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Abstract 

Tumor associated macrophages (TAMs) are a highly plastic stromal cell type which support 

cancer progression. Using single-cell RNA-sequencing of TAMs from a spontaneous murine 

model of mammary adenocarcinoma (MMTV-PyMT) we characterize a subset of these cells 

expressing lymphatic vessel endothelial hyaluronic acid receptor 1 (Lyve-1) which spatially 

reside proximal to blood vasculature. We demonstrate that Lyve-1+ TAMs support tumor 

growth and identify a pivotal role for these cells in maintaining a population of perivascular 

mesenchymal cells which express alpha-smooth muscle actin and phenotypically resemble 

pericytes. Using photolabeling techniques show that mesenchymal cells maintain their 

prevalence in the growing tumor through proliferation and uncover a role for Lyve-1+ TAMs in 

orchestrating a selective platelet-derived growth factor-CC-dependent expansion of the 

perivascular mesenchymal population, creating a pro-angiogenic niche. This study highlights 

the inter-reliance of the immune and non-immune stromal network which support cancer 

progression and provides therapeutic opportunities for tackling the disease.   

 

Main text 

Tumor associated macrophages (TAMs) form a major part of the stromal cell infiltrate in solid 

tumors (1), and are highly plastic to their environment which creates phenotypic and 

functional diversity within the population (2, 3). Tumors exploit the plastic nature of TAMs to 

facilitate disease progression through promoting angiogenesis (4, 5), immune suppression 

(6, 7), chemotherapeutic resistance (8-10) and tumor cell migration and metastasis (2, 11-

15). Although macrophage polarization has a spectrum of possible phenotypes that can be 

adopted (16, 17), it is apparent that functionally important subsets preferentially accumulate, 

that are guided by spatial and environmental cues, to conduct specialized tasks vital to 

tumor progression (2, 6, 17-20). To resolve the heterogeneity of the TAM population, 

CD45+Ly6G-CD11b+F4/80hi TAMs were FACs cell-sorted from enzyme-dispersed tumors 

from MMTV-PyMT mice (21) (fig. S1A). The TAMs were then subjected to the droplet-based 

10X Genomics Platform for single cell RNA-sequencing (scRNA-seq; Fig. 1A). A total of 

9,039 TAMs were sequenced across three individual tumors. Unsupervised graph-based 

clustering of the transcriptomes, visualized using UMAP (22), revealed eight distinct 

transcriptomic TAM clusters (Fig. 1B-D and fig. S1B,C). The presence of these 

transcriptomic clusters, despite the tumors being spontaneous, were conserved across the 

three tumors analyzed (Fig. 1E). Gene Ontology (GO) analysis of the transcriptional 

programs within these clusters revealed diversity in both the number and type of biological 

pathways that were active. One cluster (TAM08) represented a highly proliferative TAM 
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state, indicating that TAMs are capable of proliferation in the tumor microenvironment, 

however these TAM’s transcriptome was dominated singularly by cell-cycle associated 

genes and so was not carried forward for further functional analysis (Fig. 1F and fig. S1D). 

Interestingly, the TAM clusters with few enriched GO terms, that appeared to be the least 

polarized in their gene expression profile (TAM01 and 02), represented almost a quarter of 

TAMs within the tumor (23.3% ± 3.4 of all TAMs analyzed), suggesting that a significant 

proportion of TAMs remain relatively unspecialized in their role (Fig. 1E,F and fig. S1E). 

Trajectory analysis using Slingshot (23) and diffusion maps was able to align the 8 identified 

clusters into a three trajectory polarization model with TAM04, 06 and 07 clusters 

representing predicted polarization extremes (Fig. 1G,H and fig. S2). Analysis of the three 

developmental pathways for their enrichment of M1/M2 (24) programs using the marker 

gene list of Orecchioni et al (25) highlighted TAM04 to be skewed towards an inflammatory 

(M1-like) transcriptome (Fig. 2A,B) which were more enriched for expression of inflammatory 

genes representative of a cellular response to type-1 interferons such as Irf7 and Isg15. 

TAM06 and TAM07 possessed a more pro-tumoral (M2-like) transcriptome (Fig. 2A,B). 

TAM06 was more enriched for anti-inflammatory genes such as Il10, whereas both TAM06 

and TAM07 were enriched in Ccl2, Mmp19, Hb-egf and also Mrc1 (the gene for 

MRC1/CD206) (26). However, TAM06 and TAM07 were functionally distinct in many of their 

enriched GO biological pathways, with a preferential skewing of TAM06 towards angiogenic 

processes and TAM07 towards immune regulation, highlighting a specialized sub-division of 

roles within the tumor (Fig. 2C,D). Flow cytometry analysis of gated CD206+F4/80hi TAMs 

stained for markers identified within the scRNA-seq analysis, confirmed that similar TAM 

sub-populations could be distinguished using the predicted protein markers in MMTV-PyMT 

tumors. The CD206 expressing pro-tumoral TAMs could be differentiated based on their 

expression level of CD206, MHCII, and the lymphatic vessel endothelial hyaluronic acid 

receptor 1 (Lyve-1) (Fig. 2E,F), into CD206loMHCIIloLyve-1- (TAM05) and the predicted pro-

tumoral polarization extremes of CD206hiMHCIIloLyve-1+ (Lyve-1+ TAMs; TAM06) and 

CD206intMHCIIhiLyve-1- (TAM07). Lyve-1 has traditionally been considered a marker of 

lymphatic endothelium (27), but has also been utilized as a marker on tissue-resident 

macrophages (28-32) and TAMs (33). The Lyve-1+ TAM subset (TAM06) accounted for 

10.7±3.5% of total TAMs and 1.4±0.4% of live cells within the tumor (Fig. 2G).  

To validate that the populations identified in the scRNA-seq and flow cytometry data were 

equivalent, the FACs-gated populations were subjected to bulk population RNA-seq 

alongside CD206-MHCloF4/80hi TAMs as a comparator group. Principal component (PC) 

analysis confirmed these populations to be transcriptionally distinct (Fig. 2H,I). Comparing 

the bulk population RNA-seq to that of the scRNA-seq populations validated close 
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concordance between the identified populations across a range of predicted marker genes 

(Fig. 2J). Lyve-1+ TAMs (TAM06) also selectively expressed the transcription factor Maf (fig. 

S2D) and CD206intMHCIIhiLyve-1- (TAM07) the transcription factor Retnla (Fig. 1D), which 

may indicate that these transcription factors play a role in polarization identity. A monocyte-

derived macrophage with a similar MHCIIloLyve-1hi surface phenotype has been 

demonstrated to reside proximal to vasculature in a variety of healthy tissues (32). GO 

pathway analysis also suggested that Lyve-1+ TAMs were highly endocytic (Fig. 2C). 

