
rawR - Direct access to raw mass spectrometry data in R

Tobias Kockmann1‡ & Christian Panse1,2‡

2020-10-30 18:04:12

1Functional Genomics Center Zurich, ETH Zurich / University of Zurich, Winterthurerstrasse 190, 8057
Zurich, Switzerland
2Swiss Institute of Bioinformatics, Quartier Sorge - Batiment Amphipole, 1015 Lausanne, Switzerland

Abstract
The Bioconductor project has shown that the R statistical environment is a highly valuable tool for genomics
data analysis1, but with respect to proteomics we are still missing low level infrastructure to enable perfor-
mant and robust analysis workflows in R. Fundamentally important are libraries that provide raw data access.
Our R package rawDiag has provided the proof-of-principle how access to mass spectromerty raw files can
be realized by wrapping vendor-provided APIs, but rather focused on meta data analysis and visualization2.
Our novel package rawR now provides complete, OS independent access to all spectral data logged in Thermo
Fisher Scientific raw files. In this technical note we present implementation details and describe the main
functionality provided by the rawR package. In addition, we report two use cases inspired by real-word
research task that demonstrate the application of the package.

Availability: https://github.com/fgcz/rawR

Keywords
computational mass spectrometry, software, R package

Introduction
Mass spectromerty-based proteomics and metabolomics are the preferred technology to study the protein
and metabolite landscape of complex biological systems. The orbitrap mass analyzer is one of the key
innovations that propelled the field by providing HRAM data on a chromatographic time scale. Driven by
the need to analyze the resulting LC-MS data, several specialized software tools haven been developed in the
last decade. In the academic environment, MaxQuant and Skyline are beyond the most popular ones. These
software tools usually offer GUIs that control running predefined analysis templates/workflows including free
parameters that need to be defined by the user. In parallel, projects like OpenMS or pytemocis developed,
but chose a fundamentally different approach. They aim at providing software libraries bound to specific
programming languages like C++ or Python. These naturally offer greater analytical flexibility, but require
programming skills form the end user and have therefore not reached the popularity of their GUI counterparts.
Proteomics and metabolomics specific libraries have also been developed for the R statistical environment,
but these mainly support high-level statistical analysis, once the raw measurement data has undergone
extensive pre-processing and aggregation by external software tools (often the GUI-based once listed above).
A typical example is the R package MSstats for the statistical analysis of LS-MS experiments with complex
designs or MSqRob. MSstats can process MaxQuant or Skyline output and creates protein/peptide level
estimates whether the biological system shows statistically significant regulation. In a nutshell, these tools
provide statistical post processing. Libraries that support working with the spectral data in R also exist,
for instance the BioC package MSnbase, but require conversion of raw data to exchange formats like mzML.
These conversion are primarily supported by the ProteWizard project and its software tool MSconvert.

1

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted November 2, 2020. ; https://doi.org/10.1101/2020.10.30.362533doi: bioRxiv preprint

https://github.com/fgcz/rawR
https://maxquant.org/
https://skyline.ms/project/home/begin.view?
https://www.openms.de/
https://github.com/levitsky/pyteomics
https://www.r-project.org/
http://msstats.org/
https://github.com/statOmics/MSqRob
https://www.bioconductor.org/packages/release/bioc/html/MSnbase.html
http://www.psidev.info/mzML
http://proteowizard.sourceforge.net/
https://doi.org/10.1101/2020.10.30.362533

We strongly believe that a library providing raw data reading functionally would finally close the gap and
facilitate modular end-to-end analysis pipeline development in R. This could be of special interest to research
environments/projects dealing with either big data analytics, or to scientists that are interested in code
prototyping without having a formal computer science education. Another key aspect regarding multi omics
integration of proteomics and metabolomics data is the fact that high-throughput genomic data analysis is
already done mostly in R. So proteomics and metabolomics could finally “join the party”! This is primarily
due to the BioC project that currently provides >1900 open source software packages, training & teaching,
and a very active user & developer community1. Having these thoughts in mind we decide to implement
our R package rawR. rawR utilizes a vendor-provided API to access spectral data logged in proprietary raw
files. These binary files are written by all orbitrap mass spectrometers, unlocking an incredible amount of
the global LC-MS data, also stored in public repositories like ProteomeExchange. In this manuscript, we
present a first package version/release and show case its usage for bottom-up proteomics data analysis.

