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Abstract 

Whole cell biosensors (WCBs) have become prominent in many fields from environmental 

analysis to biomedical diagnostics thanks to advanced genetic circuit design principles. Despite 

increasing demand on cost effective and easy-to-use assessment methods, a considerable 

amount of WCBs retains certain drawbacks such as long response time, low precision and 

accuracy. Furthermore, the output signal level does not correspond to a specific analyte 

concentration value but shows comparative quantification. Here, we utilized a neural network-

based architecture to improve the aforementioned features of WCBs and engineered a gold 

sensing WCB which has a long response time (18 h). Two Long-Short Term-Memory (LSTM)-

based networks were integrated to assess both ON/OFF and concentration dependent states of 

the sensor output, respectively. We demonstrated that binary (ON/OFF) network was able to 

distinguish between ON/OFF states as early as 30 min with 78% accuracy and over 98% in 3 

h. Furthermore, when analyzed in analog manner, we demonstrated that network can classify 

the raw fluorescence data into pre-defined analyte concentration groups with high precision 

(82%) in 3 h. This approach can be applied to a wide range of WCBs and improve rapidness, 

simplicity and accuracy which are the main challenges in synthetic biology enabled biosensing.  

Keywords: synthetic biology, whole-cell biosensors, living sensors, neural networks 

 

Introduction  

Biosensors are devices composed of biological components (i.e., enzymes1-5, tissues, 

antibodies6, nucleic acids7, or cells8-10) that detect analytes of interest. Developments in 

recombinant DNA technologies and synthetic biology have increased the design of living 

biosensors in many fields from medical11-18 to environmental applications18-25. Besides, they 
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have plenty of advantages over other types of sensors since they are easy-to-use, cost-effective, 

renewable and very selective26,27.  

Contrary to well-established analysis methods such as high-performance liquid 

chromatography (HPLC), or mass spectroscopy which is used to determine amounts of 

contaminants in samples, whole cell biosensors (WCBs) detect the bioavailable fraction of 

chemicals. Hence, WCBs are highly sensitive towards tested chemicals be detected at much 

lower concentrations28,29. Furthermore, real-time monitoring of bioavailability of chemicals is 

possible30. Additionally, the exploitation of specific transcription factors (TFs) in circuits make 

WCBs highly selective allowing the detection of the target compound. Also, combination of 

different TFs allows construction of multifunctional WCBs to sense and report the presence of 

multiple molecules simultaneously29-31.  

Despite successful laboratory results and the aforementioned advantages, only a limited 

number of WCBs have been adapted to market because of several challenges such as (i) 

detection of diffusible substances, (ii) slower response compared to conventional protein-based 

biosensors, (iii) interference of complex environmental samples, and (iv) cell survival29,30,32. To 

overcome these challenges and make the WCBs affordable for usage in daily life, several 

methods including chassis engineering30, lyophilization33,34, cellular immobilization35-40, 

continuous culture allowing constant nutrient supply and real-time monitoring34,41,42, or 

advanced TF engineering tools43 to decrease response time and increase sensitivity have been 

employed. 

Selectivity, reproducibility, accuracy and sensitivity characteristics are the core parameters 

that define the functionality of a WCB44. While selectivity is ensured by specific transcription 

factors; reproducibility, accuracy and sensitivity of the results are error-prone and depend on 

many factors including the experimenter, time, and growth phase of bacteria which can lead to 

variations in sensor signal45,46. Thus, rigorous processing of the biosensor data is of utmost 
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importance for a WCB47-49. Moreover, the input–output signal relationships are seldom linear 

due to natural limitations of the biological processes in cellular biosensing (e.g. cellular volume, 

concentration of available reactants, etc.). In order to properly interpret the measurements and 

obtain coherent results, the data has to be processed with techniques that compensate for the 

non-linearity caused by experimental variations. These additional steps require a quantitative 

(system-level) understanding of how a biosensor works50. Mathematical models of the 

biosensing system can help better understanding the behavior of sensors. However, relevant 

parameters of the equations describing the system cannot always be accurately determined as 

they require equipment that may not always be available or they may permanently disrupt the 

operation of the biosensor51,52. Furthermore, interpretation of output signal differs based on the 

type of the sensor. Digital sensors interpret the analyte in an ON/OFF fashion and conversion 

of the signal to field application testing is straightforward. However, analog sensors respond 

proportionally to analyte concentrations. Interpretation of the output signal in a concentration 

dependent manner and conversion of the output to analyte concentration is still one of the major 

drawbacks of WCBs18. 

