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Abstract 
Seasonal coronaviruses (OC43, 229E, NL63 and HKU1) are endemic to the human population, 
regularly infecting and reinfecting humans while typically causing asymptomatic to mild 
respiratory infections. It is not known to what extent reinfection by these viruses is due to 
waning immune memory or antigenic drift of the viruses. Here, we address the influence of 
antigenic drift on immune evasion of seasonal coronaviruses. We provide evidence that at least 
two of these viruses, OC43 and 229E, are undergoing adaptive evolution in regions of the viral 
spike protein that are exposed to human humoral immunity. This suggests that reinfection may 
be due, in part, to positively-selected genetic changes in these viruses that enable them to 
escape recognition by the immune system. It is possible that, as with seasonal influenza, these 
adaptive changes in antigenic regions of the virus would necessitate continual reformulation of a 
vaccine made against them. 
 
Introduction 
Coronaviruses were first identified in the 1960s and, in the decades that followed, human 
coronaviruses (HCoVs) received a considerable amount of attention in the field of infectious 
disease research. At this time, two species of HCoV, OC43 and 229E were identified as the 
causative agents of roughly 15% of common colds (McIntosh 1974; Heikkinen and Järvinen 
2003). Infections with these viruses were shown to exhibit seasonal patterns, peaking in 
January-March in the Northern Hemisphere, as well as yearly variation, with the greatest 
incidence occurring every 2-4 years (Monto and Lim 1974; Hamre and Beem 1972). 
Subsequently, two additional seasonal HCoVs, HKU1 and NL63, have entered the human 
population. These 4 HCoVs endemic to the human population usually cause mild respiratory 
infections, but occasionally result in more severe disease in immunocompromised patients or 
the elderly (Liu, Liang, and Fung 2020). In the past 20 years, three additional HCoVs 
(SARS-CoV-1, MERS-CoV and SARS-CoV-2) have emerged, which cause more severe 
respiratory illness. At the writing of this paper, amidst the SARS-CoV-2 pandemic, no vaccine 
for any HCoV is currently available, though many candidate SARS-CoV-2 vaccines are in 
production and clinical trials (Krammer 2020). 
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Coronaviruses are named for the ray-like projections of spike protein that decorate their surface. 
Inside these virions is a positive-sense RNA genome of roughly 30kB (Li 2016). This large 
genome size can accommodate more genetic variation than a smaller genome (Woo et al. 
2009). Genome flexibility, coupled with a RNA virus error-prone polymerase (Drake 1993) and a 
high rate of homologous recombination (Pasternak, Spaan, and Snijder 2006), creates genetic 
diversity that is acted upon by evolutionary pressures that select for viral replication. This 
spawns much of the diversity within and between coronaviruses species (Woo et al. 2009; Hon 
et al. 2008), and can contribute to the virus’ ability to jump species-barriers, allowing a 
previously zoonotic CoV to infect and replicate in humans. 
 
The battle between virus and host results in selective pressure for mutations that alter viral 
antigens in a way that evades immune recognition. Antigenic evolution, or antigenic drift, leaves 
a characteristic mark of positively selected epitopes within the viral proteins most exposed to the 
host immune system (Smith et al. 2004). For CoVs, this is the spike protein, exposed on the 
surface of the virion to human humoral immunity. Some human respiratory illnesses caused by 
RNA viruses, like seasonal influenza (Smith et al. 2004), evolve antigenically while others, like 
measles, do not (Fulton et al. 2015). Because of this, seasonal influenza vaccines must be 
reformulated on a nearly annual basis, while measles vaccines typically provide lifelong 
protection. Whether HCoVs undergo antigenic drift is relevant not only to understanding HCoV 
evolution and natural immunity against HCoVs, but also to predicting the duration of a vaccine’s 
effectiveness.  
 
Early evidence that closely-related HCoVs are antigenically diverse comes from a 1980s human 
challenge study in which subjects were infected and then reinfected with a variety of 
229E-related strains (Reed 1984). All subjects developed symptoms and shed virus upon initial 
virus inoculation. After about a year, subjects who were re-inoculated with the same strain did 
not show symptoms or shed virus. However, the majority of subjects who were re-inoculated 
with a heterologous strain developed symptoms and shed virus. This suggests that immunity 
mounted against 229E viruses provides protection against some, but not all, other 229E strains. 
This is a result that would be expected of an antigenically evolving virus.  
 
