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Abstract 

A major goal of current SARS-CoV-2 vaccine efforts is to elicit antibody responses that confer 

protection. Mapping the epitope targets of the SARS-CoV-2 antibody response is critical for innovative 

vaccine design, diagnostics, and development of therapeutics. Here, we developed a phage display 

library to map antibody binding sites at high resolution within the complete viral proteomes of all human-

infecting coronaviruses in patients with mild or moderate/severe COVID-19. The dominant immune 

responses to SARS-CoV-2 were targeted to regions spanning the Spike protein, Nucleocapsid, and 

ORF1ab. Some epitopes were identified in the majority of samples while others were rare, and we 

found variation in the number of epitopes targeted by different individuals. We also identified a set of 

cross-reactive sequences that were bound by antibodies in SARS-CoV-2 unexposed individuals. 

Finally, we uncovered a subset of enriched epitopes from commonly circulating human coronaviruses 

with significant homology to highly reactive SARS-CoV-2 sequences.  

 

Introduction 

A novel betacoronavirus, SARS-CoV-2, was transmitted into humans in late 2019 and has led to 

widespread infection, morbidity, and mortality across the globe (Wu et al., 2020). The disease caused 
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by SARS-CoV-2 infection, Coronavirus disease 2019 (COVID-19), is characterized by a striking 

diversity in clinical presentation, ranging from asymptomatic or mild disease, to severe pneumonia and 

death. A number of studies have begun to address the role of the adaptive immune response in patients 

infected with SARS-CoV-2, but the repertoire of epitope targets linked to infection is only beginning to 

be comprehensively defined.  

 
Coronaviruses (CoVs) have large, ~30 kb non-segmented genomes consisting of virus-specific 

accessory proteins and several universal open reading frames (ORFs): Spike (S), Membrane (M), 

Nucleocapsid (N), Envelope (E) and ORF1ab, which codes for a multitude of non-structural proteins 

(Chan et al., 2020; Cui et al., 2019). The S glycoprotein is recognized as highly immunogenic in SARS-

CoV-2 infections, as well as for infections with the six other human CoVs (HCoVs) that are endemic 

and associated with the common cold (HCoV-OC43, HCoV-HKU1, HCoV-NL63, and HCoV-229E), or 

are the cause of more confined but highly pathogenic outbreaks in humans (SARS-CoV, MERS-CoV). 

The S protein of SARS-CoV-2 shares varying degrees of homology with other circulating CoVs ranging 

from 28% amino acid identity with the endemic HCoV-OC43 up to 76% with the highly virulent SARS-

CoV (Walls et al., 2020; Wang et al., 2020). The S protein decorates the surface of all CoVs and 

mediates viral entry (Shang et al., 2020). Because of its surface exposure and role in infectivity, the S 

protein has been a major focus of vaccine development and recent efforts to isolate potent neutralizing 

antibodies targeting SARS-CoV-2 (Chi et al., 2020; Pinto et al., 2020).  

 

While many vaccines are thought to protect by virus neutralization, antibodies that target viruses 

through mechanisms other than neutralization—often referred to as non-neutralizing antibodies—have 

been correlated with improved clinical outcomes for a variety of viruses, including HIV, influenza and 

Ebola (Lee and Kent, 2018; Mayr et al., 2017; Padilla-Quirarte et al., 2019; Saphire et al., 2018). 

Antibody responses to non-S CoV proteins have been detected previously, including non-neutralizing 

responses to the N protein of SARS-CoV, which is involved in genome packaging and is found in the 

mature virion core (Dutta et al., 2020). Interestingly, immune responses to the N protein of SARS-CoV-
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2 have recently been linked to poor clinical outcomes (Atyeo et al., 2020). Despite mounting evidence 

that the SARS-CoV-2 N protein may be highly antigenic in the context of COVID-19, there has been 

limited effort to fully characterize antibody responses mediated by N or the other non-Spike ORFs that 

are expressed during SARS-CoV-2 infection.  

 

Sequence homology between SARS-CoV-2 and other circulating HCoVs increases the likelihood for 

cross-reactive antibody responses resulting from prior infection or vaccination. The N protein and other 

non-structural SARS-CoV-2 proteins are often more highly conserved than the S protein and thus may 

be targets for such cross-reactive non-neutralizing responses. Importantly, cross-reactive T-cell 

responses stemming from exposure to low-pathogenic endemic HCoVs have been identified in SARS-

CoV-2 unexposed individuals (Grifoni et al., 2020; Mateus et al., 2020). Additional studies aimed at the 

B-cell immune response have identified cross-reactive antibody binding to the S proteins of SARS-

CoV-2 and SARS-CoV, which share nearly 80% sequence identity genome-wide (Lv et al., 2020; 

Shrock et al., 2020). Despite lower degrees of homology than to the highly pathogenic SARS-CoV, 

cross-reactivity against the S protein from the four commonly circulating HCoVs in COVID-19 patient 

sera has also been identified (Shrock et al., 2020; Wölfel et al., 2020). Importantly, cross-reactive viral 

immune responses can be either cross-protective, as in the case of Influenza A and other viruses, or 

disease-enhancing, as in the case of dengue virus, and possibly SARS-CoV-2 (Arvin et al., 2020; Lee 

et al., 2020; Welsh et al., 2010). These divergent phenomena necessitate studies to evaluate SARS-

CoV-2 antibody binding in unexposed individuals, and to measure sequence homology among high-

binding epitopes from the full genomes of all HCoVs.  

