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Abstract (245 words) 18 

Humans differ in their capability to judge the accuracy of their own choices via confidence 19 

judgments. Signal detection theory has been used to quantify the extent to which confidence tracks 20 

accuracy via M-ratio, often referred to as metacognitive efficiency. This measure, however, is static in 21 

that it does not consider the dynamics of decision making. This could be problematic because humans 22 

may shift their level of response caution to alter the tradeoff between speed and accuracy. Such shifts 23 

could induce unaccounted-for sources of variation in the assessment of metacognition. Instead, evidence 24 

accumulation frameworks consider decision making, including the computation of confidence, as a 25 

dynamic process unfolding over time. We draw on evidence accumulation frameworks to examine the 26 

influence of response caution on metacognition. Simulation results demonstrate that response caution has 27 

an influence on M-ratio. We then tested and confirmed that this was also the case in human participants 28 

who were explicitly instructed to either focus on speed or accuracy. We next demonstrated that this 29 

association between M-ratio and response caution was also present in an experiment without any 30 

reference towards speed. The latter finding was replicated in an independent dataset. In contrast, when 31 

data were analyzed with a novel dynamic measure of metacognition, which we refer to as v-ratio, in all of 32 

the three studies there was no effect of speed-accuracy tradeoff. These findings have important 33 

implications for research on metacognition, such as the question about domain-generality, individual 34 

differences in metacognition and its neural correlates.  35 

  36 
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Introduction 37 

When asked to explicitly report how sure they are about their decisions, humans often claim high 38 

confidence for correct and low confidence for incorrect decisions. This capacity to evaluate the accuracy 39 

of decisions is often referred to as metacognitive accuracy. Although metacognitive accuracy about 40 

perceptual decisions is generally high 1, it varies significantly between participants 2 and between 41 

conditions 3. Such differences in metacognitive accuracy have important real-life consequences, as they 42 

relate, for example, to political extremism 4 and psychiatric symptoms 5. 43 

A debated question is how to quantify metacognitive accuracy. One prominent issue why one 44 

cannot simply calculate the correlation between confidence and accuracy 6 is that this confounds task 45 

accuracy with metacognitive accuracy; i.e. it is much easier to detect one’s own mistakes in an easy task 46 

than in a hard task. Different solutions have been proposed in the literature, such as using coefficients 47 

from a logistic mixed-model 7, type 2 ROC curves 2, and meta-d’ 8,9. Rather than providing an in-depth 48 

discussion and comparison of these different measures, we here focus on one of these static approaches, 49 

namely the meta-d’ framework, the state-of-the-art measure of metacognitive accuracy 10. The meta-d’ 50 

approach is embedded within signal detection theory, and quantifies the accuracy with which confidence 51 

ratings discriminate between correct and incorrect responses (meta-d’) while controlling for first-order 52 

task performance (d’). Because both measures are on the same scale, one can calculate the ratio between 53 

both, meta-d’/d’, also called M-ratio, often referred to as metacognitive efficiency. When M-ratio is 1, all 54 

available first-order information is used in the (second-order) confidence judgment. When M-ratio is 55 

smaller than 1, metacognitive sensitivity is suboptimal, meaning that not all available information from 56 

the first-order response is used in the metacognitive judgment (Fleming & Lau, 2014). This measure has 57 

been used to address a variety of issues, such as whether metacognition is a domain-general capacity 58 

3,11,12, the neural correlates of metacognition 13–16, how bilinguals differ from monolinguals 17, and how 59 

individual differences in metacognitive accuracy correlate with various constructs 4,5.  60 

An important limitation is that the meta-d’ framework (just like the other static approaches cited 61 

above), does not consider dynamic aspects of decision making. Put simply, this measure depends on end-62 

of-trial confidence and accuracy, but not on the response process governing the choice and its resulting 63 

reaction time. It is well known, however, that choice accuracy depends on response caution; i.e. accuracy 64 

decreases when instructing participants to be fast rather than to be correct. The fact that static approaches 65 

of metacognition do not consider response caution is problematic because it confounds ability with 66 

caution: when focusing on speed rather than accuracy, one will produce many errors due to premature 67 

responding, and those errors are much easier to detect compared to errors resulting from low signal 68 
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quality 18. Importantly, detecting “premature” errors does not imply “good metacognition” per se, but 69 

instead simply depends on one’s level of response caution. 70 

To account for dynamic influences on metacognition, we propose to instead quantify 71 

metacognitive accuracy in a dynamic probabilistic framework 19,20. Sequential sampling models explain 72 

