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Abstract

Background Computational modelling of cell biological processes is a frequently
used technique to analyse the underlying mechanisms and to generally
understand the behaviour of these processes in the context of a pathway, network
or even the whole cell. The most common technique in this context is the usage
of ordinary differential equations (ODEs) that describe the kinetics of the
relevant processes in mechanistic detail. Here, it is usually assumed that the
content of the cell is well-stirred and thus homogeneous - which is of course an
over-simplification, but often worked in the past. However, many processes
happen at membranes and thus not in 3D, but in 2D. The scaling of the rates of
these processes poses a special problem, if volumes of compartments are
changed. They will typically scale with an area, but not with the volume of the
involved compartment. However, commonly, this is neglected when setting up
models and/or volume scaling also sometimes automatically happens when using
modelling software in the field.

Results Here, we investigate generic as well as specific, realistic cases to find
out, how strong the impact of the wrong scaling is for the outcome of
simulations. We show that the importance of correct area scaling depends on the
architecture of the reaction site and its changes upon volume alterations and it is
hard to foresee, if it has a significant impact or not just by looking at the original
model set-up. Moreover, scaled rates might exhibit more or less control over the
behaviour of the system and therefore, accordingly, incorrect scaling will have
more or less influence.

Conclusions Working with multi-compartment reactions requires a careful
consideration of the correct scaling of the rates when changing the volumes of
the involved compartments. The error following incorrect scaling - often done by
scaling with the volume of the respective compartments can lead to significant
aberrations of model behaviour.

Keywords: kinetic modeling; area scaling; systems biology

Background
The spatial separation of biological processes into different compartments consti-

tutes one of the central features of eukaryotic cells. It allows for a specific control

of pH, oxidative state and metabolite concentrations as well as keeping transcrip-

tional and translational processes separated. Furthermore, ionic gradients across

organellar membranes can be utilized for energy conversion as it is done by the

proton gradient across the inner mitochondrial membrane, and nuclear signaling
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pathways require downstream factors to cross the nuclear membrane to reach their

target. With compartmentalization playing such a central role in many processes,

it comes as no surprise that researchers trying to understand these processes must

take trans-membrane transport and other membrane bound processes into account.

As most biological processes are complex to a degree that a pure qualitative descrip-

tion of what is happening in a specific situation is not sufficient to fully understand

the system in question, computational modeling has become an indispensable part

of biological research [1]. A variety of modeling approaches exists. A commonly used

description of metabolic networks on a higher level of abstraction describing flux

distributions has become popular in recent years - whole genome-scale metabolic

models that are based on stoichiometric information and do not require kinetic

detail [2]. However, using more coarse grained information also limits the analysis

and predictions of such models to more general results. Other, less frequently used

computational modeling approaches include stochastic formalism [3], partial dif-

ferential equations (PDEs) [4], bayesian networks [5], boolean descriptions [6] and

Petri-Nets [7] to name just a few. The most common formalism used in computa-

tional modeling however are ordinary differential equations (ODEs) [8]. These allow

detailed mechanistic descriptions of the involved processes in a given system, but

also require some existing knowledge of these mechanisms and the corresponding

kinetic parameters or - alternatively - a lot of quantitative experimental data to

determine at least some of the parameters via parameter fitting. While modeling

received more and more attention, a need for a standardized format for storing and

exchange of models in different modeling software arose. Therefore, the Systems

Biology Markup Language (SBML) format was developed [9] which allows loading

and analysis of computational models with different software and platforms. This

format is especially suitable, but not restricted to ODEs.

