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Abstract.
Objective: Advances in neural decoding have enabled brain-computer

interfaces to perform increasingly complex and clinically-relevant tasks. However,
such decoders are often tailored to specific participants, days, and recording sites,
limiting their practical long-term usage. Therefore, a fundamental challenge is to
develop neural decoders that can robustly train on pooled, multi-participant data
and generalize to new participants.

Approach: We introduce a new decoder, HTNet, which uses a convolutional
neural network with two innovations: (1) a Hilbert transform that computes
spectral power at data-driven frequencies and (2) a layer that projects electrode-
level data onto predefined brain regions. The projection layer critically enables
applications with intracranial electrocorticography (ECoG), where electrode
locations are not standardized and vary widely across participants. We trained
HTNet to decode arm movements using pooled ECoG data from 11 of 12
participants and tested performance on unseen ECoG or electroencephalography
(EEG) participants; these pretrained models were also subsequently fine-tuned to
each test participant.

Main results: HTNet outperformed state-of-the-art decoders when tested on
unseen participants, even when a different recording modality was used. By fine-
tuning these generalized HTNet decoders, we achieved performance approaching
the best tailored decoders with as few as 50 ECoG or 20 EEG events. We were also
able to interpret HTNet’s trained weights and demonstrate its ability to extract
physiologically-relevant features.

Significance: By generalizing to new participants and recording modalities,
robustly handling variations in electrode placement, and allowing participant-
specific fine-tuning with minimal data, HTNet is applicable across a broader range
of neural decoding applications compared to current state-of-the-art decoders.
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1. Introduction

Brain-computer interfaces that interpret neural activ-
ity to control robotic or virtual devices have shown
tremendous potential for assisting patients with neu-
rological disabilities, including motor impairments,
sensory deficits, and mood disorders [1–8]. At the
same time, brain-computer interfaces offer new in-
sights about the function of neural circuits, includ-
ing how sensorimotor information is represented in the
brain [9–11]. Advances in brain-computer interfaces
have been driven in part by improved neural decod-
ing algorithms [12, 13]. However, it can be difficult to
collect enough data to train decoders, especially given
the non-stationary nature of the recorded signals, lead-
ing to decoders that generalize poorly to new data and
require frequent re-calibrations [14–17]. Alternatively,
generalized neural decoders can be trained by pooling
data across multiple participants [18–21]. Such gen-
eralized decoders must be robust to inter-participant
differences and capable of fine-tuning with only a few
training examples. By increasing decoder robustness
and reducing the burden of repeated calibrations, gen-
eralized decoders have the potential to greatly enhance
the practical long-term usage of brain-computer inter-
faces [22].

Frequency-domain techniques that extract spec-
tral power features from time-domain recordings have
long been shown to be useful in decoding neural popu-
lation recordings. These techniques are especially well-
suited to neural recordings such as intracranial electro-
corticography (ECoG) and scalp electroencephalogra-
phy (EEG) recordings, which contain oscillatory sig-
nals at specific frequency bands that correspond to
different behaviors or neural phenomena [23–27]. In
addition, relative spectral power patterns between a
task and a baseline condition can be surprisingly sim-
ilar across studies, even when measured with different
neural recording modalities [28–33]. Such similarities
motivate the use of spectral power features for gener-
alized decoding. Because neural recordings are non-
stationary, many decoders use instantaneous spectral
power features, computed by band-pass filtering the
data and then applying the Hilbert transform [17].

To make power spectral features directly compa-
rable, inter-participant differences in electrode place-
ment and frequency content must be addressed when
developing generalized decoders. While EEG electrode
coverage is typically standardized across participants,
invasive ECoG electrode placement is clinically moti-
vated and highly variable, making it difficult to align
electrodes from one participant to the next [24, 34]. A
similar cross-participant alignment issue occurs with
EEG cortical dipoles following blind source separa-
tion [35]. To overcome these variable dipole locations,
one successful approach has been to project EEG mea-