Liposomes containing the fluorescent lipophilic dye 1’-dioctadecyl-

3,3,3’,3’’tetramethylindocarbocyanine perchlorate (Dil) have previously been used to study 

perivascular TAM (pvTAM) development (13) and we predicted they could represent a tool to 

preferentially label the Lyve-1+ TAM subset. We developed a labeling protocol that could 

selectively mark pvTAMs (fig. S3A). Confocal analysis of the tumors demonstrated that Dil-

liposomes labeled a population of pvTAMs (Fig. 2K-M) and ex vivo characterization of the 

Dil-labeled cells in enzyme-dispersed tumors confirmed their phenotype to indeed be that of 

the Lyve-1+ TAM subset (TAM06, Fig. 2N).  

As the liposome labeling protocol preferentially labeled Lyve-1+ TAMs (Fig. 2M,N and fig. 

S3A-B), we utilized clodronate-filled liposomes (34) under an equivalent administration 

protocol as a means to selectively deplete the population and investigate their possible role 

in tumor progression. Depletion of these cells in MMTV-PyMT tumors resulted in a significant 

slowing of tumor growth (Fig. 3B), highlighting a fundamental role for these cells in tumor 

progression. Even over the long-term administration of clodronate-filled liposomes, which 

displayed little sign of toxicity in the animals (fig. S3C), provided a preferential depletion of 

Lyve-1+ TAMs (TAM06), largely sparing the CD206intMHCIIhiLyve-1- (TAM07) subset of 

specialized pro-tumoral TAMs (Fig. 3C-E), CD206- TAMs (Fig. 3F), and CD11b+Ly6C+ 

monocytes (Fig. 3G). Furthermore, using immunofluorescence imaging there was an 

observable selective spatial loss of perivascular TAMs (pvTAMs) within the clodronate-filled 

liposome treated mice (Fig. 3H), where the majority of TAMs surrounding blood vessels were 

no longer observable. To understand the mechanism through which Lyve-1+ pvTAMs 

promote tumor progression (Fig. 3B), we first phenotyped the immune-infiltrate of the 

tumors. Loss of Lyve-1+ pvTAMs did not change the abundance of any immune cell 

populations analyzed within the tumor microenvironment, other than a statistically significant 

increase in the abundance of the migratory CD11c+CD103+dendritic cells (DCs) (Fig. 3I and 

fig. S3D), which contribute to cytotoxic T-lymphocyte recruitment in the tumor (35) and 

priming of the anti-tumor immune response (36). However, there was no increase in CD8+ or 

CD4+ T-cell recruitment post depletion of Lyve-1+ pvTAMs (Fig. 3I). Perivascular 

macrophages are known to play a role in angiogenesis (18), and the Lyve-1+ TAM population 
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expressed pathways associated with angiogenesis (Fig. 2C), which could account for the 

control of tumor growth observed when the TAM subset was depleted (Fig.3B). 

Immunofluorescence analysis of these tumors had shown no overall change in density of 

endothelial cells within the tumor (Fig. 3K), but the tumors themselves were smaller (Fig.3B). 

Further analysis of sections from MMTV-PyMT tumors stained for CD31+ endothelial cells 

and perivascular α-smooth muscle actin (αSMA) expressing stromal cells revealed a change 

in vessel architecture (Fig. 3J), where depletion of Lyve-1+ TAMs resulted in an increase in 

the number of individual vessel elements in the tumor (fig. S3E) with the vessel elements 

appearing smaller and less branched (Fig.3J). However, most strikingly, there was a loss of 

αSMA+ stromal cells proximal to vasculature (Fig. 3J,L), highlighting a potential role of Lyve-

1+ TAMs in maintaining this stromal population.  

Staining tissue sections from MMTV-PyMT tumors for the αSMA+ cells and F4/80+ TAMs 

placed these populations in a close spatial arrangement providing opportunity for 

interactions and suggested a ‘niche’ formation (Fig. 4A). This co-localization was also 

evident in human invasive breast carcinomas, where CD68+ TAMs and αSMA+ cells could be 

found in close proximity adjacent to CD31+ endothelial cells lining blood vessels (Fig. 4B). 

Interestingly, this relationship was not observed in ductal carcinoma in situ (DCIS), where 

the only αSMA+ cells, likely to be myoepithelial cells, appeared surrounding ductal structures 

and did not associate frequently with CD68+ TAMs. This suggests that the spatial 

arrangement could be associated with progressive disease where there is ongoing neo-

angiogenesis (Fig. 4B). To further investigate these perivascular Lyve-1+ TAM-dependent 

αSMA+ cells, we characterized the heterogeneity of a broad pool of tumor-associated 

mesenchymal stromal cells (collectively termed cancer associated fibroblasts; CAFs) using 

flow cytometry within enzyme-dispersed MMTV-PyMT tumors. The CD45-CD31-CD90+ 

population accounted for 4.0±1.6% of total live cells within 350mm3 tumors and their 

abundance increased as tumors progressed (Fig. 4C). We screened the CD45-CD90+ 

population for cell surface markers associated with mesenchymal subsets, including; Ly6a, 

CD34, PDGFRα, FAP and CD29 (37-41). Clustering of the multi-parametric flow cytometry 

data using UMAP (22) and FlowSOM (42) distinguished two distinct subsets (Fig. 4D). The 

first subset ‘CAF1' was CD29hiCD34-Ly6a-FAPloPDGFRαlo and the second ‘CAF2’ was 

CD29loCD34+Ly6a+FAPhiPDGFRαhi (Fig. 4D). The two populations were FACs-sorted based 

on their differing expression of CD34 (Fig. 4E-F) for bulk RNA-seq to identify the αSMA-

expressing population. This analysis demonstrated clear transcriptional differences in these 

subsets (Fig. S4A-C). The CD34+ CAF population displaying an inflammation-related 

program (fig. S4C) while the CD34- CAF population expressed high levels of αSMA (Acta2) 

(Fig. 4F) and displayed a broader extracellular matrix/angiogenesis-related program 
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(fig.S4C). These were largely similar to the CAF subsets identified in pancreatic ductal 

adenocarcinoma (PDAC) (37), however there were also key differences such as Il6 was not 

a discriminatory marker for the CAF populations in MMTV-PyMT tumors (Fig. 4F). 

Interestingly, the CD34- CAF population also expressed Des, Pdgfrb and Cspg4 (Fig. 4F) 

which are genes that are often associated with pericytes, a population of specialized vessel-

associated cells (43, 44). To confirm the presence of pericyte markers desmin (Des), 

PDGFRβ (Pdgfrb) and NG2 (Cspg4) at the protein level in these cells, immunofluorescence 

staining of tissues sections from MMTV-PyMT mice confirmed that the perivascular αSMA+ 

cells also were desmin+ (fig. S4D), and ex vivo flow cytometry confirmed the presence of 

surface PDGFRβ and NG2 (fig. S4E,F). CD34- CAFs expressed PDGFRα, albeit low relative 

to the CD34+ population (Fig. 4D), which is regarded as a broad marker of fibroblasts. 