ODEs express the time-dependent change of a substance concentration as a func-

tion of this concentration, the concentration of other involved substances in the

system, as well as of kinetic parameters p:

d[Si]

dt
= f([Si(t)], p) , (1)

where Si is the vector of substance concentrations and p a vector of kinetic pa-

rameters. By means of numerical integration, the time-dependent concentrations of

the respective substances can be obtained. During the process of constructing an

ODE model, the modeler needs to carefully examine which molecular species and

reactions to consider: On the one hand, all relevant processes of a system need to

be captured. On the other hand, the model shouldn’t be unnecessarily complicated

avoiding high computational costs during analysis and difficulties in being able to

understand the behavior of the system in an adequate way. The same careful choices

must be made when choosing the kinetic rate law for each reaction and information

about the reaction mechanism is required during this process. In general, the veloc-

ity of a reaction is composed of the velocity of the forward reaction subtracted by

the one of the backward reaction expressed as concentration change:

ν = νf–νr , (2)
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which in the simple case of a reversible mass-action-governed reaction such as

S ←→ P

would read

ν = kf ∗ [S]− kr ∗ [P ] (3)

with equilibrium constant

Keq =
kf
kr

. (4)

Here, [S] and [P ] denote the substrate and product concentrations and kf , kr the

kinetic constants of the forward and reverse reaction. More complicated kinetic

terms, e.g. describing saturating rate laws as often caused by enzymatic catalysis like

Michaelis-Menten or involving inhibitors and activators in the system are common

in the cell biological context [10].

These expressions, like the above equation (3), are however only valid when the

reactions occur within a single compartment. The reason for this is that the reaction

velocity explicitly contains the concentrations of the reactants. If the reaction occurs

across a membrane, such that S and P are present in different compartments with

different volumes V1 and V2, respectively, the decrease of the concentration of S

during a reaction instance does not lead to an equal increase of the concentration of

P . To account for this, in many models, trans-membrane reactions are scaled with

the volume ratio of the respective compartments (e.g. [11]). Another approach is

required by SBML, where the usage of particle numbers instead of concentrations

is the standard. Here, rates of transport reactions describe particle fluxes. This

standard was selected to avoid problems as discussed below. However, in this case,

again, one could be tempted to assume that for obtaining the reaction velocity

now in terms of changes in molar amounts, it is sufficient to multiply the

rates with the respective volumes of the compartments in which the respective

substances reside in:

νn = V1 ∗ kf ∗
nS

V1
− V2 ∗ kr ∗

nP

V2
(5)

nS, nP being the molar amounts of S and P .

Indeed, both of the above scenarios (scaling with the volume ratio in the case of

concentration changes or with the volumes in the case of molar amounts) can be

found in publications and software in the field. However, in many, if not most cases

the rate of a trans-membrane transport process will not scale with the volumes

of the respective compartments - be it in the case of using particle numbers or

in the case of concentrations. Instead, the transport rate scales with the amount

of transporters present in the membrane, or in the case of diffusion of lipophilic

substances through the membrane, simply with the area of the membrane. A very

detailed description of different geometrical scenarios and the correct equations for

each of these cases was recently published [12]. Therefore, the scaling of reaction
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rates should take into account the number of transporters in the membrane, or,

assuming a constant transporter density, the surface area of the membrane. Thus,

when changing volumes of compartments and subsequently adjusting the rate of

a transport process, in the latter case, one has to compute the change in area A

rather than taking into account the change in volume:

νn = A ∗ (kaf ∗ [S]− kar ∗ [P ]) (6)

Depending on the exact nature of the architecture of the compartments and their

interface the area might change at least in a non-linear correlation with the volume

or it might not change at all, as we will discuss below. For example, when looking

at spheroidal compartment such as the nucleus, the volume is approximately given

as 4
3π ∗ r

3, while the surface reads 4π ∗ r2. Consequently, the difference in reaction

velocities between the two scaling approaches in this case scales linearly with r. In

other situations, the volume and surface of the compartment of interest can have

a nonlinear relation, as a growth in surface does not necessarily go along with a

similar change in volume.

The impact of the precise scaling on the system’s behaviour is of course also in-

fluenced by the sensitivity that the behaviour exhibits with respect to the exact

reaction rate under consideration. Therefore, it can be useful to calculate the sen-

sitivities of the model output regarding the rate of the transport reaction which is

altered by the scaling. If there is only very little sencitivity and therefore large ro-

bustness with respect to this specific rate, the difference made by the exact scaling

will also not be of major importance.