 

In order to capture the complete repertoire of neutralizing and non-neutralizing linear epitopes targeted 

by antibodies generated in the presence and absence of SARS-CoV-2 infection, we used a phage 

display immunoprecipitation approach (Larman et al., 2011) to profile immune responses in a 

population of patients with COVID-19 and patients with no exposure to SARS-CoV-2. We developed a 
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pan-coronavirus (pan-CoV) phage library encompassing the complete proteomes of all human-targeted 

CoVs and used it to immunoprecipitate antibodies from samples from patients with mild or 

moderate/severe COVID-19, as well as SARS-CoV-2 unexposed patients, all collected in Seattle, 

Washington. Notably, we detected a pool of significantly enriched peptides from the S, N, and ORF1ab 

polypeptides of SARS-CoV-2 in samples from patients with COVID-19. We also identified four cross-

reactive SARS-CoV-2 peptides that were enriched in pre-pandemic, SARS-CoV-2 unexposed 

individuals. Finally, we found a subset of endemic CoV peptides with high sequence conservation to 

enriched SARS-CoV-2 peptides in COVID-19 patients.   

 

Results 

A pan-CoV bacteriophage library detects antibody responses across the SARS-CoV-2 proteome  

We generated a phage display library comprised of all seven CoVs known to infect humans, a bat 

SARS-like CoV, and a set of control peptides derived from the HIV-1 envelope sequence (Fig. 1). 

Oligonucleotide sequences were designed to cover complete CoV genomes in 39 amino acid tiles with 

19 amino acid overlaps that were then cloned into T7 phage, amplified, and used in subsequent assays. 

This process was repeated to generate a replicate phage library from an independent oligonucleotide 

pool. We deeply sequenced both independent phage libraries and found similarly high coverage across 

the sequences included in the libraries, with > 98% of expected sequences detected (Fig. S1A).   

 

A total of 19 plasma or serum samples from patients with either mild or moderate/severe laboratory-

confirmed SARS-CoV-2 infections (termed COVID-19 patients) was collected in Seattle, Washington 

as part of the Hospitalized and Ambulatory Adults with Respiratory Viral Infections (HAARVI) study or 

as residual clinical samples from hospital labs in Seattle. Samples from patients with mild COVID-19 

cases were collected at approximately 30 days post symptom onset, and all moderate/severe samples 

were collected between 8-33 days post symptom onset. Samples from patients with endemic (non-

SARS-CoV-2) HCoV infections were collected as part of the HAARVI study or were residual clinical 
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samples from Harborview Medical Center (Seattle, Washington, USA). Archived samples collected 

from Seattle individuals before the pandemic were used as unexposed SARS-CoV-2 negative samples. 

Prior to study initiation, the following institutional human subjects review committee approved the 

protocol: University of Washington IRB (Seattle, Washington, USA), and concurrent approvals were 

obtained from the Fred Hutchinson Cancer Research Center.  Additional sample demographic 

information is found in Tables 1 and S1. 

 

All samples were tested in a phage-based immunoprecipitation assay in which DNA from 

phage/antibody complexes was PCR amplified, and multiplexed samples were deep sequenced to 

determine enrichment of individual CoV peptides. We applied the following criteria to determine which 

samples to include in our downstream analyses: (1) a sample must have had a pairwise cross-

correlation of at least 0.5 (Pearson’s R) between two technical (within-assay) replicates, and (2) a 

sample must have satisfied condition (1) in experiments conducted with both of the independent 

batches of the phage library (Libraries 1 and 2, Fig. S1A).  

 

We performed a qualitative assessment of the SARS-CoV-2 epitope profile in COVID-19 patients by 

examining counts per million (CPM) from all SARS-CoV-2 ORFs. We detected signal for epitopes 

derived from all possible ORFs, but found significantly higher magnitude in S, N, and ORF1ab (Fig. 2). 

Signal was also detected for ORF3a and M, but at a much lower magnitude, with even lower signal for 

peptides enriched from the other proteins (note scale differences in Fig. 2). In order to evaluate the 

significance of epitope enrichment quantitatively, we modeled enrichment for all peptides from all 

samples along with a pool of mock-immunoprecipitation samples to account for non-specific peptide 

binding. We fit peptides to a Gamma-Poisson model, in which each sample-peptide pairing was 

assigned a minus log10 p-value (mlxp) (Fig. 3A). We exploited the HIV-1 envelope sequences in the 

pan-CoV libraries to estimate the false positive rate (FPR) of non-specific binding peptides. Next, we 

determined the mlxp cutoff corresponding to a FPR of 0.05 and identified 2,689 and 4,604 sample-
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peptide pairs, or “hits”, from phage Libraries 1 and 2, respectively (Figs. 3A and S1B). Across the two 

replicate experiments, there were 933 intersecting “hits”, 456 of which were unique peptides, where 

non-unique peptides were a result of sequence overlap between CoVs. 

 

Patterns of immune response at epitope resolution in COVID-19 patients and SARS-CoV-2 unexposed 

individuals  

After fitting enriched immunoprecipitated epitopes, we detected significant responses in just five of the 

nine SARS-CoV-2 ORFs (Fig. 3B). We identified the most reactivity in ORF1ab, but after normalizing 

the number of reactive sequences by the ORF length, we found that the S and N proteins were dominant 

(Fig. 3C). Sparse responses to SARS-CoV-2 peptides were also detected within the M protein, and 

ORF3a (Figs. 3B and 3C). COVID-19 patient samples displayed variability in abundance of reactive 

epitopes, ranging from 2-24 reactive peptides in a given sample (Fig. 3D). All COVID-19 patient 

samples were reactive to epitopes from the S protein, while two moderate/severe COVID-19 samples, 

both less than twelve days post symptom onset, were reactive solely to the S protein and no other 

proteins (Fig. 3D). The proportion of the total epitope response arising from the S protein was higher 

in the five moderate/severe samples than in the mild samples (P = 0.07, Welch’s unpaired t test), 

suggesting that antibodies targeting the S protein are dominant in cases of moderate/severe COVID-

19 (Fig. 3E). 