Implementation
Our implementation is build on two layers, the R and the C# layer which exchange information using file i/o.
The following section describes the package topology from top-down, starting with a rational for the object
design.

R

Mass spectrometry (MS) typically uses two basic data items: mass spectra and chromatograms.

Spectra

All mass spectra are recorded by scanning detectors (mass analyzers) that log signal intensities for ranges of
mass to charge ratios (m/z), also referred to as position. These recordings can be of continuous nature, so
called profile data (p), or appear centroided (c) in case discrete information (tuples of position and intensity
values) are sufficient. This heavily compacted data structure is often called a peak list. In addition to signal
intensities, peak list can also cover additional peak attributes like peak resolution (R), charge (z), or local
noise estimates.

Chromatograms

Chromatograms come in different flavors, but are always signal intensity values as a function of time. Signal
intensities can be point estimates from scanning detectors or plain intensities from non scanning detectors
(e.g. UV trace). Scanning detector (mass analyzers) point estimates can be defined in different ways by
for instance summing all signals of a given spectrum (total ion chromatogram or TIC), or by extracting
signal around an expected value (extracted ion chromatogram = XIC), or by using the maximum signal
contained in a spectrum (base peak chromatogram = BPC). On top, chromatograms can be computed from
pre-filtered lists of scans. A total ion chromatogram (TIC) for instance is typically generated by iterating
over all MS1-level scans.

We therefore decided to implemented corresponding objects following Rs S3 OOP system named
rawRspectrum and rawRchromatogram that closely resemble the above definitions3. The package provides
functions to create and validate class instances (objects), but typically instances are generated by reader
functions that expect rawfiles as input data (see Table 1. for an overview). We refer to collections of
objects as sets (e.g. rawRspectrumSet). The constructors (rawRspectrum() and rawRchromatogram())
primarily exist for (unit) testing proposes, or for simulating data (no binary input data is required). One
can for instance generated spectra showing predefined patterns (ion series derived from a peptide sequence)
or sample from base Rs collection of distributions (in preparation). We also implemented basic generics
for printing and plotting of objects that we use for visualization throughout this manuscript. To minimize
dependencies, we choose to stick to base R, but it would be relatively easy to write your own plotting
functions using lattice or ggplot. The reader functions typically call compiled C# code (see next section).
We call these C# methods wrappers.

2

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted November 2, 2020. ; https://doi.org/10.1101/2020.10.30.362533doi: bioRxiv preprint

https://www.bioconductor.org/
http://www.proteomexchange.org/
https://doi.org/10.1101/2020.10.30.362533

C#

The base::system2 R function invokes methods compiled in the compiled rawR.exe .NET application.
rawR.exe utilizes the NewRawFileReader .Net assembly provided by Thermo Fisher Scientific4. Therefore,
it can read the proprietary vendor files and pass R code for S3 class R5 objects back to the R layer of rawR.
The C# source code and a precompiled binary is shipped with the released R package and runs on Linux,
Microsoft Windows, and MacOSX on the X86_64 hardware architecture. On Linux and MacOS the mono
compiler is required to run the wrapper functions.

Example binary data

The example file (MD5: a1f5df9627cf9e0d51ec1906776957ab) used throughout this manuscript contains
fourier-transformed orbi trap spectra (FTMS) recorded on a Thermo Fisher Scientific Q Exactive HF in
positive mode (+). The mass spectrometer was operated in line with a nano UPLC and a nano electrospray
source (NSI). MS2 spectra were generated by HCD fragmentation at a normalized collision energy (NCE) of
27. All spectra were written to disk after applying centroiding (c) and lock mass correction. The analyzed
sample consists of the iRT peptide mix (Biognosys) in a tryptic BSA digest (NEB) and was separated
applying a 20 min linear gradient on C18 RP material at a constant flow rate of 300 nl/min.