Several attempts have been made to make more convenient biosensing platforms for 

biomedical and environmental applications and to improve the performance of biosensors. For 

instance, it is anticipated that integration of wireless technology will ease the biomarker 

detection and provide real-time monitoring. A recently developed micro-bio-electronic device 

(IMBED) provides a wireless communication of WCBs with ultralow-power microelectronics 

technology, enabling real-time monitoring of disease biomarkers in the gastrointestinal tract12. 

On the other hand machine learning has been forecasted to play an important role in advancing 

biosensing42 as neural networks in particular have proven useful in an extremely wide spectrum 

of applications. Yet, there is no study that utilizes machine learning algorithms to advance WCB 

development. 
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Artificial neural networks, are a class of non-linear signal processing algorithms (a part of 

machine learning) that are used to process data that cannot be analytically solved. Using 

different learning algorithms to analyze the data, the network can be trained to form its own 

model to fit the data which could then be used to analyze further samples. Neural networks have 

been used to process biosensor outputs for several applications53,54. For instance, Gutes et al. 

used a neural network to determine the type and concentration of phenolic compounds from a 

polyphenol oxidase amperometric biosensor53. Similarly, Trojanowicz et al. used them to detect 

the presence of pesticides from enzymatic biosensors54. Deep neural networks employ more 

hidden layers (hence deep) to learn a hierarchical representation of the features to solve more 

complicated tasks55. One example of such networks is recurrent neural networks (RNN). In the 

RNN architecture, the output generated from the earlier inputs are fed to the network as an 

additional input in the next iteration55. This property allows the network to remember its state 

and alter its weights, during training, to better adapt to the data at hand. RNNs are especially 

useful for applications that require the analysis of temporal or sequential data like sound 

recognition or genomic analysis56,57. The long-short-term-memory (LSTM) network is a more 

advanced type of RNN that is widely used in deep learning today. LSTMs overcome some of 

the issues associated with RNNs, and can keep better track of temporal patterns within the data. 

LSTM networks are also being widely used to analyze various biological functions like DNA 

– protein binding predictions58. 

In this paper, we utilized deep neural networks to analyze the output of a biosensor in order 

to accurately determine target concentrations in much shorter time than possible via manual 

analysis. First, we engineered a complex genetic circuit to detect gold ions, and characterized 

the limit of detection (LoD) and response time of the WCB. The output of the sensor reached 

the maximum fold change (~10-fold) in 18 h. We utilized an LSTM-based network to decrease 

the detection time of the sensor and to assess the concentration of analyte accurately. First, we 
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predicted the ON/OFF status of the sensor, and achieved high precision in a short time (78% in 

30 min, and 93% in 2 h). Next, we trained a second LSTM model and predicted a concentration 

for the analyte and observed that the model made precise predictions of concentrations in 3 h. 

Here, we showed that integration of the machine learning in WCBs can be utilized to decrease 

long response times of sensors and accurately predict applied gold ion concentrations. This 

study is unique in the field of WCBs and can be further extended to analyze different parameters 

that might alleviate the labor-intensive work.  

Results  

Construction and characterization of bacterial gold detecting sensor. Whole-cell 

biosensors hold great potential in many areas, specifically in environmental contaminant 

analysis and numerous WCBs have been proposed in last two decades59. Due to their certain 

advantages such as cost, rapidness and ease of use, they become a prominent alternative.  

In our engineered bacterial WCB design, we constructed a complex and tightly controlled 

gold detecting circuit combining a semi-specific stress biosensor based on heat shock response 

(HSR)60 and a specific biosensor for gold sensing61. In the circuit, a constitutively expressed 

HSR repressor, HspR, blocks gene expression from its cognitive promoter, PdnaK-IR3-IR3, 

controlling the expression of gold specific transcription factor, GolS, and a site-specific 

recombinase, Bxb1. Blocking of both elements ensures the elimination of output expression 

which requires conversion of gold specific promoter, PgolB, by the site-specific recombinase, 

and transcription initiation by GolS-gold ion complex (Fig. 1a). The circuit takes action only 

when gold ions are introduced to the environment causing stress to cells which releases HspR 

from the HSR promoter and initiates both Bxb1 and GolS expression. First, Bxb1 recognizes 

certain sequences around the gold specific promoter and converts62-64 it towards the output gene. 