sures onto common brain regions using radial basis
function interpolation [36, 37]. ECoG signals can sim-
ilarly be projected from electrodes to common brain
regions [38], but it has remained unclear how useful
this method is for neural decoding. Even with aligned
electrode placements, the frequency bands containing
behaviorally-relevant spectral power can be highly vari-
able across participants [38–40]. This variability is
problematic when selecting band-pass filter cutoff fre-
quencies prior to applying the Hilbert transform be-
cause researchers often rely on pre-existing knowledge
of the neural signal, and traditional frequency bands
may not apply to a particular task of interest. To de-
crease user bias, data-driven approaches have been pro-
posed to analyze neural spectral power [41–43]. How-
ever, these techniques apply to frequency bands with
distinct spectral power peaks and thus ignore other
frequencies that might be useful for decoding. While
a promising approach has been recently proposed [44],
developing decoders that robustly handle variable fre-
quency content remains an open problem.

We are motivated to address such cross-
participant differences in frequency content by using
convolutional neural networks, which generate data-
driven features and can also be fine-tuned when pre-
sented with new data. Convolutional neural net-
works combine data-driven feature extraction with pat-
tern recognition and have set the bar for state-of-
the-art neural decoding performance for speech, mo-
tor imagery, and attention tasks [14, 45–49]. Impor-
tantly, trained convolutional neural networks can be
fine-tuned to new data, a process made more effi-
cient by freezing various network layers during re-
training [50, 51]. Far from being “black-box” models,
convolutional layers perform data-driven temporal and
spatial filtering, and careful analysis of trained convo-
lutional weights can be used to interpret the spatiotem-
poral features that are key for decoding [52–54]. Our
approach builds on EEGNet—a compact convolutional
neural network decoder that can be trained on small
datasets, provides interpretable model structure, and
has outperformed other deep learning decoders [55].

In this paper, we present HTNet, a convolutional
neural network architecture that decodes neural data
with variable electrode placements using data-driven
spectral features projected onto common brain regions
(Figure 1A). We developed HTNet by augmenting
EEGNet with custom Hilbert transform and projection
onto brain region layers. To characterize its decoding
performance, we trained HTNet to classify naturalistic
arm movement vs. rest using ECoG recordings from
a dataset containing simultaneous video and ECoG
recordings from 12 patients being monitored before
neurosurgery in a hospital [38]. We then tested
these trained decoders’ ability to generalize to unseen
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ECoG participants or to unseen EEG participants
performing a similar behavioral task [56]. In both
cases, HTNet was able to decode these naturalistic
arm movements and consistently outperformed other
state-of-the-art decoders. Furthermore, we fine-
tuned pretrained HTNet decoders with a few events
from individual participants, and the resultant fine-
tuned decoders approach the performance of the best
tailored decoders with only 50 ECoG or 20 EEG
events. Finally, we interpreted HTNet’s trained
weights to understand how it generalizes and found
that it primarily relied on physiologically-relevant
features at low-frequencies (<20 Hz) near the motor
cortex. Our findings demonstrate that HTNet is
a generalized decoder that robustly handles inter-
participant and inter-modality variability and fine-
tunes to new participants using minimal data. We
believe our work advances the field of generalized
neural decoders with an architecture that is robust,
interpretable, and successful at generalizing across
unseen participants and recording modalities.

2. Methods

2.1. Intracranial electrocorticography (ECoG) dataset

We obtained concurrent ECoG and video recordings
from 12 human participants (8 males, 4 females) during
continuous clinical epilepsy monitoring conducted
at Harborview Medical Center in Seattle, WA.
These recordings lasted 7±2 days per participant
(mean±SD). Participants were aged 29±8 years old
(mean±SD) and had electrodes implanted primarily
in one hemisphere (5 right, 7 left). Our study was
approved by the University of Washington Institutional
Review Board for the protection of human participants,
and all participants provided written informed consent.

Our decoding task was to classify upper-limb
“move” and “rest” events of the arm contralateral
to the implanted electrode hemisphere. We obtained
non-concurrent move and rest events from video
recordings via markerless pose tracking and automated
state segmentation (see Singh et al. [57] for further
details). Move events correspond to wrist movement
that occurred after at least 0.5 seconds of no movement,
while rest events indicate no movement in either wrist
for at least three seconds.