Additional raw data for demonstration and extended testing is available through the BioC data package
tartare. Lions love raw meat!

Results
The following sections are inspired by real-life research/infrastructure projects, but have been stripped down
to the bare scientific essentials in order to put more weight on the software application. We display source
code in grey shaded boxes including syntax highlights. Corresponding R command line output starts with
and is shown directly below the code fragment that triggered the output. All figures are generated using
the generic plotting functions of the package.

Table 1: lists the most important rawR package functions connected
to reading functionality. More details can be found in the package
documentation.

Function Name Description Return value
readFileHeader Reads meta information from a rawfile header. list
readIndex Reads scan index from a rawfile. data.frame
readSpectrum Reads spectral data from a rawfile rawRspectrum(Set)
readChromatogram Extracts chromatograms (TIC, BPC, or XIC)

from a rawfile
rawRchromatogram(Set)

Use Case I - Analyzing orbi trap spectra

The orbitrap detector has been a tremendous success story in MS, since it offers high resolution, accurate mass
(HR-AM) data on a time scale that is compatible with chromatographic analysis (LC-MS). It is therefore
heavily used for bottom-up proteomics, but analyzing orbitrap data in R has so far only been possible after
raw data transformation to exchange formats like mz(X)ML. This use case shows how easy it is to work
directly with the binary raw data, after installing our R package rawR that applies vendor APIs for data
access. For demonstration purposes we use a complete LC-MS run recorded on a Q Exactive HF Orbitrap.
The 35 min run resulted in 2.1881 × 104 scans that were written to disc. Already type setting the above
lines uses rawR functionality, since the instrument model, the time range of data acquisition, and the number
of scans is extracted from the binary file header (Note: This manuscript was written in R markdown and
combines R code with narration). The respective function is called readFileHeader() and returns a simple
R object of type list (see Table 1).

3

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted November 2, 2020. ; https://doi.org/10.1101/2020.10.30.362533doi: bioRxiv preprint

https://www.mono-project.com/
http://fgcz-ms.uzh.ch/~cpanse/20181113_010_autoQC01.raw
https://bioconductor.org/packages/tartare/
https://doi.org/10.1101/2020.10.30.362533

Individual scans or collection (sets) of scans can be read by the function readSpectrum() which returns a
rawRspectrum object or rawRspectrumSet. Our package of course also provides generics for printing and
plotting these objects. The following code chunk depicts how a set of scans is read from the rawfile and the
corresponding Figure 1 shows the resulting plot for scan 9594:
library(rawR)
rawfile <- file.path(Sys.getenv('HOME'), "Downloads", "20181113_010_autoQC01.raw")
scan numbers (PSMs) derived from DB search
i <- c(9594, 11113, 11884, 12788, 12677, 13204, 13868, 14551, 16136, 17193, 17612)
S <- rawR::readSpectrum(rawfile = rawfile, scan = i)
class(S[[1]])

[1] "rawRspectrum"
summary(S[[1]]) #comment this line if necessary to save space

Total Ion Current: 62374688
Scan Low Mass: 100
Scan High Mass: 1015
Scan Start Time (Min): 15.42
Scan Number: 9594
Base Peak Intensity: 12894520
Base Peak Mass: 860.4223
Scan Mode:
FTMS + c NSI Full ms2 487.2567@hcd27.00 [100.0000-1015.0000]
plot(S[[1]], centroid=TRUE)

The plot shows typical orbitrap peak attributes like resolution (R) and charge (z) above the most intense
peaks when centroided data is available and selected. Centroided data also makes it possible to graph spectra
using signal-to-noise as response value. This is potentially interesting, since orbitrap detectors follow

𝑆/𝑁 ∼ 𝑐ℎ𝑎𝑟𝑔𝑒𝑠 ⋅
√

𝑅

and signal-to-noise makes judging the signal quantity more intuitive than using arbitrary signal intensity
units. Figure 2 shows that all fragment ion signals are several ten or even hundred fold above the local noise
estimate.
plot(S[[1]], centroid=TRUE, SN = TRUE)