However, the pericyte marker NG2 and fibroblast marker PDGFRα colocalized at the protein 

level on these cells (fig. S4F), suggesting the population may represent either a 

‘pathological’ pericyte phenotype or a pericyte-like CAF population. The CD34- CAF 

population also displays similarities in gene expression to vasculature-associated ‘vCAFs’ 

recently characterized in MMTV-PyMT tumors, although vCAFs did not have detectable 

surface protein expression of NG2 (40). A phenotypically similar pericyte-like CAF population 

expressing CD29, PDGFRβ and high levels of αSMA, has also been identified in human 

breast cancer (38). Heterogeneous expression of CD34 differentiated CAF populations 

across different ectopic tumor models including B16, LL2 and orthotopic 4T1 (fig. S4G,H). 

Due to αSMA representing a defining feature of these cells we elected to refer to these cells 

herein as ‘αSMA+ CAFs’. Analyzing the abundance of the CAFs populations over the 

different stages of tumor progression from the healthy mammary gland, hyperplasia and the 

growing tumor revealed a relative increase in the abundance of the αSMA+ CAFs within the 

broader CAF population over tumor progression, suggesting a preferential selection of this 

subset within the tumor microenvironment (Fig. 4G). To elucidate the route through which 

these cells were accumulating in the tumor, we first explored local proliferation and pulsed 

mice bearing MMTV-PyMT tumors with 5-ethynyl-2’-deoxyuridine (Edu) to label actively 

proliferating cells. Although both CD34+ CAF and αSMA+ CAF populations displayed 

evidence of proliferation by comparison with healthy mammary gland, the αSMA+ CAFs were 

proliferating at a significantly faster rate (Fig. 4H). To address whether the proliferation was 

sufficient to account for their preferential expansion with tumor growth we utilized the Kaede 

mouse (45) crossed to the MMTV-PyMT model. Using this approach, we were able to 

photoconvert all tumor and stromal cells within a 100mm3 tumor from Kaede-green to 

Kaede-red (Fig. 4I). Analyzing tumors 72h after photoconversion demonstrated that CD45+ 

stromal cells predominantly displayed Kaede-green, highlighting the continual recruitment of 

hematopoietic stromal cells to the tumor from the periphery (13, 46, 47). In contrast, both 
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CD34+ CAFs and αSMA+ CAF populations remained Kaede-red, which indicated that both 

CAF populations derived from a tumor-resident source of cells and was not dependent on 

recruitment (Fig. 4I). Therefore, the rapid proliferation of the αSMA+ CAFs relative to CD34+ 

CAFs may also contribute to the dynamics of CAF heterogeneity over tumor growth (Fig. 

4G).  

Immunofluorescence analysis for Ki67, a marker of proliferation (48), on αSMA+ cells, which 

we had identified as perivascular, confirmed a close spatial relationship between proliferating 

Ki67+αSMA+ CAFs and F4/80+ TAMs (Fig. 4J). To investigate whether Lyve-1+ pvTAMs might 

be implicated in the expansion of αSMA+ CAFs, we analyzed the incorporation of Edu after 

the depletion of Lyve-1+ pvTAMs using clodronate-filled liposomes (Fig. 4K,L). Despite no 

observable drop in the proportion of αSMA+ CAFs within the tumor over the short-term acute 

treatment regimen (Fig. 4M), in the absence of Lyve-1+ pvTAMs, high rate of proliferation of 

the αSMA+ CAF population was significantly diminished, while proliferation of the CD34+ CAF 

and tumor cell compartments remained unaffected (Fig. 4N).  

To resolve how Lyve-1+ pvTAMs could be orchestrating αSMA+ CAF expansion within the 

perivascular niche, we utilized CellPhoneDB, a manually curated repository and 

computational framework to map the possible biological ligand:receptor interactions within 

RNA-seq datasets (49) between the Lyve-1+ pvTAMs, αSMA+ CAFs and CD31+ endothelial 

cells (which were all bulk-population RNA-sequenced) to construct an interactome of the 

major cell types in the perivascular niche (Fig. 5A). There were a total of 653 possible unique 

ligand:receptor interactions between these three cell types, highlighting the range of 

potential crosstalk between these populations in constructing the perivascular niche (fig. 

S5A). To refine this list, we selected for known mitogenic non-integrin mediated ligands 

which were enriched in Lyve-1+ pvTAMs compared to other TAM populations and could 

interact with receptors specifically expressed on αSMA+ CAFs and not endothelial cells (Fig. 

5B,C). This highlighted the selective crosstalk between these two proximal cells involving 

Pdgfc (50) expressed by the Lyve-1+ pvTAMs signaling to Pdgfra on the αSMA+ CAFs within 

the perivascular niche (Fig. 5C). More broadly, the Lyve-1+ TAM subset was a major source 

of Pdgfc in the tumor (Fig. 5D and S5B). 

PDGFRs form either homo- or hetero-dimers between the α and β receptor subunit (αα, αβ 

and ββ) and a homodimer of PDGF-C (PDGF-CC) selectively signals through PDGFRαα 

and  PDGFRαβ dimers (51, 52) which has been demonstrated to be a mitogenic and 

migratory factor for human dermal myofibroblasts (53, 54). To assess whether PDGF-CC 

may play a role in directing the proliferation of the αSMA+ CAF population within the 

perivascular niche we administered neutralizing antibodies to PDGF-CC, within an acute 
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treatment regimen, in tumor bearing MMTV-PyMT mice (Fig. 5E). Neutralization of PDGF-

CC did not affect the abundance of the cell populations at the acute timepoint (Fig. 5F) but 

did diminish Edu+ incorporation of the αSMA+ CAFs, but not in the tumor cells or CD45-

CD31+ endothelial cells within the vascular niche (Fig. 5G). This highlighted that the 

expansion of perivascular αSMA+ CAFs was PDGF-CC dependent and could account for the 

role of Lyve-1+ pvTAMs in orchestrating expansion of the population during tumor 

progression. As a population of perivascular fibroblasts have been implicated in recruiting 

macrophages to the perivascular niche (13), these observations in the current study highlight 

a potential reciprocal interactions between TAMs and mesenchymal populations in 

perivascular niche formation. PDGF-CC is a prognostic factor for poor survival in breast 

cancer (55) and has been demonstrated to be important to angiogenesis (56, 57). Within the 

perivascular niche the αSMA+ CAFs selectively expressed PDGFRα (Fig. 5H,I), alongside 

PDGFRβ (fig. S4E), and as such, were the only cell to be capable of responding to PDGF-

CC. Tumors grow slower in MMTV-PyMT Pdfgc-/- mice and display increased necrotic areas 

and evidence of hemorrhage (55). In accordance with our observations in murine models, 

using The Cancer Genome Atlas (TCGA) we observed an enrichment for a αSMA+ CAF 

signature (using genes identified in the murine population) above that of healthy tissue in 

human breast cancer (fig. S5C) and interestingly the αSMA+ CAF signature also positively 

correlated with PDGFC expression within the tumor (fig. S5D). This study raises an 

interesting parallel to the observations by Shook et al., that macrophages expressing PDGF-

CC support the expansion of αSMA+ myofibroblast populations in the wound healing 

response (54), a stromal response which share many similarities to that of cancer (2, 58). 