More recent studies have identified 8 OC43 genotypes and, in East Asian populations, certain 
genotypes were shown to temporally replace other genotypes (Lau et al. 2011; Zhang et al. 
2015; Zhu et al. 2018). Whether certain genotypes predominate due to antigenic differences 
that confer a fitness advantage is not known. However, evidence for selection in the spike 
protein of one of these dominant OC43 genotypes has been provided by dN/dS, a standard 
computational method for detecting positive selection (Ren et al. 2015). This method has also 
been used to suggest positive selection in the spike protein of 229E (Chibo and Birch 2006). 
Additionally, two genetically distinct groupings (each of which include multiple of the 
aforementioned 8 genotypes) of OC43 viruses have been shown to alternate in prevalence 
within a Japanese community, meaning that the majority of OC43 infections are caused by one 
group for about 2-4 years at which point the other group begins to account for the bulk of 
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infections. It has been suggested that antigenic differences between these groups contribute to 
this epidemic switching (Komabayashi et al. 2020). 
 
Here, we use a variety of computational approaches to detect adaptive evolution in spike and 
comparator proteins in HCoVs. These methods were designed as improvements to dN/dS with 
the intention of identifying positive selection within a serially-sampled RNA virus population. We 
focus on the seasonal HCoVs that have been continually circulating in humans: OC43, 229E, 
HKU1 and NL63. Our analyses of nonsynonymous divergence, rate of adaptive substitutions, 
and Time to Most Recent Ancestor (TMRCA) provide evidence that the spike protein of OC43 
and 229E is under positive selection. Though we conduct these analyses on HKU1 and NL63, 
we do not observe evidence for adaptive evolution in the spike protein of these viruses. For 
HKU1, there is not enough longitudinal sequencing data available for us to confidently make 
conclusions as to whether or not this lack of evidence reflects an actual lack of adaptive 
evolution. 
 
Results 
We constructed time-resolved phylogenies of the OC43 and 229E using publicly accessible 
sequenced isolates. A cursory look at these trees confirms previous reports that substantial 
diversity exists within each viral species (Zhang et al. 2015; Komabayashi et al. 2020; Lau et al. 
2011). The phylogeny of OC43 bifurcates immediately from the root (Fig. 1), indicating that 
OC43 consists of multiple, co-evolving lineages. Because of the distinct evolutionary histories, it 
is appropriate to conduct phylogenetic analyses separately for each lineage. We have arbitrarily 
labeled these lineages ‘A’ and ‘B’ (Fig. 1). 
 
Because recombination is common amongst coronaviruses (Pasternak, Spaan, and Snijder 
2006; Hon et al. 2008; Lau et al. 2011), we built separate phylogenies for each viral gene. In the 
absence of recombination, each tree should show the same evolutionary relationships between 
viral isolates. A dramatic difference in a given isolate’s position on one tree versus another is 
strongly indicative of recombination (Kosakovsky Pond et al. 2006). Comparing the 
RNA-dependent RNA polymerase (RdRp) and spike trees reveals this pattern of recombination 
in some isolates (Fig. 1 Supplement 1A). A comparison of the trees of the S1 and S2 
sub-domains of spike shows more limited evidence for intragenic recombination (Fig. 1 
Supplement 1B), which is consistent with the fact that the distance between two genetic loci is 
inversely-related to the chance that these loci remain linked during a recombination event. 
Though intragenic recombination likely does occur occasionally, analyzing genes, rather than 
isolates, greatly reduces the contribution of recombination to genetic variation in our analyses. 
Because of this, we designate the lineage of each gene separately, based on that gene’s 
phylogeny. Though most isolates contain all genes from the same lineage, some isolates have, 
say, a lineage A spike gene and a lineage B RdRp gene. This allows us to consider the 
evolution of each gene separately, and interrogate the selective pressures acting on them. 
Because of its essential role in viral replication and lack of antibody exposure, we expect RdRp 
to be under purifying selection to maintain its structure and function. If HCoVs evolve 
antigenically, we expect to see adaptive evolution in spike, and particularly in the S1 domain of 
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Spike (Hofmann et al. 2006; Hulswit et al. 2019), due to its exposed location at the virion’s 
surface and interaction with the host receptor.  
 