S/N threshold indicator
abline(h = 5, lty = 2, col = "blue")

decorate plot with y-ion series of target peptide
yIonSeries <- c(175.1190, 276.1666, 375.2350, 503.2936, 632.3362, 746.3791,

803.4006, 860.4221)

names(yIonSeries) <- paste0("y", seq(1, length(yIonSeries)))
abline(v = yIonSeries, col='#DDDDDD88', lwd=5)
axis(3, yIonSeries, names(yIonSeries))

More sophisticated analysis workflows applying rawR functionality have been described in7. In short, marker
ions found in HCD MS2 spectra for ADP-ribosylated peptides were annotated and cross compared at different
collision energies. You may have notices that such things become relatively simple, since the rawRspectrum
object provides easy access to normalized and absolute collision energies. A small molecule application using
UVPD dissociation is described in8.

4

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted November 2, 2020. ; https://doi.org/10.1101/2020.10.30.362533doi: bioRxiv preprint

https://doi.org/10.1101/2020.10.30.362533

200 400 600 800 1000

0.
0e

+
00

5.
0e

+
06

1.
0e

+
07

1.
5e

+
07

Centroid m/z

C
en

tr
oi

d
In

te
ns

ity

860.4223
z = 1

R = 17106

803.4009
z = 1

R = 17706

861.4250
z = 1

R = 17002503.2942
z = 1

R = 22106
276.1667

z = 0
R = 30002

375.2351
z = 1

R = 25706

632.3369
z = 1

R = 19806

171.1129
z = 0

R = 38002

843.3963
z = 1

R = 16906

175.1191
z = 0

R = 37302

Scan#: 9594
Scan Type: FTMS + c NSI Full ms2 487.2567@hcd27.00 [100.0000−1015.0000]
RT [s]: 925.225
Base peak mass [m/z]: 860.4223
Base peak intensity: 1.289452e+07
TIC: 6.237469e+07

Figure 1: Plot of scan number 9594 showing a centroided tandem mass spectrum of the iRT peptide precursor
LGGNEQVTR++ in positive mode. The scan was acquired on an orbitrap detector incl. lock mass correction
and using a transient of 64 ms (equal to a resolving power of 30’000 at 200 m/z) and injection of 100’000
charges (AGC target). Peak attributes like m/z, charge (z), and resolution (R) are shown above the peaks.

5

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted November 2, 2020. ; https://doi.org/10.1101/2020.10.30.362533doi: bioRxiv preprint

https://doi.org/10.1101/2020.10.30.362533

200 400 600 800 1000

0
10

0
20

0
30

0
40

0

Centroid m/z

C
en

tr
oi

d
S

ig
na

l/N
oi

se

Scan#: 9594
Scan Type: FTMS + c NSI Full ms2 487.2567@hcd27.00 [100.0000−1015.0000]
RT [s]: 925.225
Base peak mass [m/z]: 860.4223
Base peak intensity: 1.289452e+07
TIC: 6.237469e+07

y1 y2 y3 y4 y5 y6 y8

Figure 2: Spectrum plot using Signal/Noise option. The vertical grey lines indicate the in-silico computed
y-ions of the peptide precusor LGGNEQVTR++ as calculated by the protViz package6.

6

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted November 2, 2020. ; https://doi.org/10.1101/2020.10.30.362533doi: bioRxiv preprint

https://CRAN.R-project.org/package=protViz
https://doi.org/10.1101/2020.10.30.362533

Use Case II - iRT regression for system suitability monitoring

By applying linear regression one can convert observed peptide retention times (RTs) into dimensionless
scores termed iRT values (iRTs) and vice versa9. This can be used for retention time calibration/prediction.
In addition, fitted iRT regression models provide highly valuable information about LC-MS run performance.
In this example we show how easy it is to perform iRT regression in R by just using the raw measurement
data, our package rawR, and well known base R functions supporting linear modeling. To get a first im-
pression of the data we calculate a TIC using the readChromatogram() function. Plotting the TIC shows
chromatographic peaks between 15 and 28 min that could be of peptidic origin (Hint: There is also a type
= "bpc" option if your prefer a BPC):
plot(rawR::readChromatogram(rawfile = rawfile, type = "tic"))