Next, GolS-gold ions complex19,61 helps initiate the output expression (Fig. 1b). 
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To begin with, we optimized the gold detecting WCB response with a dynamic range 

analysis (Fig. 1c). We induced the sensor with varying gold ion concentrations from 0-to-250 

µM for 18 h at 30°C in a stable incubator. We observed that the sensor starts responding to gold 

ions from 5 µM, which we defined as the LoD of the sensor, the signal increases proportionally 

with increased gold concentrations, and tends to saturate after 100 µM of gold induction. 

Therefore, we defined a moderate concentration (i.e. 50 µM) that could be suitable to obtain 

high response, yet does not disturb cell viability. Next, we examined the specificity of the sensor 

with 50 µM concentration of varying heavy metal ions (Au3+, Cd2+, Fe2+, Fe3+, Co2+, Co3+, Pb2+, 

As3+) and results indicated a significant increase in reporter expression only in gold induced 

group after 18 h of incubation (Supplementary Figure 2). Lastly, we induced the sensor with 

low and mid concentrations of gold ions (10 and 50 µM, respectively) to analyze the ideal 

response time of the sensor (Fig. 1d). We observed that similar responses have been obtained 

from the sensor within 16 to 22 h of incubation which is quite late for the ideal performance of 

biosensors. Thus, we introduced LSTM network to decrease the detection times of such 

biosensors. 

Workflow of the sensor from wet lab to the LSTM network model. Data processed by the 

two LSTM networks were obtained from cells induced with gold ions in 96-well plates at 30°C 

and signal was tracked with 2 min intervals for 6 h. The raw fluorescence data was split into 

training and test (unseen) data, and processed with LSTM network to shorten the detection time 

and specify related concentration predictions (Fig. 2). See Methods for details. 

Detection of the presence of gold ions by the LSTM network model. WCBs often suffer 

from long hours to reach a detectable signal (i.e. 18 h for the highest fold change) which is one 

of the major disadvantages of WCBs45,46. By utilizing an LSTM-based model we aimed to 

shorten the required time to make an assessment. 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted October 29, 2020. ; https://doi.org/10.1101/2020.10.29.361220doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.29.361220


8 
 

In order to optimize and shorten the response time of the sensor, multiple networks were 

trained and tested for different lengths of the biosensor data (see Methods). Starting from 0 min 

to 6 h, all data were analyzed with 30 min increments (Fig. 3a). The network was able to identify 

the ON/OFF states (binary classification) of the sensor in 30 min with high accuracy (78%) and 

reached the maxima in 3 h (over 98%). The binary classification results of 30 min were 

represented by confusion matrices for each of the cross validation runs (Fig. 3b). Note that the 

raw fluorescence signal was not sufficient to show the ON/OFF status of the sensor in 30 min 

(Fig. 3c), and the earliest discernible appearance of the visual signal (~2-fold signal increase) 

was observed after 5 h (Supplementary Figure 7.a); however, the LSTM network was able to 

accurately classify the sensor output. Additionally, binary classification results of 1-to-3 h were 

represented as confusion matrices in Supplementary Figure 3-5. 

Classification of gold concentrations by the LSTM network model. Upon satisfactory 

results of binary classification, we trained another LSTM model to predict the level of the gold 

ion concentrations (i.e., discrete gold ion concentration ranges). The results showed that the 

network could accurately classify the data in 3 h (82%) based on gold concentrations (Fig. 4a). 

Each cross-validation run was represented by confusion matrices (Fig. 4b). Even though signal 

ratios showed slight differences between applied concentrations in 3 h (Fig. 4c), the results 

indicated that the prediction ability of the network is highly satisfactory for both detecting the 

presence of gold ions (binary classification) and concentration dependent (analog) 

classification. 