human decision making as a dynamic process of evidence accumulation 21–23. Specifically, decisions are 73 

conceptualized as resulting from the accumulation of noisy evidence towards one of two decision 74 

boundaries. The first boundary that is reached, triggers its associated decision. The height of the decision 75 

boundary controls the response caution with which a decision is taken 24,25. When lowering the boundary, 76 

decisions will be faster but less accurate; when increasing the boundary, decisions will be slower but 77 

more accurate. The prototypical dynamic sampling model is the drift diffusion model (DDM). In this 78 

model, confidence can be quantified as the probability of being correct, given evidence, decision time, 79 

and the decision that was made 26–28. The relation between these three variables is represented by the heat 80 

map in Figure 1A. It captures the typical finding that trials with strong evidence are more likely to be 81 

correct than trials with weak evidence; and that trials with short RTs are more likely to be correct than 82 

trials with long RTs. As mentioned, the process of evidence accumulation terminates at the first boundary 83 

crossing. Formally, at that time the probability that the choice was correct can be quantified as 84 

p(correct|et, t, X), where et is the level of evidence at time t, t is the timing of boundary crossing and X is 85 

the choice made 26,28,29. In typical experiments, however, confidence judgments are provided separately in 86 

time (at time t + s, i.e., in a separate judgment after the choice), allowing evidence to further accumulate 87 

after boundary crossing. As a consequence, confidence should then be quantified as p(correct|et+s, t+s, X), 88 

19,20,30.  89 

Within this formulation, good metacognitive accuracy can be considered as the ability to 90 

distinguish corrects versus errors based on p(correct|et+s, t+s, X). Critically, the difference in the quantity 91 

p(correct|et+s, t+s, X) for corrects versus errors, directly depends on the strength of post-decision 92 

accumulation. Thus, we can use post-decision drift rate as a dynamic measure of metacognitive accuracy. 93 

For comparison with the M-ratio framework, we quantified v-ratio as the ratio between post-decision drift 94 

rate and drift rate. Figure 1B shows post-decision accumulation for three scenarios with varying levels of 95 

v-ratio. As can be seen, if v-ratio is zero (left panel), additional evidence meanders adrift for both corrects 96 

and errors, and the model does not detect its own errors, i.e., representing a case of poor metacognitive 97 

accuracy. If however, v-ratio equals 1 (i.e., post-decision drift rate and drift rate are the same), additional 98 

evidence confirms most of the correct choices (i.e., leading to high confidence) and disconfirms most of 99 

the error choices (i.e., leading to low confidence), i.e., representing good metacognitive accuracy. We 100 
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thus propose that v-ratio can be used as a dynamic measure of metacognitive accuracy. In the following, 101 

we will shed light on the role of variation in response caution on both M-ratio and v-ratio. 102 

103 

Figure 1. Quantifying metacognitive accuracy within an evidence accumulation framework. A.104 

Noisy sensory evidence accumulates over time, until the integrated evidence reaches one of two decision 105 

boundaries (a or 0). After the decision boundary is reached, evidence continues to accumulate. The heat 106 

map shows the probability of being correct conditional on time, evidence, and the choice made (the 107 

choice corresponding to the upper boundary, in this example). Confidence is quantified as just this 108 

probability. B. Histograms of model-predicted confidence for different levels of v-ratio (reflecting the 109 

ratio between post-decision drift rate and drift rate). Higher levels of v-ratio are associated with better 110 

dissociating corrects from errors. C. Simulations from this dynamic evidence accumulation model show 111 

that M-ratio captures variation in v-ratio (r = .58; left panel), and critically, that M-ratio is also related 112 

to the differences in decision boundary (r = -.52; middle panel). By design, decision boundary and v-ratio113 

are unrelated to each other (r ~ 0; right panel). 114 

Results 115 

Model simulations reveal a link between response caution and M-ratio 116 

We simulated data from a drift diffusion model with additional post-decisional evidence 117 

accumulation (see Figure 1A). Decision confidence was quantified as the probability of being correct 118 

given evidence, time and choice 26,30,31. We simulated data for 100 agents with 500 observations each; for 119 
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each agent, a different random value was selected for drift rate, non-decision time, decision boundary and 120 

post-decision drift rate (see Methods). We then used these data to compute M-ratio. As explained before, 121 

v-ratio was computed as the ratio between post-decision drift rate and drift rate. The results of our 122 

simulation study showed that, first, there was a clear positive relation between M-ratio and v-ratio, r(98) 123 