0 5 10 15 20 25 30 35

0e
+

00
4e

+
08

8e
+

08

Retention Time [min]

In
te

ns
ity

TIC

File: 20181113_010_autoQC01.raw

Figure 3: TIC

plot(rawR::readChromatogram(rawfile = rawfile, type = "bpc"))

The initial step of iRT regression is now to estimate the empirical RTs of a peptide set with known iRT
scores. In the simplest case, this is achieved by computing an extracted ion chromatogram (XIC) for iRT
peptide precursors, given they were spiked into the sample matrix prior to data acquisition. Luckily ;-),
our example data is iRT peptides in a tyrptic digest of BSA. The code chunk below demonstrates how the
function readChromatogram() is called on the R command line to return a rawRchromatogramSet object of
the type xic. This object is plotted for visual inspection.
iRTmZ <- c(487.2571, 547.2984, 622.8539, 636.8695, 644.8230, 669.8384, 683.8282,

683.8541, 699.3388, 726.8361, 776.9301)

7

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted November 2, 2020. ; https://doi.org/10.1101/2020.10.30.362533doi: bioRxiv preprint

https://doi.org/10.1101/2020.10.30.362533

names(iRTmZ) <- c("LGGNEQVTR", "YILAGVENSK", "GTFIIDPGGVIR", "GTFIIDPAAVIR",
"GAGSSEPVTGLDAK", "TPVISGGPYEYR", "VEATFGVDESNAK",
"TPVITGAPYEYR", "DGLDAASYYAPVR", "ADVTPADFSEWSK",
"LFLQFGAQGSPFLK")

C <- rawR::readChromatogram(rawfile, mass = iRTmZ, tol = 10, type = "xic", filter = "ms")
plot(C, diagnostic = TRUE)

0 5 10 15 20 25 30

0e
+

00
2e

+
07

4e
+

07

Retention Time [min]

In
te

ns
iti

es

target mass [m/z]

487.2571
547.2984
622.8539
636.8695
644.823
669.8384
683.8282
683.8541
699.3388
726.8361
776.9301

File: 20181113_010_autoQC01.raw
Filter: ms
Type: xic
Tolerance: 10

Figure 4: XICs for iRT peptides precursors. Each XIC was calculated using a tolerance of 10 ppm around
the target mass and using only MS1 scans.

Be reminded that the intensity traces are not computed within R for instance by reading all scans of a raw file
and subsequently iterating over a scan subset (This would be a greedy, but slow solution!). Instead, traces are
directly calculated by a C# method (reference method code) that calls the vendor API. The API takes care
of the filtering process (checks filter validity and applies the filter). On the R level there is no need to know
a priori which scans match the filter rule, or implement vectorized operations (we generate multiple XICs
simultaneously here). Only the API-returned output needs to be parsed into rawRchromatogram objects. By
changing the filter, one can easily switch between generating precursor traces and fragment ion traces. The
following code chunk shows how to create fragment ion chromatograms (y6 to y8) generated from scans that
target LGGNEQVTR++:
plot(rawR::readChromatogram(rawfile = rawfile,

mass = yIonSeries[c("y6", "y7", "y8")],
type = 'xic', tol = 10,
filter = "FTMS + c NSI Full ms2 487.2567@hcd27.00 [100.0000-1015.0000]"))

8

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted November 2, 2020. ; https://doi.org/10.1101/2020.10.30.362533doi: bioRxiv preprint

https://doi.org/10.1101/2020.10.30.362533

15.5 16.0 16.5 17.0

0.
0e

+
00

4.
0e

+
06

8.
0e

+
06

1.
2e

+
07

Retention Time [min]

In
te

ns
iti

es

target mass [m/z]