Using phylogenies constructed from the spike gene, we tallied the number of independent 
amino acid substitutions at each position within spike. The average number of mutations per site 
is higher in S1 than S2 for HCoV lineages in OC43 and 229E (Fig. 2A). A greater occurrence of 
repeated mutations is expected if some mutations within S1 confer immune avoidance. Not only 
should S1 contain more repeated mutations, but we would also expect these mutations to 
spread widely after they occur due to their selective advantage. Additionally, we expect sites 
within S1 to experience diversifying selection due to the ongoing arms race between virus and 
host immune system. This is visible in the distribution of genotypes at the most 
repeatedly-mutated sites in OC43 lineage A (Fig. 2B and 2C).  
 
An adaptively evolving gene, or region of the genome, should exhibit a high rate of 
nonsynonymous substitutions. For each seasonal HCoV lineage, we calculated nonsynonymous 
and synonymous divergence as the average Hamming distance from that lineage’s common 
ancestor (Zanini et al. 2015). The rate of nonsynonymous divergence is markedly higher within 
spike versus RdRp of 229E and OC43 lineage A (Fig. 3A).  While nonsynonymous divergence 
increases steadily over time in spike, it remains roughly constant at 0.0 in RdRp, while rates of 
synonymous evolution are similar between spikenand RdRp. These results suggest that there is 
predominantly positive selection on OC43 and 229E spike, but predominantly purifying selection 
on RdRp. Separating spike into the S1 (receptor-binding) and S2 (membrane-fusion) domains 
reveals that the majority of nonsynonymous divergence in spike occurs within S1 (Fig. 3B). In 
fact, the rates of nonsynonymous divergence in S2 are similar to those seen in RdRp, 
suggesting S2 evolves under purifying selection while S1 evolves adaptively. 
 
As a complement to the divergence analysis, we implemented an alternative to the dN/dS 
method that was specifically designed to detect positive selection within RNA virus populations 
(Bhatt, Holmes, and Pybus 2011). Compared with traditional dN/dS methods, the Bhatt method 
has the advantages of: 1) measuring the strength of positive selection within a population given 
sequences collected over time, 2) higher sensitivity to identifying mutations that occur only once 
and sweep through the population, and 3) correcting for deleterious mutations (Bhatt, 
Katzourakis, and Pybus 2010; Bhatt, Holmes, and Pybus 2011). We adapted this method to 
detect adaptive substitutions in seasonal HCoVs and compare these rates to H3N2, the 
canonical example of antigenic evolution (Rambaut et al. 2008; Yang 2000). As shown in Figure 
4, OC43 lineage A has continuously amassed adaptive substitutions in spike over the past >30 
years while RdRp has accrued few, if any, adaptive substitutions. These adaptive substitutions 
are located within the S1, and not the S2, domain of spike (Fig. 4). We observe a largely linear 
accumulation of adaptive substitutions in spike and S1 through time, although the method does 
not dictate a linear increase.  
 
We estimate that OC43 lineage A accumulates roughly 0.6 × 10 –3 adaptive substitutions per 
codon per year (or 0.45 adaptive substitutions each year) in the S1 domain of spike while the 
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rate of adaptation in OC43 lineage B is slightly higher and is estimated to result in an average 
0.56 adaptive substitutions in S1 per year (Fig. 5). The S1 domain of 229E is estimated to 
accrue 0.26 adaptive substitutions per year. A benefit of the Bhatt method is the ability to 
calculate the strength of selection, which allows us to compare these seasonal HCoVs to other 
viruses. We used our implementation of the Bhatt method to calculate the rate of adaptation for 
influenza H3N2, which is known to undergo rapid antigenic evolution, and measles, which does 
not. We estimate that the receptor-binding domain of influenza H3N2 accumulates adaptive 
substitutions about 3 times faster than the HCoVs OC43 and 229E (Fig. 6). We detect no 
adaptive substitutions in the measles receptor-binding protein. These results put the evolution of 
the S1 domain of OC43 and 229E in context, indicating that the S1 domain is under positive 
selection, and that this positive selection generates new variants in the putative antigenic 
regions of these HCoVs at about a third of the rate of the canonical example of antigenic 
evolution, the HA1 domain of influenza H3N2. 
 