Discussion 

WCBs are promising tools of biosensing that could be engineered to detect various analytes 

and could be used in many fields18. Yet, there are certain drawbacks to be solved such as long 

response time. Here, we engineered a gold detecting sensor utilizing gold specific TF, GolS, 

and a site-specific recombinase, Bxb1. This architecture of the biosensor allows us to monitor 
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both the presence of toxicity as well as the source of the toxicity. The double output capability 

comes at a cost of longer response time (Figs. 1c and 1d). Therefore, we utilized neural networks 

to improve the features of our proposed sensor. LSTM is a neural network architecture that is 

effective in analyzing sequential data65. Hence, we chose LSTM as our neural network 

architecture to learn temporal features from the output of the sensor in relation to the 

concentration of gold ions. 

In our proposed work, we successfully integrated two LSTM-based neural networks to 

accurately and efficiently predict (i) the presence/absence of gold ions (ON/OFF) and (ii) 

discrete gold concentration using raw fluorescence signal. The ON/OFF state of the sensors is 

widely used including pathogen detection and early diagnosis13,66,67. Therefore, response time 

of a WCB is vital for decision-making and the treatment of patients. In this study, we have 

shown that a machine learning based solution could be integrated to WCBs to decrease the 

detection time. Although our WCB required 5 h to develop a distinguishable signal (~2-fold) 

(Supplementary Figure 7), our models were able to shorten the response time to 30 min with 

78% accuracy, reaching 93% in 2 h, and over 98% in 3 h (Fig. 3a). 

Furthermore, biosensors with analog circuits have been widely used to detect-and-report the 

presence of an analyte in concentration dependent manner, and play a crucial role in 

environmental heavy-metal detection21,43. Although, WCBs with analog circuits provide 

quantitative analysis, no study has reported a direct relation between the raw reporter signal and 

the analyte concentration. Nevertheless, in our study, the LSTM-based architecture was able to 

classify the data based on the reporter signal behavior utilizing pre-defined concentration 

classes. Processing of gold-sensing WCB data with another LSTM-based network showed that 

conversion of raw signal to a discrete concentration value is possible and data can be classified 

accurately (82%) in 3 h (Fig. 4). Our results showed that the utilization of this model to process 

WCB data is favorable in terms of (i) decreasing response time, (ii) providing a simple output 
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(rather than a raw fluorescence data), and (iii) allowing concentration classification of a single 

sample based on the signal. 

We envision that this approach can be further optimized to calculate the exact analyte 

concentration rather than to classify it. To do so, the dynamic range should be explicit and pre-

defined concentration groups should be selected from analog region of dynamic range in order 

to get accurate results. Alternatively, the data from both analog and digital response can be 

trained with the LSTM model so that a better fit can be obtained for a wider range of 

concentrations. The last but not the least, this approach can be purposed to decrease the LoD 

which is one of the main challenges in biosensors. In this study, we defined the LoD of the 

WCB as 5 µM based on dynamic range analysis (Fig. 1c) which shows only ~2-fold increase 

in 18 h while we were able to decrease the detection time to 6 h with 75% accuracy 

(Supplementary Figure 6) with the help of LSTM model.  

Engineering the WCB circuits or growth conditions of cells might change the network 

architecture. For instance, utilization of other reporters (i.e. enzymes) can directly affect the 

model, since they have different characteristics of signal accumulation and response times. 

Similarly, the nutrient-rich media could boost the signal accumulation resulting in faster 

response. Especially, in some cases, introducing additional genetic parts (i.e. recombinases, 

multiple TFs) to circuits result in a significant delay in response time. Although these tools 

bring certain advantages such as specificity, they become insufficient tools for biosensing 

because of the delay. Integration of machine learning based algorithms can benefit such studies.  