This study characterizes a biologically important subset of TAMs selectively expressing 

Lyve-1. We demonstrate that the Lyve-1+ pvTAM subset, which only accounts for 1.4±0.4% 

of live tumoral cells, is pivotal to tumor growth. We define a new role for pvTAMs in directing 

the expansion of a perivascular pericyte-like mesenchymal population to form a pro-

angiogenic niche that is facilitated by a selective PDGFRα:PDGF-CC crosstalk (Fig. 5J). 

This study highlights the inter-reliance of stromal populations and the importance of the 

immune system in orchestrating non-immune stromal cell reactions in cancer which provides 

therapeutic opportunities for unraveling the complexity of the stromal support network and 

niches which underpin tumor progression.  
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Materials and Methods 

Mice 

MMTV-PyMT (PyMT) mice used in this study were on an FVB/N background. Balb/c and 

C57Bl/6 wild type mice were obtained from Charles River. Female C57Bl/6 homozygous 

Kaede mice (45) were crossed with male MMTV-PyMT (FVB background) mice and the F1 

offspring used experimentally. Cohort sizes were informed by prior studies (2, 8). All mice 

used for experiments were female and randomly assigned to treatment groups. Mice were 

approximately 21-26 g when tumors became palpable. Experiments were performed in at 

least duplicate and for spontaneous MMTV-PyMT tumor studies individual mice were 

collected on separate days and all data points are presented.  

 

Tumor studies 

Murine 4T1 mammary adenocarcinoma, Lewis lung carcinoma (LL2) and B16-F10 

melanoma cells were obtained from ATCC. 2.5 x 105 cells in 100μl RPMI and were injected 

by subcutaneous (s.c.) injection into the mammary fat pad of syngeneic Balb/c (4T1) or 

C57Bl/6 (B16-F10 and LL2) female mice that were six to eight weeks of age. In studies using 

MMTV-PyMT mice tumors arose spontaneously. When tumors became palpable, volumes 

were measured every 2 days using digital caliper measurements of the long (L) and short (S) 

dimensions of the tumor. Tumor volume was established using the following equation: 

Volume= (S2xL)/2. PyMT/Kaede mice were photo-labeled under anesthesia, individual 

tumors mice were exposed to a violet light (405nm wavelength) through the skin for nine 20 

second exposure cycles with a short 5 second break interval between each cycle. Black 

cardboard was used to shield the rest of the mouse throughout the photoconversion 

procedure. Mice for 0 h time points were culled immediately after photoconversion. This 

photoconversion approach was adapted from that used to label peripheral lymph nodes (59). 

Tumor tissue for flow cytometry analyses were enzyme-digested to release single cells as 

previously described (41). In brief, tissues were minced using scalpels, and then single cells 

were liberated by incubation for 60 mins at 37°C with 1 mg/ml Collagenase I from 

Clostridium Histolyticum (Sigma-Aldrich) and 0.1 mg/ml Deoxyribonuclease I (AppliChem) in 

RPMI (Gibco). Released cells were then passed through a 70 μm cell strainer prior to 

staining for flow cytometry analyses. Viable cells were numerated using a hemocytometer 

with trypan blue (Sigma-Aldrich) exclusion. For drug treatments, drugs were freshly prepared 

on the day of injection and administered by intraperitoneal (i.p.) injection using a 26 G 

needle. For EdU experiments mice were injected i.p. with 50 mg/kg EdU dissolved in 
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Dulbecco’s phosphate buffered saline (PBS) and sacrificed 4 hours post-injection. To 

liposome deplete Pv macrophages, MMTV-PyMT mice were injected i.p. with 150 µl of either 

clodronate- or PBS-filled liposomes (Anionic Clophosome, FormuMax) on the indicated 

days. To label PvTAM, MMTV-PyMT mice were injected i.p. with 150 µl of Dil fluorescent 

tracing liposomes (Anionic Clophosome, Formumax). To neutralize PDGF-CC, mice were 

injected i.p. with 100 µg of a goat anti-PDGF-C neutralizing antibody (AF1447, Bio-techne) 

solubilized in PBS on day -2 and -1 prior to analysis.   

 

Murine tissue staining 

Mouse mammary tumors were fixed overnight (O.N.) in 4% paraformaldehyde, followed by 

O.N. dehydration in 30% sucrose prior to embedding in OCT and snap freezing in liquid 

nitrogen. Frozen sections from these tumors were fixed in 4% paraformaldehyde in PBS for 

10 mins at RT and were washed in Tris Buffered Saline (100mM Tris, 140mM NaCl), 0.05%, 

Tween 20, pH7.4 (TBST) and blocked with TBST, 10% donkey serum (Sigma-Aldrich), 0.2% 

Triton X-100. Immunofluorescence was performed as previously described (2). The following 

antibodies and dilutions were used: F4/80 1:100 (C1:A3-1, Bio-RAD), αSMA 1:100 (AS-

29553, Anaspec), CD31 1:100 (MEC13.1, Biolegend), CD31 1:100 (ab28364 Abcam), 

mKi67 1:100 (AF649 R&D), CD34 1:100 (RAM34, Invitrogen), desmin 1:100 (PA5-19063, 

Invitrogen). Primary antibodies were detected using antigen specific Donkey IgG, used at 

1:200: AlexaFluor® 488 anti-rabbit IgG, AlexaFluor® 488 anti-rat IgG, AlexaFluor® 568 anti-

rabbit IgG, AlexaFluor® 568 anti-goat IgG, AlexaFluor® 647 anti-rabbit IgG (Thermo Fisher 

Scientific). NL657 anti-rat goat IgG (R&D) and Cy3 anti-sheep donkey IgG (Jackson 

Immuno) were also used. Viable blood vessels were visualized in mice through i.v. injection 

of FITC-conjugated dextran (MW20,000, Thermo Fisher Scientific) 20 min prior to sacrifice. 

Nuclei were stained using 1.25 μg/ml 4’,6-diamidino-2-phenylindole,dihydrochloride (DAPI) 

(Thermo Fisher Scientific). Images were acquired using a Nikon Eclipse Ti-E Inverted 

spinning disk confocal with associated NIS Elements software. Quantitative data was 

acquired from the images using NIS Elements software.  