We performed ECoG data processing using
custom MNE-Python scripts [58]. We first removed
median DC drift and high-amplitude discontinuities.
Each participant’s ECoG data was then band-pass
filtered (1–200 Hz), notch filtered, and re-referenced
to the common median across electrodes. We also
removed noisy electrodes based on abnormal standard
deviation (> 5 IQR) or kurtosis (> 10 IQR). Next, we
generated 10-second ECoG segments centered around

each “move” and “rest” event. ECoG segments with
missing data or large artifacts were removed based
on abnormal spectral power density. See Peterson et
al. [38] for further ECoG pre-processing details. We
then downsampled to 250 Hz and trimmed segments
to two seconds centered around each event. For every
participant, we balanced the number of move and
rest segments within each recording day, resulting in
1155±568 events per participant (mean±SD).

Electrode positions were localized using the Field-
trip toolbox in Matlab [59, 60]. This process involved
co-registering preoperative MRI and postoperative CT
scans, manually selecting electrodes in 3D space, and
warping electrode positions into Montreal Neurologi-
cal Institute (MNI) space [61]. Using this common
MNI coordinate system enabled us to directly com-
pare electrode positions between ECoG participants
(see Fig. 1C).

2.2. Comparative cross-modal dataset (EEG)

To test decoder generalizability across recording
modalities, we used a publicly available EEG dataset
of 15 human participants performing cued right elbow
flexion movements [56]. Participants were aged 27±5
years old (mean±SD) and performed 60 movement
and 60 rest trials each, resulting in 120 total events.
Because only cue onset times were available, we
determined the onset of each movement event by
thresholding the hand’s radial displacement after it was
cued to move.

EEG data was recorded at 512 Hz, notch filtered
at 50 Hz, referenced to right mastoid, and band-
pass filtered between 0.01–200 Hz. We pre-processed
the data by average referencing, 1 Hz high-pass
filtering, resampling to 250 Hz, and generating 2-
second segments centered around each event. Each
participant had 61 EEG electrodes, whose MNI
positions were estimated using the 10-5 system
template from Fieldtrip [60,62].

2.3. Computing projection matrices

We accounted for variations in electrode placement
by mapping electrode positions onto common brain
regions based on distance as described below. To
increase electrode overlap among ECoG participants,
we mirrored all right hemisphere electrode positions
onto the left hemisphere. Using EEGLAB and
Matlab, we mapped from electrode positions to small,
predefined brain regions by computing radial basis
function kernel distances between each electrode and
brain region (2 cm full-width at half-maximum) [36,
63, 64]. This projection procedure was performed
separately for each participant. We projected to
regions within sensorimotor areas, as defined by the
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(A)

Figure 1: Overview of HTNet architecture, experimental design, and electrode locations. (A) HTNet is
a convolutional neural network architecture that extends EEGNet [55] (differences shown in yellow) by handling cross-
participant variations in electrode placement and frequency content. The temporal convolution and Hilbert transform
layers generate data-driven spectral features that can then be projected from electrodes (Elec) onto common regions of
interest (ROI) using a predefined weight matrix. (B) Using electrocorticography (ECoG) data, we trained both tailored
within-participant and generalized multi-participant models to decode arm movement vs. rest. Multi-participant decoders
were tested separately on held-out data from unseen participants recorded with either the same modality as the train set
(ECoG) or an unseen modality (EEG). We then fine-tuned these pretrained decoders using data from the test participant.
(C) Electrode placement varies widely among the 12 ECoG participants. Electrode coverage is sparser for the 15 EEG
participants compared to ECoG, but both modalities overlap in coverage of sensorimotor cortices. Asterisks denote five
participants whose electrodes were mirrored from the right hemisphere.

AAL atlas [65] (precentral, postcentral, and inferior
parietal), in order to limit the projected data size.
We then normalized these distance values for every
region so that each region’s values across all electrodes
summed to one. These normalized distances created a
projection matrix for each participant, which we later
used to estimate the activity at each common region of
interest by performing a weighted average of electrode-
level data.

