Abstract
Formation of healthy mammalian eggs from oocytes requires specialised F-actin structures. F-actin disruption produces aneuploid eggs, which are a leading cause of human embryo deaths, genetic disorders, and infertility. We found that oocytes regulate F-actin organisation and function by promptly transferring excess monomeric G-actin from the cytoplasm to the nucleus. Inside healthy oocyte nuclei, transferred monomers form dynamic F-actin structures, a conserved feature that significantly declines with maternal age. Monomer transfer must be controlled tightly. Blocked nuclear import of G-actin triggers assembly of a dense cytoplasmic F-actin network, while excess G-actin in the nucleus dramatically stabilises nuclear F-actin. Imbalances in either direction predispose oocytes to aneuploidy. The large oocyte nucleus is thus a homeostatic G-actin buffer that is used to maintain cytoplasmic F-actin form and function.
One Sentence Summary Mammalian oocyte nuclei buffer cytosolic G-actin
Competing Interest Statement
The authors have declared no competing interest.