746.3791
803.4006
860.4221

Figure 5: XICs for LGGNEQVTR++ fragment ions y6 to y8

9

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted November 2, 2020. ; https://doi.org/10.1101/2020.10.30.362533doi: bioRxiv preprint

https://doi.org/10.1101/2020.10.30.362533

You will immediately recognize that this means our example data was actually recorded using parallel
reaction monitoring (PRM), since 487.2567 was targeted in regular spaced intervals. You could confirm this
by using the readIndex() function which returns a data.frame that indexes all scans found in a raw file
and subsetting it for the scans of interest. The delta between consecutive scans is always 22 scans:
Idx <- rawR::readIndex(rawfile = rawfile)
head(subset(Idx,

scanType == "FTMS + c NSI Full ms2 487.2567@hcd27.00 [100.0000-1015.0000]"))

scan scanType
2 2 FTMS + c NSI Full ms2 487.2567@hcd27.00 [100.0000-1015.0000]
24 24 FTMS + c NSI Full ms2 487.2567@hcd27.00 [100.0000-1015.0000]
46 46 FTMS + c NSI Full ms2 487.2567@hcd27.00 [100.0000-1015.0000]
68 68 FTMS + c NSI Full ms2 487.2567@hcd27.00 [100.0000-1015.0000]
90 90 FTMS + c NSI Full ms2 487.2567@hcd27.00 [100.0000-1015.0000]
112 112 FTMS + c NSI Full ms2 487.2567@hcd27.00 [100.0000-1015.0000]
rtinseconds precursorMass MSOrder charge
2 0.412 487.2567 Ms2 2
24 2.543 487.2567 Ms2 2
46 4.675 487.2567 Ms2 2
68 6.805 487.2567 Ms2 2
90 8.936 487.2567 Ms2 2
112 11.067 487.2567 Ms2 2

For regression, we now extract the RTs at the maximum of the intensity traces stored in the chromatogram
object and fit a linear model of the form:

𝑟𝑡 = 𝑎 + 𝑏 ⋅ 𝑠𝑐𝑜𝑟𝑒

In theory, we could do this at the precursor or fragment ion level. For simplicity we show only the first
option.
iRTscore <- c(-24.92, 19.79, 70.52, 87.23, 0, 28.71, 12.39, 33.38, 42.26, 54.62, 100)
rt <- sapply(C, function(x) x$times[which.max(x$intensities)[1]])
fit <- lm(rt ~ iRTscore)

The fitted model can than be inspected using standard procedures. The output of code chunk
iRTscoreFitPlot, in Figure 6, shows a visual inspection by plotting observed RTs as a function of
iRT score together with the fitted model regression line. The corresponding R squared indicates that the
RTs behave highly linear! This is expected since, the iRT peptides were separated on a 20 min linear
gradient from 5 %B to 35 %B using C18 RP material (the change rate is therefore 1.5 %B / min). The
magnitude of the slope parameter (b) is a direct equivalent of this gradient change rate. The intercept (a)
is equal to the predicted RT of iRT peptide GAGSSEPVTGLDAK, since it was defined to have a zero score on
the iRT scale.

Extension

An extended version of the above use cases can be found at (https://fgcz-ms.uzh.ch/~cpanse/rawR/test/
functional_test.html). The web page displays spectra and iRT regression models obtained over a set of
rawfiles recorded approx. every 12 hours on different orbitrap mass spectrometers at the FGCZ (some
systems are not on duty anymore). The original purpose of these injections is automated longitudinal system
suitability monitoring and quality control. In this case, we use the resulting rawfiles to test rawR functionality
over different orbitrap instrument. In order to find the high-scoring MS2 scan for LGGNEQVTR++ per file,
we now use a simple scoring function, implemented directly in R (it actually counts the number of matching
y-ions), instead of running an external search engine. The web page automatically updates every 30 min
using the most recent two files per system as input data. Be aware that the source code is executed in a
full parallel fashion (each core processes one rawfile) on a Linux server! This shows, how scalable analysis

10

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted November 2, 2020. ; https://doi.org/10.1101/2020.10.30.362533doi: bioRxiv preprint

https://fgcz-ms.uzh.ch/~cpanse/rawR/test/functional_test.html
https://fgcz-ms.uzh.ch/~cpanse/rawR/test/functional_test.html
https://doi.org/10.1101/2020.10.30.362533

−20 0 20 40 60 80 100

16
18

20
22

24
26

28

iRT score

R
et

en
tio

n
tim

e
[m

in
]

Regression line: rt = 17.85 + 0.11 score
R2: 0.99

487.2571

547.2984

622.8539

636.8695

644.823

669.8384

683.8282

683.8541

699.3388

726.8361

776.9301

Figure 6: iRT score fit plot with regression line.