2.4. HTNet architecture

HTNet builds upon EEGNet [55], a compact convo-
lutional neural network developed using Tensorflow
and Keras. EEGNet has three convolution layers: (1)
a one-dimensional convolution analogous to temporal
band-pass filtering, (2) a depthwise convolution to per-
form spatial filtering, and (3) a separable convolution

to identify temporal patterns across the previous fil-
ters. For HTNet, we added a Hilbert transform layer
after this initial temporal convolution to compute rele-
vant spectral power features using a data-driven filter-
Hilbert analog (see Figure 1A). We then added a ma-
trix multiplication layer to project electrode-level spec-
tral power onto common brain regions of interest, us-
ing the pre-computed weight matrices described in the
previous section. Note that the matrix multiplication
layer was not necessary when the same participant was
used for training and testing, as the electrodes remain
consistent. All other HTNet layers were the same as
EEGNet.

2.5. Data division and cross-validation

We compared HTNet decoding performance against
EEGNet, random forest, and minimum distance de-
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coders. The minimum distance decoder used Rieman-
nian mean and distance values for classification [66,67].
We assessed decoder performance during three sce-
narios (Fig. 1B): (1) testing on an untrained record-
ing day for the same ECoG participant (tailored de-
coder), (2) testing on an untrained ECoG participant
(same modality), and (3) testing on participants from
the EEG dataset after training only on the ECoG
dataset (unseen modality). Note that we used the
same trained, multi-participant ECoG decoders for
same and unseen modality conditions. Additionally,
we projected data onto common regions of interest
for all decoders in order to enable reasonable decod-
ing for the same and unseen modality conditions. For
all scenarios, we performed 36 pseudo-random selec-
tions (folds) of the training and validation datasets,
such that each of the 12 ECoG participants was the
test participant three times. We used each ECoG par-
ticipant’s last recording day as the test set (orange in
Fig. 1B) and excluded it from all training and valida-
tion sets. All training, validation, and test sets were
balanced with equal numbers of move and rest events.
We used nonparametric statistics to test for significant
effects of decoder type on test accuracy (Friedman test,
p < 0.05) and significant pairwise differences among
decoders (Wilcoxon signed-rank test with false discov-
ery rate correction [68]).

2.6. Hyperparameter tuning

We performed hyperparameter tuning to identify opti-
mal values for each decoder. We tuned HTNet and
EEGNet simultaneously using six hyperparameters:
temporal kernel length, separable kernel length, tem-
poral filter count, dropout rate, dropout type, and
model type (HTNet or EEGNet). For the random for-
est decoder, we tuned two hyperparameters: maximum
depth and number of estimators. The minimum dis-
tance decoder had no tunable hyperparameters.

We tuned hyperparameters separately for the
tailored decoder and same modality conditions, using
the Optuna toolbox [69]. We ran 25 random forest
parameter selections (trials) and 100 HTNet/EEGNet
trials for each condition. Performance was measured
using validation accuracy, averaged over 36 folds for
tailored decoding or 12 folds for same modality. We
sampled from parameter space using Optuna’s tree-
structured Parzen estimator [70, 71], which selects
optimal parameter values based on the performance
during previous trials.

Overall, we found that hyperparameter selections
minimally affected decoder performance (see Fig. S1).
Still, we selected hyperparameter values from the trial
with the highest validation accuracy (Table S1) for
each condition to ensure optimal decoder performance.

2.7. Fine-tuning decoder performance to the test
participant

In addition to testing generalizability, we assessed how
much a generalized HTNet decoder improves when
re-trained using data from the test participant, a
process known as fine-tuning. Fine-tuning is a transfer
learning technique where some layers of the pretrained
model are “frozen” and not adjusted during re-training,
reducing the number of parameters to fit [72]. We
fine-tuned our pretrained same and unseen modality
decoders using a portion of the test participant’s data.
Additionally, we fine-tuned each HTNet convolutional
layer separately and all layers together, resulting in
four re-trained models per fold (see Fig. 3A). When
separately tuning each convolutional layer, we also
re-trained the nearby batch normalization layers, as
shown in Fig. 3A, which notably boosted performance.
We tested for significant differences among these four
fine-tuning models using Wilcoxon signed-rank tests
with false discovery rate correction.