Because coronaviruses are known to recombine, and recombination has the potential to impact 
evolutionary analyses of selection, we sought to verify that our results are not swayed by the 
presence of recombination. To do this, we simulated the evolution of OC43 lineage A spike and 
RdRp genes under varying levels of recombination and positive selection and used our 
implementation of the Bhatt method to identify adaptive substitutions. As the strength of positive 
selection increases, we detect more adaptive substitutions, regardless of the level of 
recombination (Fig. 7). This demonstrates that our estimates of adaptive evolution are not 
biased by recombination events. 
 
Finally, we know that strong directional selection skews the shape of phylogenies (Volz, Koelle, 
and Bedford 2013). In influenza H3N2, immune selection causes the genealogy to adopt a 
ladder-like shape where the rungs are formed by viral diversification and each step is created by 
the appearance of new, antigenically-superior variants that replace previous variants. This 
ladder-like shape can also be seen in the phylogenies of the OC43 and 229E (Fig. 1). In this 
case, selection can be quantified by the timescale of population turnover as measured by the 
Time to Most Recent Common Ancestor (TMRCA), with the expectation that stronger selection 
will result in more frequent steps and therefore a smaller TMRCA measure (Bedford, Cobey, 
and Pascual 2011). We computed average TMRCA values from phylogenies built on Spike, S1, 
S2 or RdRp sequences of OC43 and 229E (Table 1). We observe that, for both OC43 lineage A 
and 229E, the average TMRCA is lower in spike than RdRp and lower in S1 versus S2. These 
results suggest strong directional selection in S1, likely driven by pressures to evade the 
humoral immune system. The difference in TMRCA between S1 and S2 is indicative not only of 
differing selective pressures acting on these two spike domains, but also of intra-spike 
recombination, which emphasizes the importance of using methods that are robust to 
recombination to detect adaptive evolution. 
 
Because HKU1 was identified in the early 2000’s, there are fewer longitudinally-sequenced 
isolates available for this HCoV compared to 229E and OC43 (Fig. 1 Supplement 2). 
Consequently, the phylogenetic reconstructions and divergence analysis of HKU1 have a higher 
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level of uncertainty. To begin with, it is less clear from the phylogenies whether HKU1 
represents a single HCoV lineage like 229E or, instead, should be split into multiple lineages 
like OC43 (Fig. 1). Because of this, we completed all antigenic analyses for HKU1 twice: once 
considering all isolates to be members of a single lineage, and again after splitting isolates into 
2 separate lineages. These lineages are arbitrarily labeled ‘A’ and ‘B’ as was done for OC43. 
When HKU1 is considered to consist of just one lineage, there is no signal of antigenic evolution 
by divergence analysis (Fig. 3 Supplement 1B) or by the Bhatt method of estimating adaptive 
evolution (Fig. 5 Supplement 1A). However, when HKU1 is assumed to consist of 2 
co-circulating lineages, HKU1 lineage A has a markedly higher rate of adaptive substitutions in 
S1 than in S2 or RdRp (Fig. 5 Supplement 1B).  
 
To demonstrate the importance of having a well-sampled longitudinal series of sequenced 
isolates for our antigenic analyses, we returned to our simulated OC43 S1 datasets. We 
mimicked shorter longitudinal series by truncating the dataset to only 24, 14, 10, or 7 years of 
samples and ran the Bhatt analysis on these sequentially shorter time series (Fig. 7 
Supplement). This simulated data reveals a general trend that less longitudinal data reduces the 
ability to detect adaptive evolution and increases the uncertainty of the analysis. Given the 
dearth of longitudinal data for HKU1, we do not feel that it is appropriate to make strong 
conclusions about adaptive evolution, or lack thereof, in this HCoV.  
 
Despite being identified at roughly the same time as HKU1, substantially more NL63 isolates 
have been sequenced (Fig. 1 Supplement 2) making the phylogenetic reconstruction and 
evolutionary analyses of this virus correspondingly more reliable. We do not observe evidence 
for adaptive evolution in NL63 (Fig. 3 Supplement 1A and Fig. 5 Supplement 1A) and this lack 
of support for adaptive evolution in the NL63 spike gene is more likely to reflect an actual lack of 
adaptive evolution in this virus.  