While a first-order reaction in a homogeneous system has the unit s−1, the need

for area scaling can lead to unusual units of the resulting phenomenological kinetic

parameters, as in the above described case: m∗s−1 for kaf and kar. This is however

no problem if one carefully assesses the meaning of the affected parameters.

Since what is stated above is not yet common practice among modelers, we in-

vestigate in the following the implications of not taking the surface area at which

a transport reaction proceeds into account. We examined several published multi-

compartment models without area scaling. We further compared their behavior in

diverse physiological circumstances, where volume ratios or the area to volume ratio

change. Here, we demonstrate that the correct behavior can be obtained with any

modeling approach as long as the parameters are treated accordingly.

Methods
For model selection, we used the EBI BioModels database. From the curated mod-

els published there (last accessed: 10.07.2019), we selected the ones comprised of

at least two different compartments with non-arbitrary volumes. Of those, we ex-

cluded models in which only the ratios between biological compartment volumes

are considered as well as pharmacokinetic models.

The selected models were analysed and modified using the modeling software pack-

age COPASI, version 4.23 [13]. The time-courses of the relevant species’ concentra-

tions were determined deterministically using LSODA as implemented in COPASI.

Scaled sensitivities of steady-state concentrations and transient concentration max-

ima were calculated with COPASI as well.
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Results
Vertical transport between root cells

Before studying the effects of different compartment conformations on models from

the BioModels database, we first sought to understand the consequences of the

different model structures in a simple toy model. Here, we used a model describing

the vertical, reversible transport in Arabidopsis thaliana root epidermis cells. A

particular characteristic of plant root cells is that they increase mostly in length

and only to a small degree in width [14]: Young cells at the root tip (Fig. 1 - blue)

are much smaller than mature cells in the older tissue (Fig. 1 - orange). Conse-

quently, the vertical interaction surface between cells changes on a vastly different

scale compared to either total cell surface or cell volume. Considering the fact that

directional transport between cells is a crucial aspect to proper plant development

[15], any model of such processes would have to account for the special character-

istics of plant cells.

For this simplistic model, we analysed the transport of a species X between two

epidermis cells in the A. thaliana root. This model comprises only one reaction:

X1 ←→ X2 .

where X1 and X2 denote X in epidermis cells A and B, respectively. The cell

sizes were chosen according to the measured dimensions of epidermis cells in the

different root regions [14]. As we simulated the transport of X1 from an older and

therefore larger cell to a younger (smaller) cell, we analysed four different transit

situations (Fig. 1 - 1 to 4) that cover the whole range of cell sizes starting with the

younger cells (transition 1 red → blue) to the oldest tissue (transition 4 orange →
green).

We set the initial concentration of X1 to 1 µM. This allows for an easy evaluation

of not only the equilibrium concentrations of X in both cells but also of the speed,

at which the equilibrium is reached. In particular, we analysed three different imple-

mentations of multi-compartment reactions: one universal compartment, multiple

compartments with volume scaling and multiple compartments with area scaling

using the membrane area between the cells. The parameters were adjusted so that

the models exhibit identical behavior for scenario 1 (Fig. 1). For all subsequent

simulations, the parameters were left unchanged to illustrate the differences of the

different modelling assumptions.

As illustrated in Figure 1, the different implementations of the model react in

different ways to changes in cell size. Here, the realistic area scaling model shows a

clear delay in reaching the equilibrium as cell sizes increase (blue→ red→ green→
orange) (Fig. 1A). Furthermore, the equilibrium concentrations of X1 and X2 shift

on account of the different cell sizes. In contrast to this, the model consisting of a

single compartment shows no change between the different scenarios (B). Last, the

volume scaling model demonstrates a great shift in equilibrium concentrations as
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the transport rates are scaled with the individual compartment sizes (C). Unlike the

area scaling model, X reaches the equilibrium at approximately the same time in the

different scenarios. Altogether, this simple transport model already demonstrates

that the consideration of the proper and adequate scaling can make a difference.