After creating a specific neural network model for a biosensor, the trained model can be 

incorporated into portable microcontroller or field programmable gate array (FPGA) based 

systems. Such platforms can be combined with onboard portable spectrophotometers to provide 

on-site measurements. This enables obtaining rapid, simple and accurate results in the field with 

low cost equipment. Given the current situation of the COVID-19 pandemic, the importance of 
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developing such systems, especially to monitor the presence of biomarkers for pathogens has a 

critical importance for a better healthcare system. 
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Figure legends 

Fig. 1 | Working principle and characterization of gold sensor. a, Without gold, a 

constitutive promoter (Pc) expresses HspR repressor. HspR recognizes IR3-IR3 sequences on 

stress promoter (PdnaK) blocking the bxb1 and golS expression. No gfp expression is observed 

from inverted gold specific promoter (PgolB). b, In the presence of gold, HspR releases the stress 

promoter and Bxb1 and GolS expression is initiated. First, Bxb1 recognizes specific sequences 

(open blue triangles) and flips gold-specific promoter. Next, GolS-gold complex initiates GFP 

expression. c, Dose response analysis of gold sensor in LB media. 250 µl of cultures in 96-well 

plates were induced with gold concentrations from 0-to-250 µM and incubated for 18 h at 30°C 

in a stable incubator. Values are mean ± s.e.m. (n = 6 biologically independent experiments). 

a.u., arbitrary units. d, Time dependent response analysis of gold sensor in MOPS minimal 

media. 250 µl of cultures in 96-well plates were induced with 0, 10 and 50 µM of gold 

concentrations and incubated at 30°C in a stable incubator. Values are mean ± s.e.m. (n = 3 

biologically independent experiments). a.u., arbitrary units. 

Fig. 2 | Representation of binary and 5-class neural network architectures. Fluorescence 

data was measured with 2 min of intervals in a microplate reader for 6h. The raw fluorescence 

data was pre-processed and input in to a bidirectional LSTM layer (with 90 and 70 hidden units, 

respectively) which is connected to a fully connected layer with the same number of neurons 
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(2 and 5 hidden units for binary and 5-class classification, respectively) as output classes with 

softmax activation. 

Fig. 3 | ON/OFF classification accuracy of gold sensor. a, The binary (ON/OFF) output of 

the sensor was achieved with 78% accuracy in the first 30 min, which then increased to over 

98% after 3 h, reaching 100% at 6 h. b, Confusion matrices of ON/OFF state at 30 min. c, Raw 

fluorescence signals of gold sensor at 0 and 30 min. 250 µl of cultures in 96-well plates were 

induced with 0, 25, 50, 75 and 100 µM of gold concentrations and incubated at 30°C in a stable 

incubator. Values are mean ± s.e.m. (87 ≤ n ≤ 96 biologically independent experiments). a.u., 

arbitrary units. 

Fig. 4 | Concentration classification accuracy of gold sensor. a, The concentration 

classification has been reached to 82% in 3 h. b, Confusion matrices of concentration 

classification at 3 h. c, Raw fluorescence signals of gold sensor at 0 and 3 h. 250 µl of cultures 

in 96-well plates were induced with 0, 25, 50, 75 and 100 µM of gold concentrations and 

incubated at 30°C in a stable incubator. Values are mean ± s.e.m. (87 ≤ n ≤ 96 biologically 

independent experiments). a.u., arbitrary units. 

Figures 
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Fig. 1 | Working principle and characterization of gold sensor. a, Without gold, a 

constitutive promoter (Pc) expresses HspR repressor. HspR recognizes IR3-IR3 sequences on 

stress promoter (PdnaK) blocking the bxb1 and golS expression. No gfp expression is observed 

from inverted gold specific promoter (PgolB). b, In the presence of gold, HspR releases the stress 

promoter and Bxb1 and GolS expression is initiated. First, Bxb1 recognizes specific sequences 

(open blue triangles) and flips gold-specific promoter. Next, GolS-gold complex initiates GFP 

expression. c, Dose response analysis of gold sensor in LB media. 250 µl of cultures in 96-well 

plates were induced with gold concentrations from 0-to-250 µM and incubated for 18 h at 30°C 

in a stable incubator. Values are mean ± s.e.m. (n = 6 biologically independent experiments). 
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a.u., arbitrary units. d, Time dependent response analysis of gold sensor in MOPS minimal 

media. 250 µl of cultures in 96-well plates were induced with 0, 10 and 50 µM of gold 

concentrations and incubated at 30°C in a stable incubator. Values are mean ± s.e.m. (n = 3 

biologically independent experiments). a.u., arbitrary units. 
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Fig. 2 | Representation of binary and 5-class neural network architectures. Fluorescence 

data was measured with 2 min of intervals in a microplate reader for 6h. The raw fluorescence 

data was pre-processed and input in to a bidirectional LSTM layer (with 90 and 70 hidden units, 

respectively) which is connected to a fully connected layer with the same number of neurons 

