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Figure 4. A novel genome-wide change of the somatic promoter code in the late gonadal 

germ cells precedes the transition to the maternal code. a) CTSS signal of an example shift 

– Bckdha gene. b) CTSS signal of an example shifting bidirectional promoter, with broadening 

(Snx17 gene) or narrowing (Eif2b4 gene) of the signal. c) Distribution of the distances between 

the E16.5F and mESC dominant TSSs in E16.5F vs mESC shifting promoters. d) WW (left) 
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and SS (right) density in E16.5F vs mESC shifts, centred to the mESC dominant TSSs (marked 

with a red arrowhead on top) and ordered by the distance and orientation of the shift (schemes 

on the top and right). Red dashed lines follow the GC enrichment. Orange arrowhead in WW 

heatmaps indicates the expected position of the WW enrichment (TATA-box or W-box), while 

in SS heatmaps they indicate regions of SS enrichment. e) Correlation of sample specific IQ-

widths in E16.5F vs mESC shifting promoters. f) Heatmaps showing E13.5F H3K4me3 (left) 

or E16.5F CTSS coverage signal (right) in E16.5F vs mESC shifts centred on the mESC 

dominant TSS (marked with a red arrowhead on top) and ordered by the distance and 

orientation of the shift (scheme on the right of CTSS heatmap). g) Same as in f) albeit centred 

on the E16.5F dominant CTSSs and showing mESC CTSS coverage signal. 
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Figure 5. Canonical somatic +1 nucleosome-dependent, alternative +1 nucleosome-

dependent and maternal transcription initiation grammar. Somatic canonical +1 

nucleosome-dependent grammar is used in primordial germ cells, early gonadal germ cells and 

embryo upon zygotic genome activation. Alternative +1 nucleosome-dependent grammar is 

used in late gonadal germ cells. Maternal W-box grammar is used in oocytes. Two promoter 

architecture classes are shown – single W-box leading to a narrow transcription initiation, and 

multiple W-boxes leading to a broad transcription initiation pattern, distinct from the +1 

nucleosome somatic type. 
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