= .58, p < .001, reflecting that M-ratio captures individual variation in metacognition (Figure 1C, left 124 

panel). However, we also observed a strongly negative relation between M-ratio and decision boundary, 125 

r(98) = -.52, p < .001 (Figure 1C, central panel). This shows that M-ratio is highly dependent on the 126 

speed-accuracy tradeoff that one adopts. This occurs because lowering the decision boundary increases 127 

the probability of “fast errors” (i.e. due to noise), which are very likely to generate conflicting evidence in 128 

the post-decisional period (i.e. to be detected as an error). Finally, by design there was no relation 129 

between v-ratio and decision boundary, r(98) = .006, p = .95 (Figure 1C, right panel). The full correlation 130 

matrix is shown in Table 1. 131 

 1 2 3 4 5 

1. Drift rate -     

2. Non-decision time .05 -    

3. Decision boundary -.05 .09 -   

4. V-ratio .01 .01 .00 -  

5. M-ratio .03 -.08 -.52*** .58*** - 

 132 

Table 1. Correlation table of the parameters from the model simulation. Note: ***<.001  133 

Experiment 1: Explicit speed-accuracy instructions affect static but not dynamic measures 134 

of confidence 135 

Next, we tested these model predictions in an experiment with human participants. We recruited 136 

36 human participants who performed a task that has been widely used in the study of evidence 137 

accumulation models: discrimination of the net motion direction in dynamic random dot displays 21. 138 

Participants were asked to decide whether a subset of dots was moving coherently towards the left or the 139 

right side of the screen (See Figure 2A). The percentage of dots that coherently moved towards the left or 140 

right side of the screen (controlling decision difficulty) was held constant throughout the experiment at 141 

20%. After their choice, and a blank screen, participants indicated their level of confidence using a 142 

continuous slider. Critically, in each block, participants either received the instruction to focus on 143 

accuracy (“try to decide as accurate as possible”), or to focus on speed (“try to decide as fast as 144 

possible”). Consistent with the instructions, participants were faster in the speed condition than in the 145 

accuracy condition, Mspeed = 727ms versus Maccuracy = 1014ms, t(35) = 4.47, p < .001, and numerically 146 
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more accurate in the accuracy condition than in the speed condition, Maccurate = 75.6% vs Mspeed = 73.8%, 147 

t(35) = 1.63, p = .111. Participants were also more confident in the accuracy condition than in the speed 148 

condition, Maccuracy = 70 versus Mspeed = 67, t(35) = 3.57, p = .001 (See Figure 2D).  149 

 150 

Figure 2. The influence of speed-accuracy instructions on metacognitive accuracy 151 

(Experiment 1). A. Sequence of events in the experimental task. Participants decided whether the 152 

majority of dots were moving left or right, by pressing “E” or “T” with their left hand. After a short 153 

blank, they then indicated their level of confidence on a continuous scale. Depending on the block, 154 

instructions during the ITI were either to focus on accuracy or to focus on speed. B. Fitted parameters of 155 

a drift diffusion model with additional post-decision accumulation. Fitted decision boundaries were lower 156 

in the speed vs accuracy condition, whereas drift rates did not differ. Critically, M-ratio was higher in the 157 

speed vs accuracy condition whereas v-ratio did not differ between both instruction conditions. C. 158 

Distribution of reaction times and confidence for empirical data (bars) and model fits (lines), separately 159 

of 

er 

he 
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for corrects (green) and errors (red). D. Participants were faster, less accurate and less confident when 160 

instructed to focus on speed rather than on accuracy. Note: grey lines show individual data points; black 161 

lines show averages; green dots show model fits; error bars reflect SEM; ***p<.001, **p<.01, *p<.05. 162 

 163 

To shed further light on the underlying cognitive processes, we fitted these data using the 164 

evidence accumulation model described in Figure 1A. The basic architecture of our model was a DDM, in 165 

which noisy perceptual evidence accumulates over time until a decision boundary is reached. Afterwards, 166 

evidence continued to accumulate for a specified amount of time 19. In addition to drift rate, decision 167 

boundary and non-decision time, our model featured a free parameter controlling the strength of the post-168 

decision evidence accumulation (v-ratio, reflecting the ratio between post-decision drift rate and drift rate) 169 

and two further parameters controlling the mapping from p(correct) onto the confidence scale (see 170 

Methods). Generally, our model fitted the data well, as it captured the distributional properties of both 171 

reaction times and decision confidence (see Figure 2C). As a first sanity check, we confirmed that 172 

decision boundaries were indeed different between the two instruction conditions, Mspeed = 1.40 versus 173 