(2 and 5 hidden units for binary and 5-class classification, respectively) as output classes with 

softmax activation. 
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Fig. 3 | ON/OFF classification accuracy of gold sensor. a, The binary (ON/OFF) output of 

the sensor was achieved with 78% accuracy in the first 30 min, which then increased to over 

98% after 3 h, reaching 100% at 6 h. b, Confusion matrices of ON/OFF state at 30 min. c, Raw 

fluorescence signals of gold sensor at 0 and 30 min. 250 µl of cultures in 96-well plates were 

induced with 0, 25, 50, 75 and 100 µM of gold concentrations and incubated at 30°C in a stable 

incubator. Values are mean ± s.e.m. (87 ≤ n ≤ 96 biologically independent experiments). a.u., 

arbitrary units. 
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Fig. 4 | Concentration classification accuracy of gold sensor. The concentration 

classification has been reached to 82% in 3 h. b, Confusion matrices of concentration 

classification at 3 h. c, Raw fluorescence signals of gold sensor at 0 and 3 h. 250 µl of cultures 
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in 96-well plates were induced with 0, 25, 50, 75 and 100 µM of gold concentrations and 

incubated at 30°C in a stable incubator. Values are mean ± s.e.m. (87 ≤ n ≤ 96 biologically 

independent experiments). a.u., arbitrary units. 
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Methods 

Strains, plasmids and bacterial cultivation conditions. E. coli DH5α cells were used for both 

plasmid construction and reporter expression assays. Cells were cultivated in Luria-Bertani 

(LB) medium (10 g/l tryptone, 5 g/l yeast extract, 5 g/l NaCl) with proper antibiotics (34 μg/ml 

chloramphenicol stock, 100 μg/ml ampicillin stock). Overnight cultures were prepared from 

frozen glycerol stocks in 2 ml LB, and cultivated at 37°C with shaking (180 r.p.m.) (INNOVA 

44, New Brunswick Scientific). To start experimental cultures, 0.4% of inoculums from 

overnight cultures were diluted in fresh LB or MOPS minimal media (0.1 M potassium 

morpholinopropane sulfonate (MOPS), pH 7.4; 0.1 M Tricine, pH 7.4; 0.001 M FeSO4; 0.19 M 

NH4Cl; 0.0276 M K2SO4; 0.002 CaCl2; 0.25 M MgCl2; 0.5 M NaCl; micronutrients [3×10-2 M 

(NH4)6Mo7O24; 4×10-5 M H3BO3; 3×10-6 M CoCl2; 10-6 M CuSO4; 8×10-6 M MnCl2; 10-6 M 

ZnSO4]; 0.132 M K2HPO4; 1 mg/ml thiamine; 0.2% (v/v) glucose) defined by ref.68. Each 

culture was inoculated in 96-well microplates (353916, Corning) to final volume of 250 µl per 

well and induced with proper inducers. Cells were incubated at 30°C for 18 h in a stable 
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incubator (INCU-Line, VWR), unless otherwise stated. After 18 h of incubation, both cell 

growth and GFP fluorescence were monitored using microplate reader (SpectraMax M5, 

Molecular Devices). 

Antibiotics and other chemicals used for induction assays (FeSO4•7H2O, FeCl3•6H2O, 

Na3AsO4, CoCl2•6H2O, Co(NH3)6Cl3, PbCl2, HAuCl4, Cd(OOCCH3)2•2H2O) were analytical 

grade and purchased from Sigma-Aldrich. Each reagent was dissolved in ddH2O and filter 

sterilized using 0.22 μm syringe filters (16532K, Sartorius AG). 