Introducing Area Scaling to More Complex Models

Next, we analysed two realistic examples from the BioModels database. Here, we

considered a RanGTP shuttling model [16], (BioModelsID 192) and a TGF-β model

[17], (BioModelsID 342). To select these models we analysed the curated model en-

tries of the BioModels database according to the compartmentalization. Here, we

considered the number of compartments as well as the compartment size. Notably,

only a small fraction of entries consisted of multi-compartment models with realistic

compartment sizes (22 out of 825 curated models, see Table S1). The vast majority

of models comprises only one compartment.

Nuclear transport of HeLa cells is robust during growth

The RanGTP model by Görlich et al. (Fig. 2A) describes the shuttling of RanGTP

from the nucleus to the cytoplasm and the transfer of RanGDP from the cytoplasm

into the nucleus, the conversion reactions between RanGTP and RanGDP and

the(un-)binding of nucleo-cytoplasmic shuttling factors (Fig. 2A) [16]. This model

was used to demonstrate that the maintenance of a large RanGTP gradient requires

a sufficiently large cytoplasm showing that compartment sizes themselves already

have an impact on cellular behavior [16]. As the RanGTP concentration in the

model is sensitive to changes in the transport reactions (see Table S3), we included

a scaling factor describing the area of the nuclear envelope to scale these reactions

with the nuclear area instead of the volume. In particular, there are two model

reactions occurring between different compartments - the transport of RanGTP

and RanGDP - are scaled with the nuclear volume in the original model. Here,

we changed the kinetic rate laws of those two processes to a nuclear area scaling

version, with the kinetic parameters kpermRanGDP and kpermRanGTP adjusted such

as to reproduce the original model’s behavior (Fig. 2B).

There are two model reactions occurring between different compartments - the

transport of RanGTP and of RanGDP. These are scaled with the nuclear volume

in the original model. Here, we changed the kinetic rate laws of those two processes

to a nuclear area scaling version, with the kinetic parameters kpermRanGDP and

kpermRanGTP adjusted such as to reproduce the original model’s behavior (Fig.

2B).

HeLa cells, upon which the model is based, undergo growth in both cytoplasm and

nuclear volume during cell cycle progression. The cell volume varies on average

between 2.2 and 5.2 ∗ 103 µm3, whereas the nuclear volume varies between 1.6

and 2.6 ∗ 103 µm3 [18]. Assuming that a larger cell volume corresponds to a larger

nuclear volume (due to DNA duplication before cell division), this results in the

compartment sizes listed in Table 1. We subsequently simulated the behavior of

both the area scaling and the volume scaling model for all cell sizes listed in Table

1. Here, the volume scaling model (C) shows a slower dynamics compared to the
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area scaling model (D), both reaching the same steady state concentrations for the

different cell sizes. The differences in these cases are not particularly significant,

especially for the medium (red) and large (orange) cell sizes. This demonstrates

that including the area as a scaling factor is not always necessary, especially if

the qualitative outcome is more important than the quantitative. However, even

though relative size changes of the two compartments in this example are small,

there is already a notable difference which also points out that larger differences

would result in significant differences in model behavior if unrealistic scaling (to the

volume) is taken into account.

Altered nuclear morphology in cancer cells affects signalling response

The model of Zi et al. describes the TGF-β induced Smad2 signaling pathway (Fig.

3A). The authors constructed the model to investigate the differential effects of vari-

able TGF-β-doses on the intracellular signal dynamics, finding distinct responses

of the cell to both sustained and pulsating TGF-β-stimulation.