Maccuracy = 1.77, t(35) = 4.60, p < .001, suggesting that participants changed their decision boundaries as 174 

instructed. Also non-decision time tended to be a bit shorter in the speed condition compared to the 175 

accuracy condition, Mspeed = 309ms versus Maccuracy = 390ms, t(35) = 3.19, p = .003. Drift rates did not 176 

differ between both instruction conditions, p = .368. There was a small but significant difference between 177 

the two instruction conditions in the two additional parameters controlling the idiosyncratic mapping 178 

between p(correct) and the confidence scale, reflecting that in the accuracy condition confidence 179 

judgments were slightly higher, t(35) = 2.506, p = .017, and less variable, t(35) = 2.206, p = .034, 180 

compared to the speed condition. 181 

We next focused on metacognitive accuracy in both conditions (see Figure 2B). In line with the 182 

model simulations, our data showed that M-ratio was significantly affected by the speed-accuracy tradeoff 183 

instructions, Mspeed = 0.84 versus Maccuracy = 0.66, t(35) = 2.26, p = .030. Moreover, apart from these 184 

between-condition differences we also observed significant correlations between M-ratio and decision 185 

boundary both in the accuracy condition, r(34) = -.36, p = .030, and in the speed condition, r(34) = -.53, p 186 

< .001.Consistent with the notion that metacognitive accuracy should not be affected by differences in 187 

decision boundary, v-ratio did not differ between both instruction conditions, p = .938.  188 

Experiment 2: Spontaneous differences in response caution relate to static but not dynamic 189 

measures of metacognitive accuracy 190 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 29, 2020. ; https://doi.org/10.1101/2020.10.29.360453doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.29.360453
http://creativecommons.org/licenses/by-nc/4.0/


Although Experiment 1 provides direct evidence that changes in decision boundary affect M-191 

ratio, it remains unclear to what extent this is also an issue in experiments without speed stress. Notably, 192 

in many metacognition experiments, participants do not receive the instruction to respond as fast as 193 

possible. Nevertheless, it remains possible that participants implicitly decide on a certain level of response 194 

caution. For example, a participant who is eager to finish the experiment quickly might adopt a lower 195 

decision boundary compared to a participant who is determined to perform the experiment as accurate as 196 

possible, thus leading to a natural across-subject variation in decision boundaries. To examine this 197 

possibility, in Experiment 2 we analyzed data from an experiment in which participants (N = 63) did not 198 

receive any specific instructions concerning speed or accuracy. Participants decided which of two boxes 199 

contained more dots, and afterwards indicated their level of confidence on a continuous scale (see Figure 200 

3A). The same evidence accumulation model as before was used to fit these data, and again this model 201 

captured both reaction times and decision confidence distributions (Figure 3B). Consistent with our 202 

model simulations, model fits showed a positive correlation between M-ratio and v-ratio, r(61) = .21, p = 203 

.092, although this correlation was not statistically significant (Figure 3C). However, we again observed 204 

that M-ratio correlated negatively with the fitted decision boundary, r(61) = -.34, p = .006, whereas v-205 

ratio did not, r(61) = -.19, p = .129. 206 
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 207 

Figure 3. The influence of spontaneous variations in speed-accuracy tradeoff on metacognitive 208 

accuracy. A. Sequence of events in Experiment 2. On each trial participants decided which of the two 209 

circles contained more dots. Afterwards, they indicated their level of confidence on a continuous scale. 210 

Note that participants did not receive any instructions concerning speed or accuracy. B. Distribution of 211 

reaction times and confidence for Experiment 2, using the same conventions as in Figure 2. C. The data 212 

of Experiment 2 showed a non-significant positive relation between M-ratio and v-ratio (r=.21). 213 

Critically, only M-ratio correlated negatively with decision boundary (r=-.34) whereas this relation was 214 

not significant for v-ratio (r= -.19). D. Sequence of events in Experiment 3. On each trial, participants 215 

decided in which temporal interval (first or second) one of the Gabor patches had a higher contrast. After 216 

this choice, participants indicated confidence on a continuous scale. E. Distribution of reaction times and 217 

confidence for Experiment 3, using the same conventions as in Figure 2. F. The data of Experiment 3 218 
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showed a significant positive relation between M-ratio and v-ratio (r=.38) and a significant negative 219 

correlation between M-ratio and decision boundary (r=-.18) but not between v-ratio and decision 220 

boundary (r= -.04). 221 

 222 

Experiment 3: Replication in an independent dataset  223 

To assess the robustness of our findings, in Experiment 3 we aimed to replicate our analysis in an 224 

independent dataset with high experimental power. To achieve this, we searched the confidence database 225 