 
Discussion 
Using several corroborating methods, we provide evidence that the seasonal HCoVs OC43 and 
229E undergo adaptive evolution in S1, the region of the spike protein exposed to human 
humoral immunity (Figs. 3, 4 and 5). We additionally confirm that RdRp and S2 do not show 
signals of adaptive evolution. We observe that S1 accumulates between 0.3 (229E) and 0.5 
(OC43) adaptive substitutions per year. We infer that these viruses accumulate adaptive 
substitutions at roughly a third of the rate of influenza H3N2 (Fig. 6). The most parsimonious 
explanation for the observation of substantial adaptive evolution in S1 is that antigenic drift is 
occurring in which mutations that escape from human population immunity are selectively 
favored in the viral population leading to repeated adaptive changes. However, it is formally 
possible that the adaptive evolution we detect is a result of selective pressures other than 
evasion of the adaptive immune system. Showing that this is truly antigenic evolution could 
involve a serological comparison of isolates that differ at S1 residues under positive selection. 
We do not observe evidence of antigenic evolution in NL63 or HKU1 (Figs. 3 and 5 
Supplements). For NL63, this likely represents a true lack of marked adaptive evolution in S1. 
There is much less longitudinal sequencing data available for HKU1 and it is possible that a 

 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 30, 2020. ; https://doi.org/10.1101/2020.10.30.352914doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.30.352914


more completely sampled time series of genome sequences could alter the result for this virus 
(Fig. 7 Supplement 1). 
 
Our conclusions of adaptive evolution in S1, arrived at through computational analyses of 
sequencing data, agree with studies that observe reinfection of subjects by heterologous 
isolates of 229E (Reed 1984), sequential dominance of specific genotypes of OC43 (Lau et al. 
2011; Zhang et al. 2015), and common reinfection by seasonal HCoVs from longitudinal 
serological data (Edridge et al. 2020). In this latter study, HCoV infections were identified from 
longitudinal serum samples by assaying for increases in antibodies against the nucleocapsid (N) 
protein of representative OC43, 229E, HKU1, and NL63 viruses. This study concluded that the 
average time between infections was 1.5–2.5 years, depending on the HCoV (Edridge et al. 
2020). In comparison, influenza H3N2 reinfects people roughly every 5 years (Kucharski et al. 
2015). Thus, frequent reinfection by seasonal HCoVs is likely due to a combination of factors 
and suggests waning immune memory, and/or incomplete immunity against reinfection, in 
addition to antigenic drift. 
 
Human coronaviruses are a diverse grouping split, phylogenetically, into two genera: NL63 and 
229E are alphacoronaviruses, while OC43, HKU1, MERS, SARS, and SARS-CoV-2 are 
betacoronaviruses. Transmissibility and pathology do not seem to correlate with genus, nor 
does the method of cell-entry. Coronaviruses bind to a remarkable range of host-cell receptors 
including peptidases, cell adhesion molecules and sugars. Amongst the seasonal HCoVs, OC43 
and HKU1 both bind 9-O-acetylsialic acid (Hulswit et al. 2019) while 229E binds human 
aminopeptidase N (hAPN) and NL63 binds angiotensin-converting enzyme 2 (ACE2) (Liu, 
Liang, and Fung 2020). Despite a relatively large phylogenetic distance and divergent S1 
structures, NL63 and SARS-CoV-1 and SARS-CoV-2 bind to the same host receptor using the 
same virus-binding motifs (VBMs) (Li 2016). This VBM is located in the C-terminal domain of S1 
(S1-CTD), which fits within the trend of S1-CTD receptor-binding in CoVs that bind protein 
receptors (Hofmann et al. 2006; Li 2016). This is opposed to the trend amongst CoVs that bind 
sugar receptors, where receptor-binding is located within the S1 N-terminal domain (S1-NTD) 
(Li 2016). This localization roughly aligns with our observations that the majority of the 
repeatedly-mutated sites occur toward the C-terminal end of 229E S1 and the N-terminal end of 
OC43 S1 (Fig. 2). 
 
