C-terminal half. Other than full-
length conA, CeAEP1 processing in vitro produces conA fragments, labelled band II-IV on SDS-PAGE 
analysis (Fig. 3), which correlates to those observed in jack bean seeds (Sheldon et al., 1996). 
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Supplemental Figure 2 | Recombinant pro-conA purification and confirming full-length protein 
after crystal trials. His-tagged TEV-pro-conA was purified on a nickel column (Lane 1) and cleaved by 
TEV protease to remove the N-terminal His-tag, reconstituting the native N-terminus in recombinant 
pro-conA. Recombinant pro-conA was purified from TEV protease using reverse His-tag purification 
on nickel column (Lane 2). SDS-PAGE confirming pro-conA is a full-length monomer despite weak 
electron density in the 15-amino acid intervening peptide that could have been interpreted as 
spurious cleavage by other enzymes. Recombinant pro-conA from crystal trials was dissolved in 
MOPS storage buffer, run on an SDS-PAGE gel and Coomassie stained. 
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Supplemental Figure 3 | conA functional sites remain unchanged after circular permutation. (A) 
Monosaccharide binding site: Asp90, Arg110 and Asn148 in pro-conA; Asp208, Arg228 and Asn14 in 
conA (PDB: 1JBC). (B) Monosaccharide specificity loop: Thr231-Glu236 in pro-conA; Thr97-Glu102 in 
conA (PDB: 1JBC). (C) Key residues in locked/active state of pro-conA and conA: Ala89, Asp90, 
Asp144, Thr145, Tyr146 in pro-conA; Ala207, Asp208, Asp10, Thr11, Tyr12 in conA (PDB:1JBC). (D) 
Hypothesised hydrophobic cavity: Ala7, Leu8, Val61 and Leu249 in pro-conA; Ala125, Leu126, Val 
179 and Leu115 in conA (PDB: 4PF5). Pro-conA (wheat); conA (pale cyan); calcium (yellow sphere); 
manganese (purple); ethane diol (EDO). Electron density maps (2Fobs-Fcalc) for key amino acid 
residues are contoured at the 1σ level. PDB: 4PF5 used for comparing hydrophobic cavity in panel D 
as it was similarly crystallised with EDO in the cavity. The relative positions of these functional sites 
are highlighted in Figure 2a. 
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Supplemental Figure 4| Pro-conA and conA have similar structures. Pro-conA and conA (PDB: 1JBC) 
have an r. m. s. d. of 1.2 Å. Overlay of pro-conA (pink and green as described in Fig. 2) and conA 
(grey). Calcium (yellow spheres) and manganese (purple sphere) ions in the ‘metal binding loop’ are 
perfectly overlaid between pro-conA and conA. Calcium and zinc (orange sphere) outside of the 
‘metal binding loop’ are only present in pro-conA due to crystal conditions. 
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Supplemental Figure 5 | N-terminal Edman degradation of pro-conA processed by recombinant 
CeAEP1. N-terminal Edman degradation was performed on the protein band highlighted in Fig. 3A. A 
search for all possible permutations from Edman degradation indicated presence of two overlapping 
sequences (text in blue and orange, respectively) that are present in the conA sequence and 
underlined in Fig. 3B. DMPTU (dimethylphenylthiourea) and DPTU (diphenylthiourea) are normal by-
products of the Edman degradation process. *Confidence for Ala in Cycle 6 is low because 
absorbance for Ala in Cycle 6 is lower than in Cycle 5, and so could be due to carry over from Cycle 5. 
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Supplemental Figure 6 | Pro-conA and conA stability with and without heat treatment. (A) No-heat 
controls show no dramatic changes to ellipticity at 218 nm for pro-conA and conA when maintained 
at 25 °C for the duration of the heat analysis (75 minutes) in Fig. 4A, indicating that pro-conA and 
conA are stable without heating. (B) SDS-PAGE analysis of pro-conA and conA after heat analysis by 
CD (Lanes 2 and 4) and after no-heat control analysis (Lanes 1 and 3). To determine if any soluble 
proteins remained, samples were centrifuged at 15,000 x g for 10 minutes and supernatant analysed 
on SDS-PAGE. Pro-conA (Lane 2) and conA (Lane 4). Pro-conA (Lane 1) and conA (Lane 3) no-heat 
controls. 
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Supplemental Figure 7| Circular permutation has no effect on conA binding to methyl-α-D-
mannose. ITC analysis shows that pro-conA and conA have similar KA (association constant). Pro-
conA and conA were titrated with methyl-α-D-mannose (injectant) at 25 °C. Top panels display raw 
data for 76 0.5 µL-injections. Data points for the integrated curves are displayed in the bottom 
panel. Baseline and integration ranges were determined automatically by the Origin software 
(version 2002, OriginLab Corporation) supplied by MicroCal. 
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Supplemental Figure 8 | Recombinant CeAEP1 purification and activation. (A) Size exclusion 
chromatograph of CeAEP1 using HiLoad 16/600 Superdex 200. Inset: SDS-PAGE analysis of collected 
peak fraction. Lower MW proteins present after size exclusion possibly due to autocatalytic cleavage 
occurring at high protein concentration. (B) CeAEP1 activated by autocatalytic cleavage at pH 4. Lane 
1: Nickel-purified CeAEP1. Lane 2: CeAEP1 dialysed at pH 4 for 4 hours then dialysed to pH 6.5. 
Multiple bands indicate that autocatalytic cleavage occurs at multiple sites, which is typical for AEPs 
(Yang et al., 2017; Haywood et al., 2018; Hemu et al., 2019; James et al., 2019). 
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Supplemental Figure 9 | CeAEP1 residues 
involved in catalytic activity. Electron density 
maps (2 Fobs – Fcalc) contoured at 1σ level (A) 
Catalytic triad (N53, H158, C200) and 
succinimide intermediate (Snn157) displayed as 
orange sticks; glutamine residue from cap 
domain (Q335) displayed as grey sticks. (B) 
Substrate binding pockets viewed from above 
the core domain with residues in S1, S1′ and S2′ 
pockets labelled and shaded accordingly. 
Structural alignment of S1 pocket (C), S1′ 
pocket (D) and S2′ pocket (E). CeAEP1 (orange), 
HaAEP1 (wheat), AtLEGγ (light blue), OaAEP1 