32 for studies with high power (N > 100) in which a 2CRT task was performed with separate confidence 226 

ratings given on a continuous scale. Moreover, because our fitting procedure was not designed for 227 

multiple levels of difficulty, we focused on studies with a single difficulty level. We identified one study 228 

that satisfied all these constraint (Figure 3D; Prieto, Reyes & Silva, under review). Their task was highly 229 

similar to the one reported above, but their high experimental power (N=204) assured a very sensitive 230 

analysis of our claims. Consistent with the previous analysis, model fits on this independent dataset 231 

showed a positive and statistically significant correlation between M-ratio and v-ratio, r(202) = .38, p < 232 

.001, suggesting that both variables capture shared variance reflecting metacognitive accuracy (see Figure 233 

3F). We again observed that M-ratio correlated negatively with the fitted decision boundary, r(202) = -234 

.18, p = .009, whereas no relation with decision bound was found for v-ratio, r(202) = .04, p = .535. 235 
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Discussion 236 

Metacognitive accuracy is a quickly emerging field in recent years. Crucial to its study is a 237 

method to objectively quantify the extent to which participants are able to detect their own mistakes, 238 

regardless of decision strategy. We here report that a commonly used static measure of metacognitive 239 

accuracy (M-ratio) highly depends on the decision boundary – reflecting decision strategy – that is set for 240 

decision making. This was the case in simulation results, in an experiment explicitly manipulating the 241 

tradeoff between speed and accuracy, and in two datasets in which participants received no instructions 242 

concerning speed or accuracy. We propose an alternative, dynamic, measure of metacognitive accuracy 243 

(v-ratio) that does not depend on decision boundary.  244 

 245 

Caution is warranted with static measures of metacognition 246 

The most important consequence of the current findings is that researchers should be cautious 247 

when interpreting static measures of metacognitive accuracy, such as M-ratio. In the following, we will 248 

discuss several examples where our finding might have important implications. In the last decade there 249 

has been quite some work investigating to what extent the metacognitive evaluation of choices is a 250 

domain-general process or not. These studies often require participants to perform different kinds of tasks, 251 

and then examine correlations in accuracy and in metacognitive accuracy between these tasks 3,11–14,33. For 252 

example, Mazancieux and colleagues 11 asked participants to perform an episodic memory task, a 253 

semantic memory task, a visual perception task and a working memory task. In each task, participants 254 

rated their level of confidence after a decision. The results showed that whereas correlations between 255 

accuracy on these different tasks were limited, there was substantial covariance in metacognitive accuracy 256 

across these domains. Because in this study participants received no time limit to respond, it remains 257 

unclear whether this finding can be interpreted as evidence for a domain-general metacognitive monitor, 258 

or instead a domain-general response caution which caused these measures to correlate. Another popular 259 

area of investigation has been to unravel the neural signatures supporting metacognitive accuracy 13,14,34–
260 

36. For example, McCurdy et al. observed that both visual and memory metacognitive accuracy correlated 261 

with precuneus volume, potentially pointing towards a role of precuneus in both types of metacognition. 262 

It remains unclear, however, to what extent differences in response caution might be responsible for this 263 

association. Although differences in response caution are usually found to be related to pre-SMA and 264 

anterior cingulate 24,25, there is some suggestive evidence linking precuneus to response caution 37. 265 

Therefore, it is important that future studies on neural correlates of metacognition rule out the possibility 266 

that their findings are caused by response caution. Finally, our study has important consequences for 267 

investigations into differences in metacognitive accuracy between specific, e.g. clinical, groups. For 268 

example, Folke and colleagues 17 reported that M-ratio was reduced in a group of bilinguals compared to 269 
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a matched group of monolinguals. Interestingly, they also observed that on average bilinguals had shorter 270 

reaction times than monolinguals, but this effect was unrelated to the group difference in M-ratio. 271 

Because these authors did not formally model their data using evidence accumulation models, however, it 272 

remains unclear whether this RT difference results from a difference in boundary, and if so to what extent 273 

this explains the difference in M-ratio between both groups that was observed. In a similar vein, 274 

individual differences in M-ratio have been linked to psychiatric symptom dimensions, and more 275 

specifically to a symptom dimension related to depression and anxiety 5. At the same time, it is also 276 

known that individual differences in response caution are related to a personality trait known as need for 277 

closure 38. Given that need for closure is, in turn, related to anxiety and depression 39, it remains a 278 

possibility that M-ratio is only indirectly related to these psychiatric symptoms via response caution.    279 