Sensor plasmid construction. Gold sensor plasmids were constructed using standard 

molecular biology techniques. Primers used in this study were listed in Supplementary Table 1 

and purchased from PRZ BioTech. All genetic parts used in this study were summarized in 

Supplementary Table 2. Plasmid map representations were provided in Supplementary Figure 

1. All plasmids were verified by Sanger sequencing (GENEWIZ).  

To construct sensing and output modules , inverted PgolB promoter with Bxb1 recognition 

sites and reporter-terminator (GFP-rrnBT1) pair were amplified by polymerase chain reaction 

(PCR) using Q5 High-Fidelity DNA Polymerase (M0491, NEB) in thermal cycler (C1000 

Touch, Bio-Rad). For backbone, formerly constructed mProD HspR pET22b vector60 was 

linearized with SpeI restriction endonuclease enzyme (R3133, NEB). To construct actuating 

module, Bxb1 recombinase and GolS were amplified by PCR. For backbone, formerly 

constructed PdnaK-IR3-IR3 GFP pZa vector60 was digested with MluI restriction endonuclease 

enzyme (R3198, NEB) to exclude gfp from the vector. All pieces were run on 1 or 2% (w/v) 

Agarose gel stained with SYBR Safe DNA gel stain (S33102, Invitrogen). Bands at expected 

sizes were isolated from the gel (740609.50, MN), and concentrations were quantified with 

spectrophotometer (NanoDrop 2000, Thermo Fisher Scientific). Both circuits were assembled 

with Gibson Assembly method69. After assembly, entire mixes were transformed into 

chemically competent E. coli DH5α cells. 
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Reporter expression assays and data analysis. All assay conditions were described above. 

Fluorescence for gfp expression (485 nm for excitation, 538 nm for emission, 530 nm cut off) 

and absorbance for optical cell density (OD600) were measured via microplate reader. All sensor 

output was normalized to cell density (gfp fluorescence/OD600) at specific time point and 

negative control group (GFP-free cells) was subtracted. Obtained data was normalized in 0-to-

1 range: Minimum value was subtracted from each value and divided by the difference between 

maximum and minimum values (Except Fig. 3c, Fig. 4c, and Supplementary Figure 7).  

Continuous GFP expression to feed neural network was measured as following: O/N culture 

of cells with gold-sensing circuits was diluted 0.4% in fresh MOPS media and placed in a 

microplate reader. Reporter expression was recorded with 2 min of intervals for 6 h. The 

experiment temperature was set to 30°C throughout the measurements. 

Data was visualized with mean ± standard error mean (s.e.m.) in each graph. At least three 

biological replicates were used for each analysis. For statistical analysis, one-way analysis of 

variance (ANOVA) or two-way ANOVA with Dunnett’s multiple comparison tests were used, 

based on the group of interest. The data was visualized with GraphPad Prism v8 and/or Adobe 

Illustrator 2015. 

Neural network experimental setup. Two LSTM networks, one with a binary output and the 

other with five output classes, were implemented using the Deep Learning Toolbox on MatLab 

(R2019b). In both networks, the raw fluorescence data was preprocessed via the time derivative. 

The preprocessed data and the raw data were then fed into the network as input. The datasets 

of both networks used the same set of measurements: 0 µM, 25 µM, 50 µM, 75 µM, and 100 

µM, with 87 ≤ n ≤ 96 sample sizes.  
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Time differentiation was implemented on MatLab according to the following equation. F is 

the vector containing the raw fluorescence measurements and n is the number of elements 

within the vector. 

𝑑𝐹
𝑑𝑡 =

[𝐹(2) − 𝐹(1), 𝐹(3) − 𝐹(2), … , 𝐹(𝑛) − 𝐹(𝑛 − 1)] 

Prior to training, for both networks, the datasets were first split randomly distributed subsets. 

The same subsets were then used to train and evaluate the results of all iterations of their 

respective networks. 70% of the data was used for training, 20% for validation and 10% for 

testing.  

Neural network architecture. For the binary network, the dataset was split such that the 0 µM 

inputs were labeled as OFF (“0” in the network) and the others (25 µM, 50 µM, 75 µM, and 

100 µM inputs) were all labeled as ON (“1” in the network). The architecture of the network 

consisted of the following layers: a sequential input layer (of size 2; for the raw data and its 

time-differentiated counterpart), a bidirectional LSTM layer (using the default tanh activation 

functions in the toolbox), a fully connected layer with two output neurons (each neuron 

corresponding to one of the outputs), a softmax layer (used to implement the activation 

functions of the fully connected layer), and a classification layer.   