 

We next examined the epitope profiles of all samples (both COVID-19 and SARS-CoV-2 unexposed) 

within the three immunodominant antigens: S, N, and ORF1ab. Within the S protein, we identified three 

key regions in which significant signal was detected, and these three regions were detected across the 

majority of individuals (Fig. 4A and Table 2). The most dominant epitope was S_1121-1179 (composed 

of two adjacent peptides in our library that overlap by 19 amino acids), which spans a portion of the 

second heptad repeat (HR2) in the S2 subunit. In total, 84% (16/19) of COVID-19 samples were 

reactive to this epitope. The second region, S_801-839, spans the fusion peptide (FP) and includes the 
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S2’ cleavage site. This region was reactive in 78% (15/19) of the COVID-19 samples. The third region, 

S_541-579 is located at the C-terminal end of the S1 subunit, immediately after the receptor binding 

domain (RBD) and upstream of the S1/S2 cleavage site. This epitope was reactive in 68% (13/19) of 

SARS-CoV-2 positive samples. Interestingly, S_541-579 was reactive in 100% (5/5) of the 

moderate/severe COVID-19 samples tested, but only 64% (9/14) of mild samples (Figure 4A). While 

not statistically significant within our current sample size (P = 0.68, Fisher’s exact test), this result may 

be suggestive of a correlation between COVID-19 severity and epitope patterning that should be 

explored in larger studies examining correlates of disease. Finally, we identified 13 additional dispersed 

S protein epitopes in smaller subsets of the individuals tested, including a sequence spanning the S1/S2 

cleavage site (S_661-699), suggesting antibody recognition of pre-processed S protein (Table 2). 

 

Peptides derived from the N protein also elicited strong responses in many individuals. The most widely 

reactive region was N_141-199 (Fig. 4B and Table 2). This region is composed of two overlapping 

peptides in the pan-CoV library, derived from the N protein RNA binding domain. Both peptides were 

reactive in eight individuals (six of which were identical for both overlapping peptides). We identified 

two additional sequences that were enriched across seven samples each: N_201-239, found upstream 

of the dimerization domain, and N_381-419, which is located downstream from the dimerization 

domain, at the C-terminus of the N protein. Five more epitopes that were reactive in four or fewer 

individuals are listed in Table 2.  

 

The SARS-CoV-2 replicase polyprotein 1ab (ORF1ab) is composed of two overlapping reading frames 

that code for sixteen non-structural proteins, including the viral RNA-dependent RNA polymerase 

(RdRp), that are expected to be co- and post-translationally processed based on studies of SARS-CoV 

(Graham et al., 2008). We detected sequences with high mlxp values throughout ORF1ab, many of 

which were present in only a small fraction of individuals. The two most widely-reactive regions, 

ORF1ab_1801-1839 and ORF1ab_1961-1999, were both located within the papain-like protease (PL-
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PRO) sequence. Both of these sequences were reactive in four individuals with COVID-19. The 

remaining peptides identified from ORF1ab that were reactive in two or more individuals, including 

sequences from nsp2, exonuclease (ExoN) and the RdRp, are listed in Table 2. Lastly, we identified 

two peptides from the M protein (M_161-199 and M_181-219, which overlap by 19 aa), each present 

in one individual, and one peptide from ORF3a (ORF3a_237-274), present in one individual. 

 

Cross-reactive epitopes identified in pre-COVID-19 individuals and predicted based on cross-CoV 

sequence homology  

Cross-reactivity in the viral antibody response can drive host immunity, complicate diagnostics and 

surveillance, and potentiate negative outcomes such as antibody-dependent enhancement. We sought 

to identify cross-reactive peptides between SARS-CoV-2 and other HCoVs by examining whether 

SARS-CoV-2 sequences were enriched in pre-pandemic, SARS-CoV-2 unexposed individuals. We 

identified four SARS-CoV-2 peptides that were reactive in at least one unexposed sample and at least 

one COVID-19 sample, suggesting that these were cross-reactive sequences likely arising from a prior 

HCoV infection (Table 3). One cross-reactive sequence found in the N protein (N_1-39) was detected 

in a sample with RT-PCR-confirmed prior endemic CoV infection, although the precise CoV species is 

unknown. We identified two cross-reactive peptides from ORF1ab (ORF1ab_1801-1839, from the PL-

PRO protein and ORF1ab_6481-6520, from the RdRp protein), which shared ~35-47% and ~46-64% 

amino acid sequence identity with commonly circulating HCoVs, respectively (Table 3). Finally, we 

found a fourth cross-reactive peptide from the S protein, S_21-59, which shared only ~17% identity 

with HCoV-NL63, but 35.7% identity with HCoV-OC43 (Table 3). These peptides all exhibited 

significantly more homology with SARS-CoV and bat-SL-CoV, but these viruses are unlikely to have 

been the source of the antibody response because of the demographics associated with these 

individuals. 
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During our global fit, we identified 306 unique peptides arising from HCoVs other than SARS-CoV-2 in 

patients with COVID-19. These sequences were reactive because of a prior HCoV exposure, or 

because of cross-reactivity to antibodies generated by SARS-CoV-2 infection. To predict whether these 

sequences were positive in our analysis because of cross-reactivity with SARS-CoV-2 (measured by 

high levels of sequence conservation), we conducted local pairwise alignments across S, N and 

ORF1ab peptides from all HCoVs that were significantly reactive in at least two COVID-19 samples 

(Fig. 5A). We used a Smith-Waterman alignment score of 55 as a cutoff for further investigation. We 

identified multiple peptides with high sequence similarity to SARS-CoV, as expected, given the higher 

genome-wide sequence similarity between SARS-CoV and SARS-CoV-2 (Figs. 5B and S2). We also 

isolated a subset of SARS-CoV-2 sequences with high homology to S and N sequences from two of 

the four commonly circulating endemic HCoVs, OC43 and HKU1. Local alignments between these 

sequences and the corresponding regions of SARS-CoV-2 revealed six- and seven- amino acid 

stretches of identity (Fig. 5C). Interestingly, none of the ORF1ab peptides that were significantly 

enriched in our study were highly conserved between SARS-CoV-2 and the other commonly circulating 

CoVs, despite the higher degree of conservation between HCoV ORF1ab sequences (Fig. 5B). 