During fine-tuning, we also varied the amount of
training/validation data available in order to assess
its impact on fine-tuning performance. For all
variations, the test set remained fixed as the last
recording day for each ECoG participant and 30
randomly-selected events for every EEG participant.
Using the remaining test participant data, we selected
four amounts of training/validation data: 17%
training/8% validation, 33% training/17% validation,
50% training/25% validation, and 67% training/33%
validation. We then linearly modelled the relationship
between test accuracy and the logarithm of the number
of training events for each fine-tuning model. All
training, validation, and test sets contained equal
numbers of move and rest events. Note that the
number of events used for fine-tuning differs across
ECoG participants because the total number of events
varies. In addition, we trained randomly-initialized
HTNet decoders with the same training/validation
data used for fine-tuning in order to compare tailored
decoding with our fine-tuned models.

2.8. Comparing performance of HTNet spectral
measures

Although we primarily used HTNet to generate data-
driven spectral power features, HTNet can be easily
adapted to generate other spectral measures that
may boost decoding performance. These spectral
measures still use the Hilbert transform, which can
be used to find instantaneous power, phase, or
frequency [17]. For the same three conditions, we
tested four spectral measures: (1) log-transform of
one plus power, (2) relative power, (3) unwrapped
instantaneous phase, and (4) instantaneous frequency,
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also known as frequency sliding [73]. We tested for
significant differences in test accuracy when HTNet
decoders implemented one of these four measures or
spectral power, using Wilcoxon signed-rank tests with
false discovery rate correction.

When computing relative power, we first took the
log-transform of one plus power and then subtracted
out the average power from -1 to -0.5 seconds before
each event. This procedure is analogous to baseline-
subtraction of spectral power and should be robust
to large-scale spectral power variations across days,
participants, and recording modalities. Because of
its potential robustness to large differences in signal
scaling, relative power was also used in HTNet
decoders that we used to compare with other decoder
types, but only for the unseen modality condition.

2.9. Interpreting model weights

Like EEGNet, HTNet’s first two convolutional layers
are interpretable and can indicate the spatiotemporal
features used for decoding. To analyze the temporal
features, we fed a white noise signal into HTNet’s
trained temporal convolution and computed the
frequency response magnitude using Welch’s method,
similar to a Bode plot [74]. We then averaged
frequency responses across temporal filters and folds.
To determine important spatial features, we computed
the absolute value of HTNet’s trained depthwise
convolution weights [55], averaged across filters. This
process generated one weight for each brain region of
interest. We then scaled the maximum value per fold
to one and averaged across folds.

While the temporal frequency response shows
which frequencies were used for decoding, it does not
show what the activity looks like at these frequencies.
To visualize such activity, we computed the difference
in log spectral power between move and rest conditions,
projected onto a region near the motor cortex (Fig 4B
far left region in the second row from the top). We took
the difference between the average move and average
rest log spectrograms for each participant and then
averaged the resulting differences across participants
for both the ECoG and EEG datasets.

2.10. Effect of training participants on performance

We also assessed how many training participants are
needed for improved decoder performance. Increasing
the number of training participants should improve
decoder performance on an unseen test participant,
but the improvement from adding new participants
will likely diminish as more training participants are
added. We varied the number of training participants
from 1–10, always using one validation participant.
Participants were pseudo-randomly selected across

36 folds such that each participant was the test
participant three times. We linearly modelled the
relationship between test accuracy and the logarithm
of the number of training participants, identifying
decoders with significant nonzero trends (p < 0.05,
two-tailed t-test with false discovery rate correction).