Here, we have provided support that at least 2 of the 4 seasonal HCoVs evolve adaptively in the 
region of spike that is known to interact with the humoral immune system. These two viruses 
span both genera of HCoVs, though due to the complexity of HCoV receptor-binding and 
pathology mentioned above, it is not clear whether or not this suggests that other HCoVs, such 
as SARS-CoV-2, will also evolve adaptively in S1. This is important because, at the time of 
writing of this manuscript, many SARS-CoV-2 vaccines are in production and most of these 
exclusively include spike (Krammer 2020). If SARS-CoV-2 evolves adaptively in S1 as the 
closely-related HCoV OC43 does, it is possible that the SARS-CoV-2 vaccine would need to be 
frequently reformulated to match the circulating strains, as is done for seasonal influenza 
vaccines. 
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Materials and methods 
All data, source code and analyses can be found at 
https://github.com/blab/seasonal-cov-adaptive-evolution . All phylogenetic trees constructed and 
analyzed in this manuscript can be viewed interactively at 
https://nextstrain.org/community/blab/seasonal-cov-adaptive-evolution . 
 
Sequence data 
All viral sequences are publicly accessible and were downloaded from ViPR (www.viprbrc.org ) 
under the “Coronavirdiae” with host “human” (Pickett et al. 2012). Sequences labeled as 
“OC43”, “229E”, “HKU1” and “NL63” were pulled out of the downloaded FASTA file into 4 
separate data files. Additionally, a phylogeny of all downloaded human coronaviruses was made 
and unlabeled isolates that clustered within clades formed by labeled OC43, 229E, HKU1 or 
NL63 isolates were marked as belonging to that HCoV type and added to our data files. Code 
for these data-parsing steps is located in 
data-wrangling/postdownload_formatting_for_rerun.ipynb . 
 
Phylogenetic inference 
For each of the 4 HCoV datasets, full-length sequences were aligned to a reference genome 
using the augur align command (Hadfield et al. 2018) and MAFFT (Katoh et al. 2002). Individual 
gene sequences were then extracted from these alignments if sequencing covered 50% or more 
of the gene using the code in 
data-wrangling/postdownload_formatting_for_rerun.ipynb . Sequence files for 
each gene are located in the data/  directory within each HCoV parent directory (ex: 
oc43/data/oc43_spike.fasta ). A Snakemake file (Köster and Rahmann 2012) within 
each HCoV directory was then used to aligned each gene to a reference strain and a 
time-resolved phylogeny was built with IG-Tree (Nguyen et al. 2015) and TimeTree (Sagulenko, 
Puller, and Neher 2018). Phylogenies were viewed to identify the distribution of genotypes 
throughout the tree, different lineages, and signals of recombination using the nextstrain view 
command (Hadfield et al. 2018). The clock rate of the phylogeny based on spike sequences for 
each isolate (as shown in Fig. 1 and Fig. 1 Supplement 2) was 0.0005 for OC43, 0.0006 for 
229E, 0.0007 for NL63, and 0.0062 for HKU1. All NL63 and HKU1 trees were rooted on an 
outgroup sequence. For NL63, the outgroup was 229e/AF304460/229e_ref/Germany/2000 and 
for HKU1 the outgroup was mhv/NC_048217_1/mhv/2006. Clock rates for the phylogenies built 
on each individual gene can be found within the results/  directory within each HCoV parent 
directory (ex: oc43/results/branch_lengths_oc43_spike.json ).  
 
Mutation counting 
Amino acid substitutions at each position in spike were tallied from the phylogeny using code in 
antigenic_evolution/site_mutation_rank.ipynb . 
 
Divergence analysis 
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For each HCoV lineage and each gene, synonymous and nonsynonymous divergence was 
calculated at all timepoints as the average Hamming distance between each sequenced isolate 
and the consensus sequence at the first timepoint (founder sequence). The total number of 
observed differences between the isolate and founder nucleotide sequences that result in 
nonsynonymous (or synonymous) substitutions is divided by the number of possible nucleotide 
mutations that result in nonsynonymous (or synonymous) substitutions, weighted by kappa, to 
yield an estimate of divergence. Kappa is the ratio of rates of transitions:transversions, and was 
calculated by averaging values from spike and RdRp trees built by BEAST 2.6.3 (Bouckaert et 
al. 2019) using the HKY+gamma4 model with 2 partitions and “coalescent constant population”. 
All BEAST results are found in .log files in gene- and HCoV-specific subdirectories within 
beast/  .  Divergence is calculated from nucleotide alignments. Sliding 3-year windows were 
used and only timepoints that contained at least 2 sequences were considered. The concept for 
this analysis is from (Zanini et al. 2015) and code for our adaptation is in 
antigenic_evolution/divergence_weighted.ipynb .  
 