 

Discussion 
 
In this study we profiled the immune response to SARS-CoV-2 proteins in individuals with SARS-CoV-

2 infections using phage display to capture linear immunogenic peptides spanning the entire proteome. 

By screening epitopes based on binding to SARS-CoV-2 protein sequences, we isolated epitopes with 

potential for both neutralizing and/or non-neutralizing activity. We identified S, N, and ORF1ab from 

SARS-CoV-2 as highly immunogenic and further isolated important regions at the epitope level. The 

proteome-wide capacity of our phage library and 39 amino acid tiling with 19 amino acid overlap 

resulted in a high-resolution and comprehensive definition of the targets of antibodies to SARS-CoV-2. 
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SARS-CoV-2 epitopes stemming from the S protein were present in the highest density of patients with 

COVID-19. We identified 17 epitopes within the S protein that were present in two or more individuals, 

spanning both the S1 and S2 subunits, with some detected in > 75% of individuals. The breadth of 

antibody responses along the length of the S protein (and the other dominant ORFs) can inform 

interesting hypotheses about the SARS-CoV-2 immune response. For example, four individuals 

harbored antibodies targeting the S1/S2 cellular furin cleavage site, suggesting that this region of the 

S protein may be targeted when the SARS-CoV-2 virion is not yet mature (Hoffmann et al., 2020). 

Despite evidence for potently neutralizing antibodies targeting the S protein RBD, we did not identify 

epitopes in this region, possibly due to the tendency for RBD-directed antibodies to be conformational 

(Ju et al., 2020); such epitopes would only be detected with the phage display method if a large enough 

portion of the epitope was linear and not glycosylated. Finally, we found that epitopes from the S protein 

were dominant in moderate/severe COVID-19 samples versus mild COVID-19 samples, suggesting a 

correlation between COVID-19 severity and S protein epitope profile. This result coincides with recent 

evidence for stronger and more broad responses to both the S and N proteins in hospitalized COVID-

19 patient samples (Shrock et al., 2020). 

 

We identified nine epitopes within the N protein that were reactive in at least two individuals, four of 

which were present in at least 35% of patients. The two most reactive N protein epitopes were derived 

from the RNA binding domain. Epitopes derived from the non-structural N protein may be the results of 

exposure of the immune system to these antigens upon cell lysis and if they have activity, they are 

more likely to be non-neutralizing, owing to their sequestration away from the viral surface. However, 

their reactivity in our assay implies that the epitopes are accessible to antibody binding and may be 

useful in informing the design of new diagnostics. Epitopes isolated from ORF1ab, another non-

structural polypeptide, were the most variable across patients. Of the 46 unique ORF1ab epitopes we 

identified, only five were present in two or more individuals, suggesting that ORF1ab responses are 

individual-specific. The two most reactive ORF1ab epitopes were situated in the PL-PRO sub-protein, 
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an enzyme implicated in attenuating the host innate immune response and viral replication (Shin et al., 

2020), and may be a target for therapeutic strategies that prevent viral replication.  

 

Our pan-CoV phage library contained sequences from all seven human-infecting CoVs, allowing us to 

probe responses across the CoV family in COVID-19 and SARS-CoV-2 unexposed individuals. Our 

relatively small cohort of SARS-CoV-2 unexposed individuals was reactive to four “de facto” cross-

reactive sequences from SARS-CoV-2. We also implemented a local alignment scheme to assess 

sequence homology to SARS-CoV-2 with reactive peptides from the other HCoVs and found three 

SARS-CoV-2 sequences with strong conservation to the commonly circulating HCoVs OC43 and 

HKU1. Additional studies using a larger cohort of SARS-CoV-2 unexposed individuals or individuals 

with specific endemic CoV diagnoses will be necessary to further evaluate these epitopes. These highly 

homologous sequences, along with the cross-reactive sequences from unexposed individuals, may be 

valuable in future diagnostic and surveillance efforts aimed at discrimination of HCoV serological 

profiles, and may inform studies assessing the risk of antibody-dependent enhancement. 

 

Our study included a relatively small sample size, which did not allow us to draw robust conclusions 

regarding the frequency of responses or whether there were differences in the response based on 

disease severity. Nevertheless, in light of the ongoing SARS-CoV-2 pandemic, our data reveal viral 

proteome-wide antibody binding signatures in patients with confirmed COVID-19. Given the urgency 

for targeted SARS-CoV-2 vaccine and therapeutic development, and the importance of prospective 

surveillance to detect the emergence of potential antibody escape variants, it is absolutely essential 

that epitope mapping studies be validated using multiple approaches. Indeed, our results nicely 

converge with a number of other studies aimed at mapping the epitope profiles of SARS-CoV-2 and 

together begin to provide a comprehensive picture of the responses to this pandemic virus (Amrun et 

al., 2020; Poh et al., 2020; Shrock et al., 2020). A recent study using a similar phage 

immunoprecipitation approach with a larger virus library and different analytical techniques reassuringly 
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identified the same three main protein targets of the SARS-CoV-2 antibody response, and many 

epitopes that overlap with those identified in this study, despite the divergence in methodology  (Shrock 

et al., 2020). Our phage-based profiling method, coupled with robust computational modeling of 

significantly enriched sequences provides an important launch point for further characterization of 

neutralizing, non-neutralizing, and cross-reactive antibodies targeting SARS-CoV-2. 