In the 5-class (concentration range classifying) network, there were five output classes in 

total, corresponding to each concentration input (0 µM, 25 µM, 50 µM, 75 µM, and 100 µM). 

The outputs were in a binary vector format where the positive class was represented by a “1” 

and the others by “0”.  The architecture of the network consisted of the following layers: a 

sequential input layer (of size 2; for the raw data and its time-differentiated counterpart), a 

bidirectional LSTM layer (using the default tanh activation functions in the toolbox), a fully 

connected layer with five output neurons (each neuron corresponding to one of the outputs), a 
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softmax layer (used to implement the activation functions of the fully connected layer), and a 

classification layer. 

Neural network optimization. Optimization was performed by altering the following network 

variables in the presented order; the number of hidden units in the bidirectional LSTM layer, 

the number of neurons in the number of fully connected layers, the number of neurons in each 

fully connected layer, and the output functions of each of these layers. Starting from ten, with 

increments of ten, up to 120, the number of neurons in the bidirectional LSTM layer was altered 

in both networks. This was followed by experimenting with different numbers of fully 

connected layers (up to three), number of neurons in each fully connected layer (starting with 

the same number of neurons as the number of output classes and going up to twenty), and 

different activation functions for the neurons in each layer (softmaxLayer, reluLayer, and 

leakyreluLayer).  

Prior to training, the weights were initialized using the MatLab Deep Learning Toolbox’s 

default glorot (Xavier) weight initialization function. Training was performed using the ADAM 

optimizer with its default learning rate of 0.001. Batch was performed using mini-batches with 

200 samples and 700 epochs (leading to a maximum of 1400 iterations). At the start of every 

epoch, the elements within the batch were shuffled.    

 Final Neural network architecture. The binary classifying network has a sequential input 

layer (of size 2; for the raw data and its time-differentiated counterpart), a bidirectional LSTM 

layer (using the default tanh activation functions in the toolbox) with 90 hidden units, a fully 

connected layer with two output neurons (each neuron corresponding to one of the outputs), a 

softmax layer (used to implement the activation functions of the two neurons in the fully 

connected layer), and a classification layer which outputs “1” or “0” corresponding to the “ON” 

or “OFF” states of the network respectively.  
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The concentration classifying network has a sequential input layer (of size 2; for the raw 

data and its time-differentiated counterpart), a bidirectional LSTM layer (using the default tanh 

activation functions in the toolbox) with 70 hidden units, a fully connected layer with five 

output neurons (each neuron corresponding to one of the outputs), a softmax layer (used to 

implement the activation functions of the five neurons in the fully connected layer), and a 

classification layer which outputs one of the five possible concentration values (0 µM, 25 µM, 

50 µM, 75 µM, and 100 µM). 

Neural network testing. After each network was optimized with respect to the validation 

subset, the validation subset was combined with the training set and the network was trained 

from scratch with the expanded training set (consisting of 90% of the data). The previously 

unseen testing set (containing the remaining 10%) was then used to evaluate the performance 

of the network.  

The same networks were then used for their respective temporal accuracy analysis. In these 

tests, the length of each element in the dataset was cropped to its respective time-length. For 

instance, only the measurements for the first 30 min were used initially, followed by longer 

sequences corresponding to 60, 90, 120 min, etc. In both cases, the accuracy of the networks 

was determined by comparing the network outputs of the testing set with their true values. In 

order to achieve coherent results, leave-one-out cross-validation was used. Ten different 

networks, were trained and tested with different members of the data in the training and testing 

sets. The overall percentage accuracy was determined as follows: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑁𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑡𝑟𝑢𝑒	𝑡𝑒𝑠𝑡𝑖𝑛𝑔	𝑜𝑢𝑡𝑝𝑢𝑡𝑠

𝑇𝑜𝑡𝑎𝑙	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠	𝑖𝑛	𝑡ℎ𝑒	𝑡𝑒𝑠𝑡𝑖𝑛𝑔	𝑠𝑒𝑡 

The test result for the temporal accuracy has been plotted in figures 3a and 4a for the binary 

and 5-class cases respectively. As can be seen from the figures, the accuracy of the results 
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increases alongside the duration of the data. Improving the performance of the system may be 

possible by measuring the fluorescence of the samples with a higher sampling rate. 
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