The model reactions include the binding and unbinding of TGF-β to T1R and T2R

and their recycling at the plasma membrane, complex formation of R-Smad with

Co-Smad and the shuttling of R-Smad, Co-Smad and the Smads-complex across the

nuclear envelope. Similar to the RanGTP model, the processes of nuclear shuttling

were changed from being scaled with the nuclear or cytoplamic volume to being

scaled with the nuclear membrane area. The affected parameters were again ad-

justed to deliver the same output as before. The model was originally constructed

using data from HaCaT cells, a human keratinocyte cell line. Skin cancer cells, as

many other forms of cancer cells, often exhibit nuclei with irregular shapes as well

as being bi- or multinucleated in several cases [19], both facts contributing to a

higher surface area to volume ratio, thus posing a potential situation in which the

differential behavior of volume- and area-scaled models can be observed.

The possible range of alterations here is large, so for the sake of this study, we

analysed the effect of an increase of both the nuclear and cell radius by 50% (Fig.

3C) and the effect of a 50% increase of the nuclear surface area while keeping all

volumes constant (Fig. 3D). This change affects only the area scaled model as in

the volume-scaled version, the nuclear surface is not a parameter considered. Analo-

gously to the example above, the parameters of the area-scaled model were adjusted

to replicate the models original behavior (Fig. 3B) and we compared the simula-

tions of both the original, volume-scaled model with the area-scaled one (Fig. 3C

and 3D). Furthermore, the scaled sensitivities of the Smads-complex concentration

to the transport reactions were calculated and shown to be sufficiently high (Table

S4), suggesting that a change of the transport rates has a noticeable influence on the

signaling output. It can be seen that both the steady state value of nuclear Smads-

complex and especially its transient are different in both model versions, e.g. the

peak concentration of nuclear Smads-complex in the area-scaled model is around

10% lower than in the volume-scaled version when both the cellular and nuclear

volumes are increased by 50%, while its peak concentration is around 14% higher

when just the nuclear area increased by 50%. Again, the differences are not huge.

However, if the models serve a quantitative purpose they are significant enough.
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This result corroborates that depending on the system under investigation, a care-

ful consideration of the scaling of trans-compartmental rate laws can change the

model predictions.

Discussion
Kinetic modelling of biological systems has the potential to enhance our under-

standing of the respective processes. A good model can prevent unnecessary ex-

periments and aid in the analysis of a system in states that are difficult to access

experimentally. Computational models always represent a simplification of reality.

Therefore, it is important to carefully examine the assumptions applied in the re-

spective model as to not undermine its predictive power. These assumptions can

concern the formulation of biochemical reactions, compartment sizes or the time-

scale of different processes. In particular, biochemical reaction velocities typically

scale with the amount of enzymes present in the cell. For transport processes the

rate of the reaction scales with the number of transporters. If no accurate mea-

surements of transporter concentrations are available, the membrane area of the

respective compartment can serve as proxy.

In this study, we examined the effects of changing cell sizes both through growth and

other, e.g. carcinogenic processes on multi-compartment processes in ODE models.

So far, the effects of cell size and shape have been examined in PDE models, where

they influence the response in signaling pathways [20] and, on the macroscopic

level, determine physiological as well as developmental outputs [21]. In contrast to

this, the effects of changing cell shape or size on the simulations of ODE models

have been largely ignored. While a great number of metabolic processes involve

more than one compartment, the existence of different compartments is not always

considered explicitly in the respective ODE model. To avoid the complications of

including several compartments, pathways are often simplified to comprise only one

compartment or omit the existence of the membrane.

In fact, the majority of curated models in the BioModels database consists of one

compartment. This simplification implies by no means that the resulting model is

wrong or in any way unable to describe the experimental data correctly. However, as

the respective model comprises only one compartment or the membrane is not ex-

plicitly included as scaling factor, the kinetic parameters of any multi-compartment

reaction will implicitly include that information. Therefore, these models are only

correct for that particular cell size with that particular spatial conformation. Any

change in the compartmental situation, i.e. cell shape, can necessitate the adapta-

tion of model parameters - and not just the respective volumes themselves.