Implementation of the Bhatt method 
The rate of adaptive evolution was computed using an adaptation of the Bhatt method (Bhatt, 
Holmes, and Pybus 2011; Bhatt, Katzourakis, and Pybus 2010). Briefly, this method defines a 
class of neutrally-evolving nucleotide sites, then identifies other classes with higher rates of 
nonsynonymous nucleotide fixations and high-frequency polymorphisms. This method 
compares nucleotide sequences at each timepoint (the ingroup) to the consensus nucleotide 
sequence at the first time point (the outgroup) and yields an estimate of the number of adaptive 
substitutions within a given genomic region at each of these timepoints. Eight estimators (silent 
fixed, replacement fixed, silent high frequency, replacement high frequency, silent 
mid-frequency, replacement mid-frequency, silent low frequency and replacement 
low-frequency) are then calculated by the site-counting method (Bhatt, Katzourakis, and Pybus 
2010). In the site-counting method, each estimator is the product of the fixation or polymorphism 
score times the silent or replacement score, summed for each site in that frequency class. 
Fixation and polymorphism scores depend on the number of different nucleotides observed at 
the site and whether the outgroup base is present in the ingroup. Selectively neutral sites are 
assumed to contain the classes of silent polymorphisms and replacement polymorphisms 
occurring at a frequency between 0.15 and 0.75. A class of nonneutral, adaptive sites is then 
identified as having an excess of replacement fixations or polymorphisms (Bhatt, Holmes, and 
Pybus 2011). Sliding 3-year windows were used and only timepoints that contained at least 2 
sequences were considered. For each lineage and gene, 100 bootstrap alignments and 
ancestral sequences were generated and run through the Bhatt method to assess the statistical 
uncertainty of our estimates of rates of adaptation (Bhatt, Holmes, and Pybus 2011). The rate of 
adaptation (per codon per year) shown in Fig. 5 is calculated by linear regression of the time 
series values of adaptive substitutions per codon (Fig. 4). Our code for implementing the Bhatt 
method is at antigenic_evolution/bhatt_bootstrapping.ipynb . 
 
Estimation of rates of adaptation of H3N2 and measles 
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Influenza H3N2 and measles sequencing data was downloaded from 
https://github.com/nextstrain/seasonal-flu  and https://github.com/nextstrain/measles, 
respectively. The rates of adaptation of different genes was calculated using our implementation 
of the Bhatt method described above. The receptor-binding domain used for H3N2 was HA1, for 
measles was the H protein, and for the HCoVs was S1. The membrane fusion protein used for 
H3N2 was HA2, for measles was the F protein, and for the HCoVs was S2. The polymerase for 
H3N2 was PB1, for measles was the P protein, and for the HCoVs was RbRd (nsp12). Our code 
for this analysis is at antigenic_evolution/measles_h3n2_bhatt.ipynb . 
 
Simulation of evolving OC43 sequences 
The evolution of OC43 lineage A Spike and RdRp genes was simulated using SANTA-SIM 
(Jariani et al. 2019). The OC43 lineage A root sequence was used as a starting point and the 
simulation was run for 500 generations and 10 simulated sequences were sampled every 50 
generations. Evolution was simulated in the absence of recombination and with moderate and 
high levels of recombination during replication. Under each of these recombination paradigms, 
we simulated evolution in the absence of positive selection within spike and with moderate and 
high levels of positive selection. Positive selection was simulated at a subset of Spike sites 
proportional to the number of epitope sites in H3N2 HA (Luksza and Lässig 2014). All 
simulations were run with a nucleotide mutation rate of 1x10-4 (Vijgen et al. 2005). Config files, 
results and source code for these simulations can be at santa-sim_oc43a/ . 
 