(pale yellow), VyPAL2 (light pink), butelase1 (pale green). CeAEP1 residues labelled. Catalytic 
cysteine of AtLEGγ (C200 in CeAEP1) not displayed as it was crystallised as methylated cysteine. 
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Supplemental Figure 10 | AEP Alignment. Protein sequence alignment of CeAEP1 (Uniprot: P49046), 
HaAEP1 (Uniprot: A0A0G2RI59), AtLegγ (Q39119), OaAEP1 (Uniprot: A0A0N9JZ32), VyPAL2 (Uniprot: 
A0A509GV09), and butelase1 (Uniprot: A0A060D9Z7). CeAEP1 major secondary structure is labelled 
and numbered above each row. Catalytic triad (red stars); S1 pocket (purple circles); S1′ pocket 
(brown circles); S2′ pocket (green circles); regions so-called Ligase-Activity Determinant 1 (orange 
bar); Ligase-Activity Determinant 2 (blue bar); Marker of Ligase Activity (pink bar). Flexible linker 
region between ‘core’ and ‘cap’ domains (dash line). 
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Supplemental Tables 

Supplemental Table 1: Interactions analysis using PDBePISA 

Interactions Buried surface 
area (Å2) 

No. of interface 
residues 

No. of salt 
bridges 

No. of hydrogen 
bonds 

apro-conA – subunits I and III 733 24 5 6 
aconA – subunits I and III 1034 31 8 12 
bpro-conA – subunits I and II 1012 30 0 16 
bconA – subunits I and II 1124 31 0 24 
 

aInteractions between subunits I and III in a tetrameric complex (See Figure2B). 
bInteractions between subunits I and II in a tetrameric complex (See Figure2B). 

Supplemental Table 2: r. m. s. d. of Cα-atoms of CeAEP1 zymogen and its homologs 

Enzyme Chain r. m. s. d. (Å) Aligned 
residues 

No. of 
residues 

Sequence 
identity (%) 

AtLegγ A 1.1 409 428 62 
OaAEP1 A 1.0 390 400 58 
VyPAL2 B 1.1 407 424 54 
butelase1 B 1.1 400 429 55 

Note: No structure for HaAEP1 zymogen  
 

Supplemental Table 3: r. m. s. d. of Cα-atoms of CeAEP1 core domain and its homologs 

Enzyme Chain r. m. s. d. (Å) Aligned 
residues 

No. of 
residues 

Sequence 
identity (%) 

HaAEP1 A 0.5 270 273 77 
AtLegγ A 0.6 265 280 72 
OaAEP1 A 0.6 267 274 63 
VyPAL2 B 0.7 268 273 61 
butelase1 B 0.7 267 280 59 
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