 

Human tissue staining 

FFPE human breast adenocarcinoma tissue sections of 4 µm were incubated at 60°C for 1 

h, before being deparaffinized with Tissue-Tek® DRS™2000, Sakura. Heat-induced antigen 

retrieval was performed using a pressure cooker (MenaPath Access Retrieval Unit, 
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PASCAL). The slides were immersed in modified citrate buffer pH 6 and gradually heated to 

125°C. Excess of antigen retrieval buffer was washed firstly with distilled water followed by 

PBS, before incubation of the slides in blocking buffer containing 0.5% Triton and 5% 

donkey serum (Sigma) for 30 mins at room temperature. The sections were then probed with 

anti-CD68 1:100 (KP1, Invitrogen), anti-αSMA 1:200 (1A4, Sigma-Aldrich) and anti-CD31 

1:100 (EP3095, Abcam) diluted in blocking buffer overnight at 4°C. After further washing, 

sections were stained for 2 h with donkey IgG antibodies purchased from Jackson 

Immunoresearch and used at 1:600; AlexaFluor® 647 anti-mouse IgG and AlexaFluor® 488 

anti-rabbit IgG. After washing in PBS, the sections were incubated with anti-αSMA 

conjugated with CY3 probe 1:200 (1A4, Sigma-Aldrich). Counterstaining was performed with 

1:2000 DAPI (Cell Signalling Technology) for 5 mins, followed by a wash step using PBS. 

Mounting medium (Fluorsave, Millipore) was applied to the slides. Images were acquired 

using a Nikon Eclipse Ti-E Inverted spinning disk confocal with associated NIS Elements 

software. 

 

Flow cytometry  

Flow cytometry was performed as previously described (6). The following antibodies against 

the indicated antigen were purchased from Thermo Fisher Scientific and were used at 1 

µg/ml unless stated otherwise: CD3ε APC and PE (145-2C11), CD4 FITC (RM4-5), CD8β 

eFluor®450 (H35-17.2), CD11b APC-eFluor®780 (M1/70), CD11b BV510 (M1/70), CD11c 

APC (N418), CD16/32 (2.4G2; Tonbo Biosciences), CD19 APC (6D5; Biolegend®), CD29 

APC (eBioHMb1-1), CD31 eFluor® 450 and PE (390), CD34 FITC and APC (RAM34), CD45 

APC-eFluor® 780, FITC and PerCP-Cy5.5 (30-F11), CD90.2 eFluor® 450 (53-2.1), CD90.1 

eFluor® 450 (HIS51), CD90.1 BV510 (OX-7), CD103 PE (2E7), CD206 APC (FAB2535A; 

Bio-Techne), F4/80 PE (BM8; Biolegend®), F4/80 BV421 (BM8; Biolegend®), FAP (10 µg/ml, 

AF3715, Bio-Techne), Ly6C PE and eFluor® 450  (HK1.4), Ly6G FITC (1A8; Biolegend®), 

Lyve-1 AlexaFluor® 488 (ALY7), MHCII PE and FITC (M5/114.15.2), NK1.1 APC (PK136), 

PDGFRα PerCP-Cy5.5  (APA5), Ly6A/E AlexaFluor® 700 (D7). Where stated, the following 

corresponding isotype control antibodies at equivalent concentrations to that of the test stain 

were used: Armenian Hamster IgG APC (eBio299Arm), goat IgG APC and PE (Bio-techne), 

rat IgG2a APC, PE and FITC (eBR2a) and rat IgG2b APC and eFluor® 450 (eB149/10H5). 

Intracellular stains were performed as previously described (6). Dead cells and red blood 

cells were excluded using 1 µg/ml 7-amino actinomycin D (7AAD; Sigma-Aldrich), Fixable 

Viability Dye eFluor® 780 (Invitrogen) or DAPI alongside anti-Ter-119 PerCP-Cy5.5 or APC-

eFluor® 780 (Ter-119; Invitrogen). The FAP primary antibody was detected with a secondary 
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biotin-conjugated anti-goat/sheep mouse IgG and 1:1000 Streptavidin PE-Cy7 (Thermo 

Fisher Scientific). EdU was detected using the Click-IT Plus Flow Cytometry Assay with 

AlexaFluor® 488 (Thermo Fisher Scientific) in accordance with the manufacturers’ 

specifications. Briefly, cells were stained with cell surface antibodies and then fixed and 

permeabilized and the click chemistry reaction was performed as specified with AF488-

conjugated Picolyl Azide to identify EdU incorporated into the genomic DNA. Cells were 

sorted to acquire pure populations using a FACSAria (BD Biosciences). Data were collected 

on a BD FACS Canto II (BD Biosciences) or a BD LSR Fortessa (BD biosciences). Data was 

analyzed using FlowJo software (BD biosciences). Unsupervised clustering of flow cytometry 

data was performed using the ImmunoCluster package (60). Briefly, the single-cell data was 

asinh transformed with cofactor of 150 and clustering was performed with and ensemble 

method using FlowSOM (42) and ConsensusClusterPlus (61) to k=8 clusters, based on the 

elbow criterion, which were manually merged based on expression profiles into biologically 

meaningful populations as previously outlined (62). Dimensionality reduction for visualization 

purposes was performed with UMAP (22).  

 

Quantitative real time quantitative PCR 

mRNA was extracted from FACS-sorted cell populations using the Trizol method and 

converted to cDNA/amplified using the CellAmp™ Whole Transcriptome Amplification Kit 

(Real Time), Ver. 2 kit (Takara) according to the manufacturer’s protocol. mRNA of interest 

was measured using the SuperScriptTM III PlatinumTM One-Step qRT-PCR Kit (Thermo 

Fisher Scientific) according to the manufacturer’s protocol with the primers/probes Actb 

Mm02619580_g1 and Pdgfc Mm00480295_m1 (Thermo Fisher Scientific). Expression is 

represented relative to the housekeeping gene Actb. Gene expression was measured using 

an ABI 7900HT Fast Real Time PCR instrument (Thermo Fisher Scientific).   

 

Single-cell RNA-sequencing 

TAMs (CD45+Ly6G-CD11b+F4/80hi) were sorted from enzyme-digested MMTV-PyMT tumors 

and a total of 10,502 TAMs were sequenced from three MMTV-PyMT tumors and run 

through the 10x Genomics Chromium platform. An average of 43k reads per cell, a median 

of 2,400 genes and median UMI count of 9,491 per cells was obtained. Single-cell 

suspensions were prepared as outlined in the 10x Genomics Single Cell 3’ V3 Reagent kit 

user guide (10x Genomics). Briefly, samples were washed with PBS (Gibco) with 0.04% 

bovine serum albumin (Sigma-Aldrich) and resuspended in 1�ml PBS, 0.04% BSA. Sample 

viability was assessed using trypan blue (Thermo Fisher Scientific) exclusion and an EVE 
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automated cell counter (Alphametrix) in duplicate, in order to determine the appropriate 

volume for each sample to load into the Chromium instrument. The sorted TAMs were 

loaded onto a Chromium Instrument (10x Genomics) to generate single-cell barcoded 

droplets according to the manufacturers’ protocol using the 10x Genomics Single Cell 3’ V3 

chemistry. cDNA libraries were prepared as outlined by the Single Cell 3′ Reagent kit v3 

user guide and each of the three resulting libraries were sequenced on one lane each of a 

HiSeq 2500 (Illumina) in rapid mode. 