Depending on the modeled system, the effects of changing cell shape or size can af-

fect the model behavior greatly. As illustrated by the model describing the vertical

transport between A. thaliana root cells, growth can have a big impact on the speed

of these processes. While this model nicely demonstrates the necessity of adjusting

parameter values, not all cells grow as much as A. thaliana epidermis root cells that

expand from an initial length of 8 µm to up to 220 µm in length. In fact, for the

measured cell and nucleus sizes for HeLa cells [18], the behavior of the RanGTP

shuttling model varies little between the different settings: While the RanGTP con-

centration is sensitive to changes in the transport reactions, the model response is
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quite robust as we change both reactions, nucleoplasmic and cytoplasmic transfer,

concomitantly by the same factor.

In contrast to this, changing the compartment sizes caused a notable difference in

the output of the TGF-β signaling model by Zi et al.. Not only is the Smad-complex

concentration sufficiently sensitive to the transport reactions, but the model archi-

tecture also means that the change compartment size has a notable impact on

the output function. In more general terms, this means that - depending on how

the system is decoded (signal amplitude versus signal duration) - the area scaling

model would transmit different information than the volume scaling model unless

the parameters are carefully adjusted.

Conclusions
Altogether, our analysis demonstrates that including the membrane as scaling factor

- or at least carefully adjusting the parameters of multi-compartment reactions - can

be necessary to observe the correct model behavior. Nonetheless, the exact impact

of not adjusting the model on the simulated behavior depends on the modeled

system itself, its geometry and the control that a transport reactions holds over the

behavior of the system.

It is important to note that there are software tools that always automatically scale

with the volume, if this is changed. According to the above said this is clearly wrong.

Software like COPASI does correctly assume the user to know about particle fluxes

and adjust these according to the impact that a changing volume of a compartment

has. It also recently allowed for the definition of two-dimensional compartments,

which should lead to more models considering the membrane as compartment or

scaling-factor.
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ODE - ordinary differential equations, PDE - partial differential equations, Ran - RAs-related Nuclear protein, SBML

- Systems Biology Markup Language, TGF-β - Transforming Growth Factor - β
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8. Hübner, K., Sahle, S., Kummer, U.: Applications and trends in systems biology in biochemistry. The FEBS

journal 278(16), 2767–2857 (2011)

9. Hucka, M., Finney, A., Sauro, H.M., Bolouri, H., Doyle, J.C., Kitano, H., Arkin, A.P., Bornstein, B.J., Bray, D.,

Cornish-Bowden, A., et al.: The systems biology markup language (sbml): a medium for representation and

exchange of biochemical network models. Bioinformatics 19(4), 524–531 (2003)

10. Liebermeister, W., Klipp, E.: Bringing metabolic networks to life: Convenience rate law and thermodynamic

constraints. Theoretical Biology and Medical Modelling 3, 41 (2006). doi:10.1186/1742-4682-3-41

11. Kholodenko, B.N., Demin, O.V., Moehren, G., Hoek, J.B.: Quantification of short term signaling by the

epidermal growth factor receptor. Journal of Biological Chemistry 274(42), 30169–30181 (1999)

12. Hofmeyr, J.-H.S.: Kinetic modelling of compartmentalised reaction networks. BioSystems 197, 104203 (2020)

13. Hoops, S., Sahle, S., Gauges, R., Lee, C., Pahle, J., Simus, N., Singhal, M., Xu, L., Mendes, P., Kummer, U.:

Copasi—a complex pathway simulator. Bioinformatics 22(24), 3067–3074 (2006)

14. van Esse, G.W., Westphal, A.H., Surendran, R.P., Albrecht, C., van Veen, B., Borst, J.W., de Vries, S.C.:

Quantification of the brassinosteroid insensitive1 receptor in planta. Plant physiology 156(4), 1691–1700

(2011)

15. Friml, J.: Auxin transport—shaping the plant. Current opinion in plant biology 6(1), 7–12 (2003)

16. Görlich, D., Seewald, M.J., Ribbeck, K.: Characterization of Ran-driven cargo transport and the RanGTPase

system by kinetic measurements and computer simulation. The EMBO journal 22(5), 1088–100 (2003).