11

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted November 2, 2020. ; https://doi.org/10.1101/2020.10.30.362533doi: bioRxiv preprint

https://doi.org/10.1101/2020.10.30.362533

pipelines can be constructed starting from basic building blocks (code chunks). It demonstrates that (i) rawRs
data access mechanism works for all types of instrument models and (ii) over network attached storage.

Conclusions
Our R package rawR provides direct access to spectral data stored in vendor-specific binary raw files, thereby
eliminating the need for unfavorable conversion to exchange formats. Within the R environment, spectral
data is presented by using only two non-standard objects representing data items well known to analytical
scientists (spectrum & chromatogram). This design choice makes data handling relatively easy and intuitive
and requires little knowledge about internal/technical details of the implementation. By using vendor API
methods whenever possible, we nevertheless made sure that ease-of-use doesn’t impair performance. We also
emphasized that our implementation aligns well with common R conventions and styles. In the near future,
we plan to submit rawR to the BioC project and align further efforts with the R for Mass Spectrometry
initiative. In particular, we hope to extend rawR towards the concept of exchangeable backends for data
access and parallel computation. These would be necessary next steps towards big computational proteomics
in R.

Author information
Corresponding author

Tobias Kockmann
E-mail: tobias.kockmann@fgcz.ethz.ch

ORCID

Christian Panse https://orcid.org/0000-0003-1975-3064
Tobias Kockmann https://orcid.org/0000-0002-1847-885X

Author contributions

The manuscript was written through contributions of all authors. All authors have given approval to the
final version of the manuscript. ‡These authors contributed equally.

Acknowledgements
We thank Lilly van de Venn for designing the rawR package logo. We are grateful to Jim Shofstahl for
providing the RawFileReader .NET assembly, C# example code, and for answering questions during the
development process of rawR.

Abbreveations
MS, mass spectromerty; TIC, total ion chromatogram; XIC, extracted ion chromatogram; fourier-
transformed mass spectrum (FTMS); nano spray ionisation, NSI;

References
(1) Huber, W.; Carey, V. J.; Gentleman, R.; Anders, S.; Carlson, M.; Carvalho, B. S.; Bravo, H. C.; Davis,
S.; Gatto, L.; Girke, T.; Gottardo, R.; Hahne, F.; Hansen, K. D.; Irizarry, R. A.; Lawrence, M.; Love, M. I.;
MacDonald, J.; Obenchain, V.; Oleś, A. K.; Pagès, H.; Reyes, A.; Shannon, P.; Smyth, G. K.; Tenenbaum,
D.; Waldron, L.; Morgan, M. Orchestrating High-Throughput Genomic Analysis with Bioconductor. Nature
Methods 2015, 12 (2), 115–121. https://doi.org/10.1038/nmeth.3252.

(2) Trachsel, C.; Panse, C.; Kockmann, T.; Wolski, W. E.; Grossmann, J.; Schlapbach, R. RawDiag: An R
Package Supporting Rational LCMS Method Optimization for Bottom-up Proteomics. Journal of Proteome
Research 2018, 17 (8), 2908–2914. https://doi.org/10.1021/acs.jproteome.8b00173.

12

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted November 2, 2020. ; https://doi.org/10.1101/2020.10.30.362533doi: bioRxiv preprint

mailto:tobias.kockmann@fgcz.ethz.ch
https://orcid.org/0000-0003-1975-3064
https://orcid.org/0000-0002-1847-885X
https://doi.org/10.1038/nmeth.3252
https://github.com/fgcz/rawDiag
https://doi.org/10.1021/acs.jproteome.8b00173
https://doi.org/10.1101/2020.10.30.362533

(3) Becker, R. A.; Chambers, J. M.; Wilks, A. R. The New S Language; Chapman & Hall: London, 1988.