 280 

The potential of dynamic measures of metacognition 281 

In order to control for potential influences of response caution on measures of metacognitive 282 

accuracy, one approach could be to estimate the decision boundary and examine whether the relation 283 

between metacognitive accuracy and the variable of interest remains when controlling for decision 284 

boundary (e.g., using mediation analysis). However, a more direct approach would be to estimate 285 

metacognitive accuracy in a dynamic framework, thus taking into account differences in response caution. 286 

In the current work, we proposed v-ratio (reflecting the ratio between post-decision drift rate and drift 287 

rate) as such a dynamic measure of metacognitive accuracy (following the observation that post-decision 288 

drift rate indexes how accurate confidence judgments are19,20). In both simulations and empirical data, we 289 

observed a positive relation between v-ratio and M-ratio, suggesting they capture shared variance. 290 

Critically, v-ratio was not correlated with decision boundary, suggesting it is not affected by differences 291 

in response caution. Thus, our dynamic measure of metacognition holds promise as a novel approach to 292 

quantify metacognitive accuracy while taking into account the dynamics of decision making.  293 

In our approach we allowed the drift rate and the post-decision drift rate to dissociate. This 294 

proposal is in line with the view of metacognition as a second-order process whereby dissociations 295 

between confidence and accuracy might arise because of noise or bias at each level 40–42. However, when 296 

formulating post-decision drift rate as a continuation of evidence accumulation, it remains underspecified 297 

which evidence the post-decision accumulation process is exactly based on. It has been suggested that 298 

participants can accumulate evidence that was still in the processing pipeline (e.g. in a sensory buffer) 299 

even after a choice was made 30,43. However, it is not very likely that this is the only explanation, 300 

particularly in tasks without much speed stress. One other likely possibility, is that during the post-301 

decision process, participants resample the stimulus from short-term memory 44. Because memory is 302 

subject to decay, dissociations between the post-decision drift rate and the drift rate can arise. Other 303 
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sources of discrepancy might be contradictory information quickly dissipating from memory 45 which 304 

should lower metacognitive accuracy, or better assessment of encoding strength with more time 46 which 305 

should increase metacognitive accuracy.  306 

To sum up, we provided evidence from simulations and empirical data that a common static 307 

measure of metacognition, M-ratio, is confounded with response caution. We proposed an alternative 308 

measure of metacognition based on a dynamic framework, v-ratio, which is insensitive to variations in 309 

caution, and may thus be suitable to study how metacognitive accuracy varies across subjects and 310 

conditions.   311 
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Methods 312 

Computational model  313 

Simulations 314 

Data were simulated for 100 observers with 500 trials each. For each simulated observer, we 315 

randomly selected a value for the drift rate (uniform distribution between 0 and 2.5), for the decision 316 

boundary (uniform distribution between .5 and 3), for the non-decision time (uniform distribution 317 

between .2 and .6) and for the v-ratio (uniform distribution between 0 and 1.5; see below for details). To 318 

estimate meta-d’, data is needed for both of the possible stimuli (i.e., to estimate bias); therefore, for half 319 

of the trials we multiplied the drift rate by -1. Finally, we fixed the values for starting point (z = .5), 320 

within-trial noise (� = 1) and post-decision processing time (1s). 321 

Fitting procedure 322 

We coded an extension of the drift diffusion model (DDM) that simultaneously fitted choices, 323 

reaction times and decision confidence. The standard DDM is a popular variant of sequential sampling 324 

models of two-choice tasks. We used a random walk approximation, coded in the rcpp R package to 325 

increase speed 47, in which we assumed that noisy sensory evidence started at z*a; 0 and a are the lower 326 

and upper boundaries, respectively, and z quantifies bias in the starting point (z = .5 means no bias). At 327 

each time interval � a displacement Δ in the integrated evidence occurred according to the formula shown 328 

in equation (1): 329 

∆ �  � � � � � � √� � 
�0,1� (1) 

Evidence accumulation strength is controlled by v, representing the drift rate, and within-trial 330 

variability, σ, was fixed to 1. The random walk process continued until the accumulated evidence crossed 331 

either 0 or a. After boundary crossing, the evidence continued to accumulate for a duration depending on 332 

the participant-specific median confidence reaction time. Importantly, consistent with the signal detection 333 

theoretical notion that primary and secondary evidence can dissociate, we allowed for dissociations 334 

between the drift rate governing the choice and the post-decision drift rate. For compatibility with the M-335 

ratio framework, we quantified metacognitive accuracy as the ratio between post-decision drift rate and 336 

drift rate, as shown in equation (2): 337 

v-ratio � ��������	�	�
 ��	� ����

��	� ����
 (2) 