doi:10.1093/emboj/cdg113

17. Zi, Z., Feng, Z., Chapnick, D.A., Dahl, M., Deng, D., Klipp, E., Moustakas, A., Liu, X.: Quantitative analysis

of transient and sustained transforming growth factor-β signaling dynamics. Molecular systems biology 7(1),

492 (2011). doi:10.1038/msb.2011.22

18. Puck, T.T., Marcus, P.I., Cieciura, S.J.: Clonal growth of mammalian cells in vitro. Journal of Experimental

Medicine 103(2), 273–284 (1956). doi:10.1084/jem.103.2.273.

http://jem.rupress.org/content/103/2/273.full.pdf

19. Dey, P.: Cancer nucleus: morphology and beyond. Diagnostic cytopathology 38(5), 382–390 (2010)

20. Meyers, J., Craig, J., Odde, D.J.: Potential for control of signaling pathways via cell size and shape. Current

biology 16(17), 1685–1693 (2006)

21. Baker, R.E., Gaffney, E., Maini, P.: Partial differential equations for self-organization in cellular and

developmental biology. Nonlinearity 21(11), 251 (2008)

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 30, 2020. ; https://doi.org/10.1101/2020.10.30.361717doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.30.361717
http://creativecommons.org/licenses/by-nc-nd/4.0/


Holzheu et al. Page 11 of 13

Figures

Figure 1 Impact of different modeling approaches on the vertical transport between root cells.
The transport of species X was simulated for two epidermis cells at four different positions along
the root vertical axis representing the different developmental zones: 1 - from the meristematic
zone (blue, smallest cell volume and age) to the transition zone (red); 2 - within the transition
zone (red); 3 - from the transition zone (red) to the elongation zone (green); 4 - from the
elongation zone (green) to the maturation zone (orange, largest cell volume and age). A:
Simulations of the area-scaling model. B: Simulations of the one compartment model. C:
Simulations of the volume-scaling model. Parameters are listed in supporting table S1.
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Figure 2 Analysis of the RanGTP shuttling model by Görlich et al.. A: Model reaction scheme
according to the SBGN standard. B: Reproducing the behavior of the original model (red) with
the area scaling model (blue). C: Simulations of the volume scaling model at different cell sizes.
D: Simulations of the area scaling model at different cell sizes. Color code: green - small cell;
orange - medium cell; red - large cell.
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Figure 3 Analysis of the TGF-β induced Smad2 signaling pathway by Zi et al.. A: Model
reaction scheme according to the SBGN standard. B: Reproducing the behavior of the original
model (red) with the area scaling model (blue). C: Comparison of the simulations of the volume
scaling model and the area scaling model at both increased cell and nuclear size. D: Comparison
of the simulations of the volume scaling model and the area scaling model at increased nuclear
surface area.

Tables

Table 1 Cytosolic and nuclear compartment sizes of the HeLa cells. Nuclear volume and surface area
were calculated based on the nuclear cross-section [18].

original model small cell medium cell large cell

cell volume [µm3] 1.8 ∗ 104 2.2 ∗ 103 3.7 ∗ 103 5.2 ∗ 103

nuclear cross section [µm2] NA 155 200 245

nuclear volume [µm3] 1.2 ∗ 104 1.45 ∗ 103 2.13 ∗ 103 2.88 ∗ 103

nuclear surface [µm2] 2533.88 619.28 800.23 979.79

Additional Files
Supporting Information

List of curated, multi-compartment models in the biomodels database with realistic compartment sizes (Table S1).

Detailed description of the models used in this study, including the setup and parameters of the transport model

(Tables S2, S3), the changes to the RanGTP transport and the TGF-beta signaling model as well asthe calculated

scaled sensitivity values for both models (Tables S4, S5).

Model Files

Copasi files for all models used in this study.
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