 

Materials and Methods 

Samples 

In this study, all patients with mild COVID-19 were outpatients, not requiring hospitalization. Patients 

with moderate/severe COVID-19 were hospitalized and a range of clinical outcomes were documented, 

ranging from supplemental oxygen, intubation and death.   All samples were heat-inactivated at 56 ºC 

for 60 minutes prior to short-term storage at 4ºC or long-term storage at -80ºC. An additional two 

endemic CoV positive, and three mild COVID-19 samples were tested in the phage display assay but 

were not included in the global fit because of poor in-assay technical replicate correlation or poor 

correlation between experiments conducted using Library 1 and Library 2. 

 

Pan-CoV phage display library construction and immunoprecipitation  

Epitope mapping via phage display and immunoprecipitation was carried out essentially as previously 

described (Mohan et al., 2018; Williams et al., 2019). An oligonucleotide pool was generated from 17 

CoV protein coding sequences retrieved from GenBank: OC43-SC0776 (MN310478), OC43-

12689/2012 (KF923902), OC43-98204/1998 (KF530069), 229E-SC0865 (MN306046), 229E-0349 

(JX503060), 229E-932-72/1993 (KF514432), NL63-ChinaGD01 (MK334046), NL63-Kilifi_HH-

5709_19-May-2010 (MG428699), NL63-012-31/2001 (KF530105), NL63-911-56/1991 (KF530107), 

HKU1-SI17244 (MH90245), HKU1-N13 genotype A (DQ415909), HKU1-Caen1 (HM034837), MERS-

KFMC-4 (KT121575), SARS-Urbani (AY278741), SARS-CoV-2-Wuhan-Hu-1 (MN908947), bat-SL-

CoVZC45 (MG772933). Multiple strains of the endemic CoVs were selected to cover a wide range of 
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circulation chronology using the Nextstrain database (Hadfield et al., 2018). A single HIV-1 envelope 

sequence was also included for controls (BG505.W6.C2, DQ208458). 

 

Bacterial codon-optimized oligonucleotide libraries were designed using the Python script available at 

https://github.com/jbloomlab/phipseq_oligodesign. During the design process, viral protein coding 

sequences were reverse translated to DNA in 39 amino acid tiles with 19 amino acid overlaps. Adaptor 

sequences (5’: AGGAATTCTACGCTGAGT and 3’: TGATAGCAAGCTTGCC) were added. Two 

separate oligonucleotide pools with equivalent design were commercially synthesized (Twist 

Biosciences). The libraries were PCR amplified using in-house primers (FWD: 

AATGATACGGCAGGAATTCTACGCTGAGT and REV: CGATCAGCAGAGGCAAGCTTGCTATCA), 

digested, cloned into the T7Select 10-3b Vector, packaged in T7 phage and amplified according to 

manufacturer instructions (EMD Millipore).  

 

For phage immunoprecipitation, 1.1 mL 96-deep-well plates (CoStar) were blocked with 3% BSA in 

TBST (Tris-buffered saline-Tween) by rocking overnight at 4ºC. Amplified phage library was diluted in 

Phage Extraction Buffer (20 mM Tris-HCl, pH 8.0, 100 mM NaCl, 6 mM MgSO4) to reach 2x105-fold 

phage representation (1.33x109 PFU/mL for a phage library containing 6,659 sequences) and added 

to each well at a volume of 1 mL. We estimated plasma and serum IgG concentrations to be 10 ug/uL 

(Mabuka et al., 2012) and added 10 ug of each sample to the diluted phage library in duplicate for a 

total of two technical (within-assay) replicates per experiment. Serum/plasma antibodies were allowed 

to bind to the phage library by rocking at 4ºC for 20 hours. To account for non-specific interactions 

during the immunoprecipitation step, we prepared multiple wells with no serum and only phage library 

(“mock”-immunoprecipitations) and treated them to the same rocking procedure. To immunoprecipitate 

phage-antibody complexes, 40 uL of a 1:1 mixture of protein A and protein G magnetic Dynabeads 

(Invitrogen) was added to each well and rocked at 4ºC for 4 hours. Dynabeads were then isolated using 

a magnetic plate, washed three times in 400 uL of wash buffer (50 mM Tris-HCl, pH 7.5, 150 mM NaCl), 
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0.1% NP-40), and resuspended in 40 uL of water. Dynabead-bound phage were lysed by incubating 

samples at 95ºC for 10 minutes and stored at -20ºC prior to Illumina library preparation. 

 

Illumina library preparation 

Phage DNA was PCR-amplified with Q5 High-Fidelity DNA polymerase (New England Biolabs) in two 

rounds to produce Illumina libraries containing adaptor sequences and barcodes for multiplexing. 

Round 1 PCRs were performed using 10 uL of resuspended, lysed phage in a 25 uL reaction volume 

using primers R1_FWD (TCGTCGGCAGCGTCTCCAGTCAGGTGTGATGCTC) and R1_REV  

(GTGGGCTCGGAGATGTGTATAAGAGACAGCAAGACCCGTTTAGAGGCCC). Round 2 PCRs were 

performed using 2 uL of the Round 1 reaction in a 50 uL final volume with unique dual-indexed primers 

as previously described (Williams et al., 2019). Round 2 PCR products were quantified using Quant-iT 

PicoGreen according to manufacturer instructions (Thermo Fisher). Samples were pooled in equimolar 

quantities, gel purified, and submitted for sequencing on a MiSeq with 126 bp single-end reads. 