 

Single-cell RNA-sequencing data processing and analysis 

The raw sequenced data was processed with the Cell Ranger analysis pipeline version 3.0.2 

by 10x Genomics (http://10xgenomics.com/). Briefly, sequencing reads were aligned to the 

mouse transcriptome mm10 using the STAR aligner (63). Subsequently, cell barcodes and 

unique molecular identifiers underwent Cell Ranger filtering and correction. Reads 

associated with the retained cell barcodes were quantified and used to build a transcript 

count tables for each sample. Downstream analysis was performed using the Seurat v3 R 

package (64). Before analysis, we first performed quality control filtering with the following 

parameters: cells were discarded on the following criteria: where fewer than 800 unique 

genes detected, reads composed greater than 12% mitochondrial-associated gene 

transcripts and cells whose number of reads detected per cell was greater than 65k for 

sample 1 and 2, 60k for sample 3. All genes that were not detected in at least ten single cells 

were excluded. Based on these criteria the final dataset contained 9,615 TAMs with 25,142 

detected genes. The data was first normalized using the LogNormalize function and a scale 

factor of 10,000. The 2,000 genes with highest variance were selected with the 

FindVariableGenes function. In order to minimize the effect of cell cycle associated genes in 

the dimensionality reduction and clustering, cell cycle associated genes defined by the GO 

term ‘Cell Cycle’ were removed from the variable gene dataset resulting in 1,765 variable 

genes. Principal component (PC) analysis was used on the highly variable genes to reduce 

the dimensionality of the feature space and 35 significant PCs were selected for downstream 

analysis. To reduce biases caused by technical variation, sequencing depth and capture 

efficiency, the three sequencing samples were integrated using the Seurat integration 

method (64) as specified. Clusters were identified by a graph based SNN clustering 

approach within Seurat using the resolution parameters 0-1 in steps of 0.1, followed by 

analysis using the Clustree R package (65). Finally, we used resolution parameter of 0.4 to 

define 10 clusters. Differentially expressed genes were identified using the FindAllMarkers 

function where the genes must be detected in a minimum of 25% of cells and have a logFC 

threshold of 0.25. After identifying marker genes, we excluded two clusters which contained 
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suspected contaminating epithelial cells (enriched in Epcam, Krt18, Krt8) and dying low-

quality cells (enriched in mitochondrial genes and ribosomal subunit genes). Ultimately, we 

identified 8 relevant clusters. We used the Slingshot R package (23) to investigate inferred 

developmental trajectories in our TAM population. Briefly, dimensionality reduction was 

performed using diffusion maps with the Destiny R package (54) using the significant PCA 

principal components used for clustering. A lineage trajectory was mapped into the diffusion 

space using the first 15 diffusion components (DCs) by Slingshot and each cell was 

assigned a pseudotime value based on its predicted position along the predicted trajectories. 

We selected the cluster TAM01 as the base state for the trajectory because it had the lowest 

M1/M2 activation-associated gene score amongst the terminal trajectory branch clusters, no 

discriminating upregulated GO pathways and the fewest differentially expressed genes and 

represented the most naïve TAM transcriptomic base state. To detect non-linear patterns in 

gene expression over pseudotime trajectory, we used the top variable gene set and 

regressed each gene on the pseudotime variable we generated, using a general additive 

model (GAM) with the GAM R package (37). Heatmaps were generated with the 

ComplexHeatmap package (46).  

 

Bulk RNA-sequencing 

Cells were sorted directly into RLT plus buffer (Qiagen) supplemented with 2-β-

mercaptoethanol (BME) (Gibco) and lysates were immediately stored at -80°C until used. 

RNA was extracted with the RNeasy Plus Micro kit (Qiagen) as per the manufacturers’ 

protocol, in addition to on-column DNase digestions specified by the manufacturer (Qiagen). 

cDNA was generated and amplified using the SMARTseq v4 Ultra Low Input RNA Kit 

(Clontech) on the contactless Labcyte liquid handling system (Beckman Coulter Life 

Sciences). Two hundred ng of amplified cDNA was used from each sample where possible 

to generate libraries using the Ovation Ultralow Library System V2 kit (NuGEN). In brief, 

cDNA was fragmented through sonication on Covaris E220 (Covaris Inc.), repaired, and 

polished followed by ligation of indexed adapters. Adapter-ligated cDNA was pooled before 

final amplification to add flow cell primers. Libraries were sequenced on HiSeq 2500 

(Illumina) for 100 paired-end cycles in rapid mode. 

 

Bulk RNA-sequencing data processing and analysis 

Pre-alignment QC for each sample, independently for forward and reverse reads, was 

performed using the standalone tool FastQC. Reads were trimmed using Trimmomatic (66) 
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and aligned to the reference genome (mm10) using HISAT2 (67). PCR duplicates were 

removed using SAMtools (68). Counts were generated using the GenomicAlignment (69) 

package using mm10. Prior to performing differential gene expression analysis, genes with 

very low expression were discarded. Differential expression analysis was performed with 

DESeq2 (70) package in R. The test statistics’ p-values were adjusted for multiple testing 

using the procedure of Benjamini and Hochberg. Genes with adjusted p-values lower than 

0.05 and absolute log2 fold change greater than 1 were considered significant. 

 

 

Gene ontology pathway enrichment analysis 

Enriched pathways were identified based on differentially expressed genes using 

gProfiler(71) (http://www.biit.cs.ut.ee/gprofiler/). We used pathways gene sets from the 

‘biological processes’ (GO:BP) of Gene Ontology (http://www.geneontology.org/).  All p-

values were adjusted for multiple testing using the procedure of Benjamini and Hochberg. 

  

Ligand:receptor mapping analysis 

Ligand:receptor mapping was performed with the online implementation of the CellPhoneDB 

v1.0 tool (https://www.cellphonedb.org/) (72) run without the statistical method. Cell type 

ligand:receptor interactome was generated with bulk RNA-seq data as input, selecting genes 

with expression of 16 normalized counts or greater as input. The resulting interaction list was 

filtered by selecting non-integrin mediated interactions and TAM ligands that were enriched 

in the TAM06 scRNA-seq population in the ligand:receptor pairs, finally selecting for ligands 

present in the GO term ‘growth factor activity’ that were investigated further as potential 

candidates.   

 

Computational analysis of cancer patient data 

RSEM normalized expression datasets from the Cancer Genome Atlas (TCGA) were 

downloaded from the Broad Institute Firehose resource (https://gdac.broadinstitute.org/) and 

analyzed using custom R scripts. The CAF1 gene expression signature was generated by 

taking the mean normalized log2-transformed expression value of the component signature 

genes. The CAF1 gene signature genes were selected from the top 25 differentially 

expressed CAF1 genes by Log Fold change as the maximum set for which a significant 
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positive correlation was observed between all genes and ACTA2 (αSMA). The final gene set 

was as follows: ACTA2, MMP13, LRRC15, COL10A1, SPON1, COL1A1.  