As a consequence, when v-ratio = 1, this implies that post-decision drift and drift are the same. 338 

When v-ratio = .5, the magnitude of the post-decision drift rate is half the magnitude of the drift rate. To 339 
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calculate decision confidence, we first quantified for each trial the probability of being correct given 340 

evidence, time, and choice. The heat map representing p(correct|e, t, X) is shown in Figure 1A, and was 341 

constructed by means of 300.000 random walks without absorbing bounds, with drift rates sampled from 342 

a uniform distribution between zero and ten. This assured sufficient data points across the relevant part of 343 

the heat map. Subsequently, the average accuracy was calculated for each (response time, evidence, 344 

choice) combination, based on all trials that had a data point for that (response time, evidence, choice) 345 

combination. Smoothing was achieved by aggregating over evidence windows of .01 and � windows of 3. 346 

Next, to take into account idiosyncratic mappings of p(correct|e, t, X) onto the confidence scale used in 347 

the experiment, we added two extra free parameters that controlled the mean (M) and the width (SD) of 348 

confidence estimates, as shown in equation (3): 349 

���������� � ���������|���� , � � �, �� � �
��  (3) 

Although empirical confidence distributions appeared approximately normally distributed, there 350 

was an over-representation of confidence values at the boundaries (1 and 100 in Experiment 1; 1 and 6 in 351 

Experiments 2 and 3) and in the middle of the scale (50 in Experiment 1, 3.5 in Experiment 2). Most 352 

likely, this resulted from the use of verbal labels placed at exactly these values. To account for frequency 353 

peaks at the endpoints of the scale, we relabeled predicted confidence values that exceeded the endpoints 354 

of the scale as the corresponding endpoint (e.g., in Experiment 1 a predicted confidence value of 120 was 355 

relabeled as 100), which naturally accounted for the frequency peaks at the endpoints. To account for 356 

peaks in the center of the scale, we assumed that confidence ratings around the center were pulled towards 357 

the center value. Specifically, we relabeled P% of trials around the midpoint as the midpoint (e.g., in 358 

Experiment 1, P = 10% implies that 10% of the data closest to 50 were (re)labeled as 50). Note that P was 359 

not a free parameter, but instead its value was taken to be the participant-specific proportion based on the 360 

empirical data. Note that the main conclusions reported in this manuscript concerning the relation 361 

between M-ratio, decision boundary and post-decision drift rate, remain the same in a reduced model 362 

without P, and also in a reduced model without P, M and SD. Because these reduced models did not 363 

capture confidence distributions very well though, we here report only the findings of the full model. 364 

To estimate these 6 parameters (v, a, Ter, v-ratio, M, and SD) based on choices, reaction times 365 

and decision confidence, we implemented quantile optimization. Specifically, we computed the 366 

proportion of trials in quantiles .1, .3, .5, .7, and .9, for both reaction times and confidence; separately for 367 

corrects and errors (maintaining the probability mass of corrects and errors, respectively). We then used 368 

differential evolution optimization, as implemented in the DEoptim R package 48, to estimate these 6 369 

parameters by minimizing the chi square error function shown in equation (4): 370 
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(4) 

with oRTi and pRTi corresponding to the proportion of observed/predicted responses in quantile i, 371 

separately calculated for corrects and errors both reaction times, and oCJi and pCJi reflecting their 372 

counterparts for confidence judgments. We set � to 1e-2. Model fitting was done separately for each 373 

participant. Note that in Experiment 3 there was no clear peak in the middle of the scale so P was fixed to 374 

0 in that experiment. 375 

Parameter recovery 376 

To assure that our model was able to recover the parameters, we here report parameter recovery. 377 

In order to assess parameter recovery with a sensible set of parameter combinations, we used the fitted 378 

parameters of Experiment 1 (N = 36), simulated data from these parameters with a varying number of 379 

trials, and then tested whether our model could recover these initial parameters. As a sanity check, we 380 

first simulated a large number of trials (25000 trials per participant), which as expected provided excellent 381 

recovery for all six parameters, rs > .97. We then repeated this process with only 200 trials per 382 

participants, which was the trial count in Experiment 2 (note that Experiment 1 and 3 both had higher trial 383 

counts). Recovery for v-ratio was still very good, r = .85, whereas it remained excellent for all other 384 

parameters, rs > .98. 385 

 386 

Experiment 1 387 

Participants 388 

Forty healthy participants (18 males) took part in Experiment 1 in return for course credit (mean 389 

age = 19.82, between 18 and 30). All reported normal or corrected-to-normal vision. Two participants 390 

were excluded because they required more than 10 practice blocks in one of the training blocks (see 391 

below) and two participants were excluded because their accuracy, averaged per block and then compared 392 

against chance level using a one-sample t-test, was not significantly above chance level. The final sample 393 

thus comprised thirty-six participants. All participants provided their informed consent and all procedures 394 

adhered to the general ethical protocol of the ethics committee of the Faculty of Psychology and 395 