(4) Shofstahl, J. New RawFileReader from Thermo Fisher Scientific, 2018.

(5) R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical
Computing: Vienna, Austria, 2020.

(6) Panse, C.; Grossmann, J. ProtViz: Visualizing and Analyzing Mass Spectrometry Related Data in Pro-
teomics; 2020.

(7) Gehrig, P.; others. Gas-Phase Fragmentation of Adp-Ribosylated Peptides: Arginine-Specific Side-Chain
Losses and Their Implication in Database Searches. Journal of the American Society for Mass Spectrometry
2020. https://doi.org/10.1021/jasms.0c00040.

(8) Panse, C.; Sharma, S.; Huguet, R.; Vughs, D.; Grossmann, J.; Brunner, A. M. Ultraviolet Photodissocia-
tion for Non-Target Screening-Based Identification of Organic Micro-Pollutants in Water Samples. Molecules
2020, 25 (18), 4189. https://doi.org/10.3390/molecules25184189.

(9) Escher, C.; Reiter, L.; MacLean, B.; Ossola, R.; Herzog, F.; Chilton, J.; MacCoss, M. J.; Rinner, O.
Using iRT, a Normalized Retention Time for More Targeted Measurement of Peptides. PROTEOMICS
2012, 12 (8), 1111–1121. https://doi.org/10.1002/pmic.201100463.

Supplements

rawR:::.monoInfo()

[1] "Mono JIT compiler version 6.12.0.90 (tarball Fri Sep 4 13:58:27 UTC 2020)"
[2] "Copyright (C) 2002-2014 Novell, Inc, Xamarin Inc and Contributors. www.mono-project.com"
[3] "\tTLS: __thread"
[4] "\tSIGSEGV: altstack"
[5] "\tNotifications: epoll"
[6] "\tArchitecture: amd64"
[7] "\tDisabled: none"
[8] "\tMisc: softdebug "
[9] "\tInterpreter: yes"
[10] "\tLLVM: yes(610)"
[11] "\tSuspend: hybrid"
[12] "\tGC: sgen (concurrent by default)"
sessionInfo()

R version 4.0.3 (2020-10-10)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Debian GNU/Linux 10 (buster)
##
Matrix products: default
BLAS: /usr/lib/x86_64-linux-gnu/atlas/libblas.so.3.10.3
LAPACK: /usr/lib/x86_64-linux-gnu/atlas/liblapack.so.3.10.3
##
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##

13

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted November 2, 2020. ; https://doi.org/10.1101/2020.10.30.362533doi: bioRxiv preprint

https://doi.org/10.1021/jasms.0c00040
https://doi.org/10.3390/molecules25184189
https://doi.org/10.1002/pmic.201100463
https://doi.org/10.1101/2020.10.30.362533

attached base packages:
[1] stats graphics grDevices utils datasets methods
[7] base
##
other attached packages:
[1] rawR_0.0.1
##
loaded via a namespace (and not attached):
[1] compiler_4.0.3 magrittr_1.5 tools_4.0.3 htmltools_0.5.0
[5] yaml_2.2.1 stringi_1.4.6 rmarkdown_2.3 highr_0.8
[9] knitr_1.28 stringr_1.4.0 xfun_0.14 digest_0.6.25
[13] rlang_0.4.6 evaluate_0.14

14

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted November 2, 2020. ; https://doi.org/10.1101/2020.10.30.362533doi: bioRxiv preprint

https://doi.org/10.1101/2020.10.30.362533

	Abstract
	Keywords
	Introduction
	Implementation
	R
	C#
	Example binary data

	Results
	Use Case I - Analyzing orbi trap spectra
	Use Case II - iRT regression for system suitability monitoring
	Extension

	Conclusions
	Author information
	Corresponding author
	ORCID
	Author contributions

	Acknowledgements
	Abbreveations
	References
	Supplements