 

Statistics  

Normality and homogeneity of variance were determined using a Shapiro-Wilk normality test 

and an F-test respectively. Statistical significance was then determined using a two-sided 

unpaired Students t test for parametric, or Mann-Whitney test for nonparametric data using 

GraphPad Prism 8 software. A Welch’s correction was applied when comparing groups with 

unequal variances. Statistical analysis of tumor growth curves was performed using the 

“compareGrowthCurves” function of the statmod software package (73). No outliers were 

excluded from any data presented.  

 

Study approval 

All experiments involving animals were approved by the Animal and Welfare and Ethical 

Review Boards of King’s College London and the University of Birmingham, and the Home 

Office UK. Human breast adenocarcinoma tissue was obtained with informed consent under 

ethical approval from the King’s Health Partners Cancer Biobank (REC reference 

12/EE/0493).  

 

Data availability 

The transcriptomic datasets that support the findings of this study will be made available 

through the Gene Expression Omnibus. The authors declare that all other data supporting 

the findings of this study are available within the paper and its supplementary information 

files.  
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Figure 1. ScRNA-seq of TAMs in MMTV-PyMT tumors reveals three distinct 
polarization pathways. (A) Schematic outlining the scRNA-seq experimental workflow 
which was conducted for n=3 individual MMTV-PYMT tumors and mice, sequencing a total 
of 9,039 cells using the 10X Genomics’ Chromium platform. (B) UMAP plot of sequenced 
TAMs colored by their associated cluster identity. (C) UMAP visualizations of predicted 
marker gene expression for distinct TAM clusters shown in (B). (D) Violin plots of selected 
genes associated with TAM cluster identity seen in (B). (E) The relative proportion of each 
TAM cluster across the individual MMTV-PyMT tumors analyzed. (F) Heatmap representing 
significantly upregulated GO pathway terms in one or more TAM clusters. (G,H) Scatter plot 
of single cells projected into two dimensions using diffusion maps, where each cell (dot) is 
colored by cluster identity, labeled with diffusion component (DC) space annotation 
representing lineage trajectories predicted by the Slingshot package (G) and schematic map 
of each TAM cluster’s location along the respective trajectories (H).  
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Figure 2. Lyve-1 marks a pro-tumoral perivascular TAM population. (A,B) TAM clusters 
identified in Fig.1 using scRNA-seq (n=3 mice) were assessed for their similarity to M1/2 
macrophage polarization programs. (A) Box and whisker plots show normalized mean M1 
and M2 associated gene scores across the indicated TAM clusters identified. (B) Scatter plot 
of normalized mean M1/M2 gene score plotted by individual cell (dot) and colored according 
to their respective TAM cluster. Blue line represents y=x line for reference. (C,D) Subset 
unique, significantly upregulated GO terms based on differentially expressed genes between 
the two terminal Mrc1high TAM subsets identified in the TAM scRNA-set dataset (C), volcano 
plot showing differentially expressed genes between the two subsets of pro-tumoral TAM 
(D). (E-G) Schematic of Slingshot trajectory analysis of TAM clusters highlighting predicted 
Mrc1 expressing clusters. The clusters where Mrc1 was not identified as a differentially 
expressed gene are greyed out (E), and mapping of these clusters predicted by the scRNA-
seq dataset onto a contour plot of FACs-gated live (7AAD-) CD206+ F4/80hi TAMs from 
enzyme-dispersed MMTV-PyMT tumors. TAM populations are separated based on their 
respective expression of CD206 and MHCII (left panel) and then assessed for their 
expression of Lyve-1, shown as histograms (right panel; colored shaded histograms) against 
that of the isotype control staining of F4/80+ TAMs (open black line) (F) and quantification of 
the gated populations (G). Data representative of n=4 tumors. (H-J) Diagram of the FACs 
gating strategy for TAM populations sorted for bulk RNA-seq (n=5 tumors) (H), PCA plot of 
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the bulk-sequenced TAM populations using the top 2,000 most variable genes (I) and 
heatmaps comparing the relative expression of selected differentially expressed genes for 
TAM clusters (left), population color is indicative of the populations identified in (H,I) and 
isolated TAM populations subjected to bulk RNA-seq (right panel), (J). (K-N) Schematic for 
experimental approach and dosing strategy to label PvTAMs using Dil-labeled liposomes 
(K). Representative images of frozen sections of MMTV-PyMT tumors showing DAPI (nuclei; 
blue), i.v. dextran marking vasculature (green), Dil from the liposomes (red) and antibody 
staining against F4/80 (magenta), left shows an example Dil-labeled TAM and right panel 
shows a larger tumor area displaying co-localizing pixels for Dil and F4/80 as white. White 
arrows highlight example pvTAM cells which have been labeled by Dil-containing liposomes 
(L) Scale bar 25μm (left panel) and 50μm (right panel). Quantification of the spatial location 
of Dil+ F4/80+ TAMs relative to vasculature (Pv-perivascular) across multiple sections in each 
tumor across n=5 mice (M). Analysis of the TAM population phenotype up-taking Dil-
liposomes from enzyme-dispersed tumors within the F4/80hi CD206+ subsets – gate as 
shown (left) and histogram of the indicated TAM subsets Dil fluorescence (right) (N). Box 
and whisker plots, the boxes show median and upper and lower quartiles and whiskers 
shows the largest value no more than 1.5*IQR of the respective upper and lower hinges, 
outliers beyond the end of the whisker are plotted as individual dots. Bar charts represent 
mean and the dots show individual data points from individual tumors and mice. ** P<0.01, 
*** P<0.001. 
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Figure 3. Lyve-1+ pvTAM depletion slows tumor growth and is associated with a 
concurrent loss of perivascular αSMA+ stromal cells. (A) Schematic for experimental 
approach and dosing strategy to deplete Lyve-1+ TAMs using clodronate-filled liposomes. 
Arrows represent days of treatment. (B) Growth curves of MMTV-PyMT tumors in mice 
treated with control PBS-filled liposomes (Cntrl-lip) or clodronate-filled liposomes (Clod-lip) 
as shown in panel (A), arrow marks the initiation of treatment, (cohorts of n=6 mice). (C-I) 
Tumors were excised at day 15 post initiation of administration of clodronate-filled liposomes 
shown in (B), enzyme-dispersed and assessed using flow cytometry (n=5-6 tumors in each 
condition) for; (C) Abundance of live (7AAD-) CD45+Ly6C-F4/80+CD206+ TAMs from 
enzyme-dispersed MMTV-PyMT tumors measured by flow cytometry. (D) Schematic of 
CD206+ TAM clusters identified in scRNA-seq (left in color), and a representative flow 
cytometry contour plots showing both cntrl- and clodronate-filled liposome treated tumors 
demonstrating depletion of CD206hiMHCIIlo(Lyve-1+) TAMs within the CD45+Ly6C-F4/80+ 
TAM gate (right) and (E) their quantification. (F) Abundance of live (7AAD-) CD45+Ly6C-