  

Phage sequence alignment pipeline 

An enrichment matrix was created by aligning all sequences to the pan-CoV reference library using a 

Nextflow data processing pipeline (https://github.com/matsengrp/pan-CoV-manuscript) (Di Tommaso 

et al., 2017). The pipeline was initiated with metadata for all samples (including a path to the fastq 

reads) as well as the metadata for all peptides in the library. The processing steps were as follows: (1) 

We built a Bowtie index from the peptide metadata by converting the metadata to fasta format and 

feeding it into the bowtie-build command (Langmead et al., 2009). (2) We aligned each of the samples 

to the library using end-to-end alignment allowing for up to two mismatches. Each read was 125 base 

pairs long, and the low-quality end of the read was trimmed to match the reference length, 117 base 

pairs, before alignment. (3) We extracted the peptide counts for each sample alignment using samtools-

idxstats (Li et al., 2009). (4) All individual counts information for each sample were merged into an 
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enrichment matrix. The resulting dataset containing the enrichment matrix, sample metadata, and 

peptide metadata was organized using the xarray package (Hamman and Hoyer, 2017). 

 

Assessment of peptide significance using a Gamma-Poisson model 

To determine significance of enriched peptides in the background of noise introduced by non-specific 

immunoprecipitation, curated sample sets from two separate phage libraries were fit to a Gamma-

Poisson mixture model in the phip-stat Python package provided by the Laserson Lab 

(https://github.com/lasersonlab/phip-stat). For simplicity, we focused our downstream analyses on one 

strain from each of the CoV species included in the phage libraries. We required samples to have (1) 

high technical (in-assay) correlation and (2) high correlation in experiments conducted with phage 

libraries 1 and 2, in order to be included in the fit. For each model fit, data from mock-IP controls were 

included with the patient sample data to better account for the abundance and non-specific binding 

associated with each peptide in the phage library. To control for the variance in sequencing coverage 

between samples, we first normalized all samples using counts factor method (Anders and Huber, 

2010). This resulted in a normalized raw counts matrix, M, with i peptides and j samples. The model 

assumes that each entry in the count matrix, for any given peptide i, is sampled from a Poisson 

distribution with rate, λi. Next, we assumed the prior distribution of any λi is a Gamma distribution 

defined by α and β parameters. We used the scipy.optimize package (Virtanen et al., 2020) to infer 

maximum likelihood estimates that would generate a set of mean normalized counts values across 

samples for each peptide, i. Given that the posterior of the rate is also Gamma distributed, the posterior 

hyperparameters for each peptide, i, are given by the formulas 𝛼"	
$ = 𝛼 + ∑ 	(

)*+ 𝑚",) and 𝛽"	
$ = 𝛽 + 𝑛, 

where n is the number of samples . Because the gamma distribution is a conjugate prior for the Poisson, 

we get 𝜆" = 𝛼"	
$/𝛽"	

$ for each peptide. Finally, -log10(pval) (mlxp) values are by computed using the value 

of the tail of the Poisson distribution for each normalized sample count at peptide, i. 

 

False positive rate (FPR) estimation using HIV Env peptides 
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We observed quite extreme p-values using the Gamma-Poisson approach (as well as using the 

Generalized Poisson approach in (Larman et al., 2011)), indicating that these p-values were not well 

calibrated. Thus, the selection of peptides with significant binding affinity was performed by applying a 

minimum threshold requirement on the mlxp, which was set based on using HIV peptides as a control. 

Specifically, peptides derived from the HIV-1 envelope were presumed not to truly bind with SARS-

CoV-2 antibodies, so we used these HIV-1 peptides to estimate the FPR for a threshold under 

consideration: the number of HIV-1 sample-peptide pairs above this threshold divided by the total 

number of HIV-1 sample-peptide pairs in the library batch after the curation step. Hence, for each library 

batch, we set the threshold to be the value where 5% of the HIV-1 peptides have mlxp values above 

the threshold. In each library batch, there were a total 798 HIV-1 sample-peptide pairs. None of the HIV 

peptides have significant sequence homology with SARS-CoV-2 peptides. 

 

Local sequence alignment 

The similarity between SARS-CoV-2 and other CoV peptides was quantified by performing local 

alignment and then computing the identical fraction: the fraction of matching amino acids at each 

position of the aligned subsequence. The Smith-Waterman algorithm was applied with the BLOSUM62 

cost matrix, a gap open penalty of 12, and a gap extension penalty of 3 (Smith and Waterman, 1981). 

We used the pairwise2 function of the Biopython software package to perform the alignment (Cock et 

al.).  
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Figure 1. Summary of development of the pan-CoV T7 phage library and sample screening. Left 
panel, virus species and strains that comprise the pan-CoV phage library used in the study are listed. 
Right panel, summary of samples from COVID-19 or SARS-Cov-2 unexposed patients. The pan-CoV 
phage library and samples were combined in a plate-based immunoprecipitation assay and phage DNA 
was isolated for downstream sequencing and analysis. (p.s.o., post-symptom onset). Additional sample 
information can be found in Tables 1 and S1. 
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Table 1. Sample information† 
 
Sample 
ID 

Patient 
status 

Days 
p.s.o. 