Educational Sciences of Ghent University. 396 

Stimuli and apparatus 397 
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The data for Experiment 1 were collected in an online study, due to COVID-19. Participants were 398 

allowed to take part in the experiment only when they made us of an external mouse. Choices were 399 

provided with the keyboard, and decision confidence was indicated with the mouse. Stimuli in 400 

Experiment 1 consisted of 50 randomly moving white dots (radius: 2 pixels) drawn in a circular aperture 401 

on a black background centered on the fixation point. Dots disappeared and reappeared every 5 frames. 402 

The speed of dot movement (number of pixel lengths the dot will move in each frame) was a function of 403 

the screen resolution (screen width in pixels / 650). 404 

Task procedure 405 

Each trial started with the presentation of a fixation cross for 1000 ms. Above and below this 406 

fixation cross specific instructions were provided concerning the required strategy. In accuracy blocks the 407 

instruction was to respond as accurately as possible; in speed blocks the instruction was to respond as fast 408 

as possible. The order of this block-wise manipulation was counterbalanced across participants. Next, 409 

randomly moving dots were shown on the screen until a response was made or the response deadline was 410 

reached (max 5000 ms). On each trial, 20% of the dots coherently moved towards the left or the right side 411 

of the screen, with an equal number of leftward and rightward movement trials in each block. Participants 412 

were instructed to decide whether the majority of dots was moving towards the left or the right side of the 413 

screen, by pressing “E” or “T”, respectively, with their left hand. After their response, a blank screen was 414 

shown for 500 ms, followed by the presentation of a continuous confidence scale. Below the scale the 415 

labels “Sure error”, “guess”, and “sure correct” were shown, arranged outer left, centrally and outer right, 416 

respectively. After clicking the confidence scale, participants had to click a centrally presented 417 

“Continue” button (below the confidence scale) that ensured that the position of the mouse was central 418 

and the same on each trial. 419 

The main part of Experiment 1 consisted of 10 blocks of 60 trials, half of which were from the 420 

accuracy instruction condition and half from the speed instruction condition. The experiment started with 421 

24 practice trials during which participants only discriminated random dot motion at 50% coherence, no 422 

confidence judgments were asked. This block was repeated until participants achieved 85% accuracy 423 

(mean = 2 blocks). Next, participants completed again 24 practice trials with the only difference that now 424 

the coherence was decreased to 20% (mean = 1.05 blocks). When participants achieved 60% accuracy, 425 

they then performed a final training block of 24 trials during which they practiced both dot discrimination 426 

and indicated their level of confidence (mean = 1.05 blocks).   427 

Experiment 2 428 
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Full experimental details are described in Drescher et al. 49. On each trial participants were 429 

presented with two white circles (5.1° diameter) on a black background, horizontally next to each other 430 

with a distance of 17.8° between the midpoints. Fixation crosses were shown for 1s in each circle, 431 

followed by dots clouds in each circle for 700ms. The dots had a diameter of 0.4°. Dot positions in the 432 

boxes, as well as the position of the box containing more dots were randomly selected on each trial. 433 

Participants indicated which circle contained more dots by pressing “S” or “L” on a keyboard. Then, the 434 

question “correct or false?” appeared on the screen, with a continuous confidence rating bar, with the 435 

labels “Sure false”, “No idea”, and “Sure correct”. Participants moved a cursor with the same keys as 436 

before, and confirmed their confidence judgment with the enter key. No time limit was imposed for both 437 

primary choice and confidence rating. Subjects received several practice trials (10 without confidence 438 

rating, 14 with confidence rating), before they completed eight experimental blocks of 25 trials.  439 

Experiment 3 440 

Data from this experiment were taken from the confidence database 50, a collection of openly 441 

available studies on decision confidence. In this experiment, Prieto, Reyes and Silva (unpublished paper), 442 

used the same task as described in Fleming and colleagues 2. Each participant (N=204 woman, aged 18-443 

35) completed 50 practice trials, followed by 5 blocks of 200 trials.   444 

Data and code availability 445 

All data and analysis code have been deposited online and can be freely accessed (insert link 446 

upon publication).  447 
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