F4/80+CD206- TAMs and (G) live CD45+CD11b+Ly6C+ monocytes. (H) Representative 
images of frozen sections of tumor sections from mice treated with cntrl- or clodronate-filled 
liposomes stained with DAPI (nuclei; blue) and antibodies against F4/80 (green) and CD31 
(red). Scale bar represents 50μm (left panel) and 100μm (right panel). (I) The abundance of 
major immune cell types in the tumor microenvironment measured by flow cytometry. (J-L) 
Representative images of frozen sections of MMTV-PyMT tumors from mice treated with 
cntrl- or clodronate-filled liposomes stained with antibodies against CD31 (green) and αSMA 
(red), scale bar represents 100μm (left and right panels) (J) and the quantification of relative 
CD31+ pixel area (K) and αSMA+ pixel area (L) A total of n=12 sections were analyzed 
across the 6 tumors in each cohort. Growth curve in (B) is presented as mean ± s.e.m and 
bar charts represent mean and the dots show individual data points from individual tumors 
and mice. * P<0.05, ** P<0.01, ***P<0.001.  
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Figure 4. Lyve-1+ TAMs orchestrate pericyte-like αSMA+ CAF expansion within the 
perivascular niche of the tumor. (A) Representative images of frozen sections of MMTV-
PyMT tumors stained with DAPI (nuclei; blue) and antibodies against F4/80 (magenta) and 
αSMA (red); functional vasculature was labeled in vivo using i.v. dextran-FITC (green). Scale 
bar represents 100μm. (B) Representative images of frozen sections from human invasive 
ductal mammary carcinoma (left) and DCIS (right) stained with DAPI (nuclei; blue) and 
antibodies against CD31 (green), CD68 (magenta) and αSMA (red), images representative 
of 5 patients. Scale bar represents 100μm (left panel) and 50μm (right panel). (C) 
Representative flow cytometry gating strategy for live (7AAD-) CD45- cells and CD31+ 
endothelial cells and CD90+ CAFs (left) and the abundance of CAFs at different tumor 
volumes (right), n=6 mice per condition. (D) Identification of CAF subsets by unsupervised 
clustering from multiparametric flow cytometry data using the FlowSOM algorithm. UMAP 
and unsupervised clustering was performed using the markers shown in the heatmap (right). 
UMAP plot shows individual cells colored by their unsupervised clustering assignment (left). 
Heatmap displays the relative marker expression of each marker among the two subsets 
(right), n=4 mice. (E) Representative gating strategy for flow cytometry sorting the predicted 
subsets of CAFs by unsupervised clustering analysis. (F) Bar plots depicting normalized 
gene expression values for the indicated genes in the two bulk RNA-sequenced CAF 
subsets (across n=5 mice), showing that the αSMA+ CAF population expresses pericyte 
markers (Acta2, Des, Pdgfb and Cspg4) in MMTV-PyMT tumors. (G) Abundance of the 
respective CAF populations during distinct stages of tumor progression, n=6 mice per stage. 
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(MG; mammary gland). (H) Schematic for experimental approach and dosing Edu into 
MMTV-PyMT mice to assess in vivo proliferation (left), proportion EdU+ cells within each 
CAF subset (right). (I) Established tumors in Kaede MMTV-PyMT mice were photoconverted 
to kaede red and then at 72h post photoconversion tumors were analyzed (schematic left) 
for their respective kaede red/green proportion using flow cytometry for evidence of 
peripheral recruitment (Kaede green cells). A representative unconverted tumor is shown for 
comparison (right top). (J) Representative images of frozen sections of MMTV-PyMT tumors 
stained with antibodies against F4/80 (green), αSMA (magenta) and the proliferation marker 
Ki67 (red). White arrows show αSMA+Ki67+ cells in contact with F4/80+ TAMs. (K) 
Schematic for experimental approach and dosing strategy to acutely deplete Lyve-1+ pvTAM 
with clodronate-filled liposomes. (L) Abundance of TAM CD206+TAM populations following 
cntrl- or clodronate-filled liposome treatment (n=6 mice cntrl-lip and n=5 mice clod-lip). (M) 
Abundance of CD45- cell populations (cohorts of n=6 mice). (N) Proportion of EdU+ cells 
within each CD45- cell subset, (cohorts of n=6 mice). Bar charts represent mean, error bars 
represent s.d. and the dots show individual data points from individual tumors and mice. * 
P<0.05, ** P<0.01, ***P<0.001. 
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Figure 5. Lyve-1+ TAMs communicate to αSMA+ CAFs in the perivascular niche via a 
pro-proliferative PDGF-CC:PDGFR-α interaction (A) Circos plot showing predicted 
crosstalk of perivascular ligand-receptor interactions as identified by CellPhoneDB from the 
respective RNA-seq datasets. Outer sectors and links between sectors are weighted 
according to the total number of annotated ligand-receptor interactions between each 
respective cell type. (B) Schematic representing the method of cell type ligand-receptor 
interactome generation. (C) Heatmap showing the Lyve-1+ TAM (TAM06) and αSMA+ CAF 
population-specific secretome generated using data from (A) and the method outlined in (B) 
diagram displaying the ligand:receptor pairs between Lyve-1+ TAMs (TAM06) and αSMA+ 

CAFs and endothelial cells. The analysis highlighted a unique PDGF-CC:PDGFRα 
interaction specific to Lyve-1+ TAMs (TAM06) and αSMA+ CAFs. (D) Schematic map of each 
TAM cluster’s location along the respective trajectories marking the Lyve-1+ TAM population 
(left) and violin plots of Pdgfc expression associated with TAM clusters (right). (E-G) 
Schematic for experimental approach and dosing strategy to acutely inhibit PDGF-CC 
signalling using an anti-PDGF-CC neutralizing antibody (E). Abundance of indicated cell 
populations (F). Proportion of EdU+ cells within each CD45- cell subset, (cohorts of n=4 
mice) (G). (H) Bar plot depicting normalized gene expression values for Pdgfra in the bulk 
RNA-sequenced populations (left) across n=5 mice. (I) Representative histograms of surface 
PDGFRα staining on the indicated cells against isotype antibody staining of gated using flow 
cytometry analysis from enzyme-dispersed MMTV-PyMT tumors. (J) Schematic overview of 
the Lyve-1+ TAM supporting niche to support perivascular αSMA+ CAF expansion through its 
close proximity and high expression of PDGF-CC. Images in panel (B and J) was created 
using BioRender software. Bar charts represent mean and the dots show individual data 
points from individual tumors and mice, error bars represent s.d. * P<0.05. 
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