Age  Sex 

32 COVID19 
mod/sev 

15 31 F 

33 COVID19 
mod/sev 

15 56 M 

34 COVID19 
mod/sev 

11 56 M 

35 COVID19 
mod/sev 

8 76 M 

53 COVID19 
mod/sev 

33 65 F 

36 COVID19 
mild 

27 47 F 

37 COVID19 
mild 

31 43 F 

38 COVID19 
mild 

29 65 M 

39 COVID19 
mild 

31 29 M 

50 COVID19 
mild 

31 48 F 

56 COVID19 
mild 

29 22 M 

58 COVID19 
mild 

31 31 F 

64 COVID19 
mild 

34 28 F 

68 COVID19 
mild 

34 30 M 

70 COVID19 
mild 

26 36 F 

72 COVID19 
mild 

28 65 M 

74 COVID19 
mild 

26 65 F 

76 COVID19 
mild 

48 52 F 

82 COVID19 
mild 

43 29 M 

182 Endemic 
CoV + 

NA 61 M 

183 Endemic 
CoV + 

NA NA NA 

41 Healthy 
adult 

NA NA NA 

42 Healthy 
adult 

NA NA NA 

43 Healthy 
adult 

NA NA NA 

44 Healthy 
adult 

NA NA NA 

45 Healthy 
adult 

NA NA NA 

 
†Samples were deidentified; p.s.o, post symptom onset. 
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Figure 2. SARS-CoV-2 peptide enrichment based on raw counts per million. Individual panels 
showing enrichment for specific peptides among all COVID-19 patient samples along the lengths of 
nine SARS-CoV-2 ORFs. Panel rows are in order of increasing maximum response from top to bottom. 
Note the scales also increase in each row, indicating higher enrichment of the identified peptides. Bars 
are segmented by color for each sample included in the analysis, as depicted in the legend.   
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Figure 3. Results from global fit of all sample-peptide pairs with applied mlxp cutoff. (A) Data 
processing scheme. Samples were tested with two separate phage libraries (Library 1 and Library 2, 
Fig. S1). Peptide enrichment was scored using a Gamma-Poisson model and data were curated using 
a cutoff corresponding to FPR of 0.05 (Fig. S1). (B) Proportion of SARS-CoV-2 epitopes derived from 
individual proteins in all patient samples tested. Numbers indicate the total enriched SARS-CoV-2 
epitopes from each ORF. (C) Proportions in (B) normalized with respect to polypeptide length. (D) 
Epitope counts across COVID-19 patient samples for SARS-CoV-2 only. Bars are further sectioned by 
SARS-CoV-2 ORF, indicated to the right. (E) Fraction of total epitopes arising from the S protein, 
calculated for moderate/severe and mild samples (# S epitopes/ # total epitopes). P value was 
calculated using a two-tailed unpaired Welch’s t test. 
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Figure 4. SARS-CoV-2 epitope 
profiles for immunodominant 
antigens (A-C) Location of 
significantly enriched epitopes 
across the Spike protein (A), 
Nucleocapsid (B) and ORF1ab 
(C). Profiles for patients with 
COVID-19 are highlighted in 
grey (moderate/severe COVID-
19) and purple (mild COVID-19). 
The remaining profiles are from 
SARS-CoV-2 unexposed 
individuals. Log(mlxp) values 
are indicated by the red 
gradient, shown to the right of 
the maps.  Protein domain 
architecture for each antigen is 
above the heat map, with amino 
acid positions indicated.  
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Table 2. Top SARS-CoV-2 epitopes present in two or more individuals 
 

Protein Amino 
Acids 

Sequence # COVID-19 
samples 

/19 
 

# unexposed 
samples 

 /7 

Spike (S) 
 

S 1121-
1159† 

FVSGNCDVVIGIVNNT
VYDPLQPELDSFKEEL
DKYFKNH 

16 0 

S 1141-
1179† 

LQPELDSFKEELDKYF
KNHTSPDVDLGDISGI
NASVVNI 

16 0 

S 801-
839† 

NFSQILPDPSKPSKRS
FIEDLLFNKVTLADAG
FIKQYGD 

15 0 

S 541-
579 

FNFNGLTGTGVLTES
NKKFLPFQQFGRDIAD
TTDAVRDP 

13 0 

S 621-
659 

PVAIHADQLTPTWRV
YSTGSNVFQTRAGCLI
GAEHVNNS 

4 0 

S 661-
699 

ECDIPIGAGICASYQT
QTNSPRRARSVASQS
IIAYTMSL 

4 0 

S 761-
799 

TQLNRALTGIAVEQDK
NTQEVFAQVKQIYKTP
PIKDFGG 

4 0 

S 281-
319 

ENGTITDAVDCALDPL
SETKCTLKSFTVEKGI
YQTSNFR 

3 0 

S 521-
559 

PATVCGPKKSTNLVK
NKCVNFNFNGLTGTG
VLTESNKKF 

3 0 

S 561-
599 

PFQQFGRDIADTTDA
VRDPQTLEILDITPCSF
GGVSVIT 

3 0 

S 641-
679 

NVFQTRAGCLIGAEH
VNNSYECDIPIGAGIC
ASYQTQTN 

3 0 

S 781-
819 

VFAQVKQIYKTPPIKD
FGGFNFSQILPDPSKP
SKRSFIE 

3 0 

S 1161-
1199 

SPDVDLGDISGINASV
VNIQKEIDRLNEVAKN
LNESLID 

3 0 

S 1235-
1273 

CCMTSCCSCLKGCCS
CGSCCKFDEDDSEPV
LKGVKLHYT 

3 0 

S 21-59‡ RTQLPPAYTNSFTRG
VYYPDKVFRSSVLHS
TQDLFLPFF 

1 1 

S 261-
299 

GAAAYYVGYLQPRTF
LLKYNENGTITDAVDC
ALDPLSET 

2 0 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 29, 2020. ; https://doi.org/10.1101/2020.10.29.360800doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.29.360800
http://creativecommons.org/licenses/by/4.0/


S 301--
339 

CTLKSFTVEKGIYQTS
NFRVQPTESIVRFPNI
TNLCPFG 

2 0 

Nucleocapsid (N) 
 