Estimation of TMRCA 
Mean TMRCA values were estimated for each gene and each HCoV using PACT (Bedford, 
Cobey, and Pascual 2011). The PACT config files and results for each run are in the directory 
antigenic_evolution/pact/ . The TMRCA estimations and subsequent analyses are 
executed by code in antigenic_evolution/tmrca_pact.ipynb . 
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Figure 1. Phylogenetic trees for spike gene of seasonal HCoVs OC43 and 229E.  Phylogenies built 
from A: OC43 spike sequences from 389 isolates over 53 years, and B: 229E spike sequences from 54 
isolates over 31 years. HCoVs that bifurcate immediately after the root are split into blue and yellow 
lineages. 229E and contains just one lineage (teal). For the analyses in this paper, the evolution of each 
gene (or genomic region) is considered separately, so phylogenies are built for each viral gene and those 
phylogenies are used to split isolates into lineages for each gene. These are temporally resolved 
phylogenies with year shown on the x-axis. The clock rate estimate is 5 × 10 –4  for OC43 and 6  × 10 –4  for 
229E. 
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Figure 2. More sites mutate repeatedly within spike S1 versus S2.  A: Number of mutations observed 
at each position in the spike gene. S1 (darker gray) and S2 (light gray) are indicated by shading and the 
average number of mutations per site is indicated by a dot and color-coded by HCoV lineage. Asterisks 
indicate positions 192 and 262, which mutate repeatedly throughout the OC43 lineage A phylogeny. The 
OC43 phylogeny built from spike sequences and color-coded by genotype at position 192 and 262 is 
shown in B) and C), respectively. 
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Figure 3. Nonsynonymous divergence is higher in OC43 and 229E Spike S1 versus S2 or RdRp.  A: 
Nonsynonymous (dashed lines) and synonymous divergence (solid lines) of the spike (teal) and RdRp 
(orange) genes of all 229E and OC43 lineages over time. Divergence is the average Hamming distance 
from the ancestral sequence, computed in sliding 3-year windows which contain at least 2 sequenced 
isolates. Shaded region shows 95% confidence intervals. B: Nonsynonymous and synonymous 
divergence within the S1 (light green) and S2 (blue) domains of spike. Year is shown on the x-axis. Note 
that x- and y-axis scales are not shared between plots. 
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Figure 4. Adaptive substitutions accumulate over time in OC43 lineage A spike S1.  Adaptive 
substitutions per codon within OC43 lineage A spike, S1, S2 and RdRp as calculated by our 
implementation of the Bhatt method. Adaptive substitutions are computed in sliding 3-year windows, and 
only for timepoints that contain 3 or more sequenced isolates. Red dots display estimated values 
calculated from the empirical data and red lines show linear regression fit to these points. Grey lines show 
the distribution of regressions fit to the computed number of adaptive substitutions from 100 bootstrapped 
datasets. Year is shown on the x-axis. 
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Figure 5. The rate of adaptive substitution is highest in spike S1. Adaptive substitutions per codon 
per year as calculated by our implementation of the Bhatt method. Rates are calculated within Spike, S1, 
S2 and RdRp for 229E and OC43 lineages. Error bars show 95% bootstrap percentiles from 100 
bootstrapped datasets. 
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Figure 6. OC43 and 229E spike S1 accumulates adaptive substitutions faster than measles but 
slower than influenza H3N2.  Comparison of adaptive substitutions per codon per year between 
influenza H3N2 (black), measles (gray), OC43 lineage A (red), and 229E (orange). The polymerase, 
receptor binding domain and membrane fusion domain for H3N2 are PB1, HA1 and HA2. For both 
HCoVs, they are RdRp, S1 and S2, respectively. For measles, the polymerase is the P gene, the 
receptor-binding protein is the H gene and the fusion protein is the F gene. Error bars show 95% 
bootstrap percentiles from 100 bootstrapped datasets.  
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Figure 7. Detection of positive selection is not biased by recombination. OC43 lineage A sequences 
were simulated with varying levels of recombination and positive selection. The Bhatt method was used to 
calculate the rate of adaptive substitutions per codon per year for S1 (light green), S2 (blue) and RdRp 
(orange). The mean and 95% confidence interval of 5 independent simulations is plotted. 
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 Spike S1 S2 RdRp 

OC43A 4.67 3.45 13.05 17.39 

229E 4.19 2.23 5.08 4.86 

Table 1. Mean TMRCA is lower in S1 than RdRp or S2. Average TMRCA values (in years) for OC43 
lineage A and 229E. 
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