N 141-
179 

TPKDHIGTRNPANNA
AIVLQLPQGTTLPKGF
YAEGSRGG 

8 0 
 

N 161-
199 

LPQGTTLPKGFYAEG
SRGGSQASSRSSSRS
RNSSRNSTP 

8 0 

N 201-
239 

SSRGTSPARMAGNG
GDAALALLLLDRLNQL
ESKMSGKGQ 

7 0 

N 381-
419 

ALPQRQKKQQTVTLL
PAADLDDFSKQLQQS
MSSADSTQA 

7 0 

N 1-39‡ MSDNGPQNQRNAPRI
TFGGPSDSTGSNQNG
ERSGARSKQ 

4 1 

N 21-59 SDSTGSNQNGERSG
ARSKQRRPQGLPNNT
ASWFTALTQH 

3 0 

N 221-
259 

LLLLDRLNQLESKMSG
KGQQQQGQTVTKKS
AAEASKKPR 

3 0 

N 341-
379 

DKDPNFKDQVILLNKH
IDAYKTFPPTEPKKDK
KKKADET 

3 0 

N 241-
279† 

QQGQTVTKKSAAEAS
KKPRQKRTATKAYNV
TQAFGRRGP 

2 0 

ORF1ab 
 
ORF1ab 1801-

1839‡ 
ESPFVMMSAPPAQYE
LKHGTFTCASEYTGN
YQCGHYKHI 

4 2 

ORF1ab 1961-
1999 

PDLNGDVVAIDYKHYT
PSFKKGAKLLHKPIVW
HVNNATN 

4 0 

ORF1ab 741-
770 

FLEGETLPTEVLTEEV
VLKTGDLQPLEQPTS
EAVEAPLV 

2 0 

ORF1ab 5961-
5999 

EGLCVDIPGIPKDMTY
RRLISMMGFKMNYQV
NGYPNMFI 

2 0 

ORF1ab 4481-
4519‡ 

LLKDCPAVAKHDFFKF
RIDGDMVPHISRQRLT
KYTMADL 

1 1 

†Predicted cross-reactive peptides with high homology to other HCoVs 
‡Cross-reactive peptides present in SARS-CoV-2 unexposed samples  
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Table 3. Cross-reactive SARS-CoV-2 sequences from unexposed samples and their amino acid 
sequence homology with other CoVs. 

 % Identical (local alignment)* 
Protein Amino 

acids 

Total # 
patients 

(# SARS-
2 neg.) 

OC43 NL63 HKU1 229E MERS SARS Bat-
SL 

ORF1ab 1801-
1839 

6(2)  35.1 46.7 35.3 46.7 36 79.5 100 

N 1-39 5(1) 30.0 35.2 29.4 29.0 35 80.0 79.5 
S 21-59 2(1) 35.7 17.4 26.5 29.4 33.3 63.9 59.0 

ORF1ab 4481-
4519 

2(1) 63.2 46.2 64.1 59.0 66.7 92.3 89.7 

*Alignments to one representative strain of each HCoV  
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Figure 5. Identification of cross-reactive sequences among significant pan-CoV peptides. (A) 
Unique peptide hits from all CoVs that were present in two or more COVID-19 patient samples were 
aligned the Smith-Waterman method to probe for conservation. Sequences that were 100% identical 
between SARS-CoV-2 and the other CoVs were not included in the analysis. (B) Peptide pairs with 
alignment scores > 55 (Fig. S2) were plotted to show % identity. Peptide start positions from SARS-
CoV-2 are listed on the x-axis and peptide start positions from the other human-infecting CoVs are 
listed on the y-axis. Green, blue and purple outlines match with the corresponding peptides pairs 
shown in (C). (C) Local sequence alignments for the high-scoring peptides in (B) from the commonly 
circulating HCoVs. 
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Supplementary figures 
 
 
Table S1. Additional demographic information  
 
  

Mild (n = 14) Moderate/Severe (n = 5) Endemic (n = 2) 
Mean Age (Mean ± SD) 42.2 ± 14.6 62.9 ± 7.3 64 ± 3.0 
Female (n, %) 8 (57.1) 1 (20.0) 0 (0.0) 
Race/ethnicity (n, %) 

   

White, non-Hispanic/Latino 12 (85.7) 2 (40.0) 2 (100.0) 
African American, non-Hispanic/Latino 0 (0.0) 0 (0.0) 0 (0.0) 
Other, non-Hispanic/Latino 1 (7.1) 3 (60.0) 0 (0.0) 
Hispanic/Latino 1 (7.1) 0 (0.0) 0 (0.0) 

Insurance Status (n, %) 
   

Public (or none/self-pay) 2 (14.3) 3 (60.0) 2 (100.0) 
Private or both 12 (85.7) 2 (40.0) 0 (0.0) 

Number of underlying conditions (n, %) 
   

 ≥1 0 (0.0) 3 (60.0) 2 (100.0) 
None 14 (100.0) 2 (40.0) 0 (0.0) 
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Figure S1. Pan-CoV input phage library coverage and FPR modeling for significance 
thresholding. (A) Number of peptides plotted against number of reads for both independently 
generated phage libraries. Text inlays show the total number of reads sequenced from the input 
libraries, the percentage of reads mapping to the target CoV peptide sequences, and the percentage 
of peptide sequences with zero reads. (B) The number of peptides included in the analysis plotted 
against the FPR, as calculated from the presence of enriched HIV-1 sequences. A FPR of 0.05 was 
chosen as a threshold and the number of peptides this cutoff corresponded to is indicated by red and 
blue lines for Libraries 1 and 2, respectively. 
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Figure S2. Smith-Waterman alignment scores for significant epitopes from all HCoVs. Pairwise 
local alignment scores between significant SARS-CoV-2 and other commonly circulating or pathogenic 
HCoV peptides plotted against peptide pair frequency.  
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