2.11. Effect of electrode overlap on performance

Because electrode locations varied among ECoG par-
ticipants, we also tested if higher decoding performance
corresponded to increased electrode overlap between
same modality training and test participants. We esti-
mated electrode overlap between training and test par-
ticipants using a custom fraction overlap metric that
allowed us to combine multiple participants from the
training set. For each sensorimotor region, we summed
unnormalized projection matrix weights across elec-
trodes to estimate how many electrodes were nearby.
We then identified regions of high electrode cover-
age for each participant by thresholding summations
greater than 0.07. Because these regions are common
across participants, we could average these summation
values across training participants prior to threshold-
ing. Next, we divided the number of thresholded re-
gions common to both training and test participants
by the number of thresholded regions in the training
set to obtain fraction overlap. A fraction overlap of
1.0 indicates that the test participant’s thresholded re-
gions include all thresholded regions from the training
participants. We linearly modelled the relationship be-
tween fraction overlap and test accuracy across folds
and identified decoders with significant nonzero slope
(p < 0.05, two-tailed t-test with false discovery rate
correction [68]).

3. Results

Here, we show that our approach to movement decod-
ing, HTNet, is generalizable and tunable, learning com-
mon patterns from the training data that transfer to
unseen participants and recording modalities. Through
a series of systematic experiments, we use decoders tai-
lored to each participant—by far the most common
approach to training decoders—as a standard to which
the performance of our generalized decoders are com-
pared (Figure 1B). In particular, our training data are
from 12 ECoG participants during uninstructed, nat-
uralistic arm movements (Figure 1C, [38,57]); our test
data are then either one ECoG participant withheld
from the training set, or participants from an entirely
independent EEG dataset. HTNet consistently out-
performed other decoders, and fine-tuning pre-trained
HTNet decoders with a small number of the unseen
participant’s events yielded decoders that approached
the performance of tailored decoders trained on many
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Figure 2: HTNet generalizes better than EEGNet and other decoders. HTNet achieves significantly higher
test accuracy than EEGNet, random forest, and minimum distance decoders across all three scenarios: (A) tailored
(p < 0.05), (B) same modality (p < 0.05), and (C) unseen modality (p ≤ 0.001). Note that the trained models for same
and unseen modality conditions are identical; only the test set differs. (D–F) Bottom row displays decoder performance
grouped by test participant for each fold. For unseen modality, HTNet uses relative power to minimize cross-modal scaling
differences, resulting in performance that is above chance (dashed line) despite only training on ECoG data.

more events. Further, we show that HTNet works
by extracting physiologically-relevant spectral features
from the data.

3.1. Decoder generalization

HTNet consistently outperformed other decoders in
all conditions, including tailored within-participant
decoding, generalized decoding to unseen participants
in the same modality, and generalized decoding to
unseen modality participants (Figure 2). For each
condition, we found a significant effect of decoder
type on test accuracy (tailored: p = 3.94e−4, same
modality: p = 0.034, unseen modality: p = 1.95e−8
respectively; Friedman test). For tailored decoding,
HTNet achieved test accuracy of 84% ± 8% (mean
± SD), which was significantly higher than EEGNet
(73% ± 14%, p = 0.003), random forest (73% ± 11%,
p = 0.004), and minimum distance decoders (68% ±
11%, p = 0.010; Wilcoxon signed-rank test with false
discovery rate correction). For same modality, HTNet
test accuracy of 72% ± 10% was again significantly
increased compared to EEGNet (64%±8%, p = 0.042),
random forest (63% ± 8%, p = 0.037), and minimum

distance decoders (60% ± 6%, p = 0.021). No other
significant pairwise differences were found for either
condition.

In the unseen modality condition, HTNet was
the only decoder to generalize above chance. All
pairwise comparisons were statistically significant (p <
0.05) in the unseen modality condition, due to
low variability in cross-participant test accuracy for
each non-HTNet decoder. However, HTNet’s unseen
modality test accuracy was, on average, ∼15% higher
than all other decoders and the only decoder to
perform well-above chance (50%). Therefore, we only
show the pairwise statistical results in Figure 2C
between HTNet and each of the other three decoders.
Average computational time during training is shown
for each decoder type in Tables S2 and S3. In
addition to spectral power, we also developed HTNet
models that decoded using instantaneous phase and
frequency features (Fig. S2 and Tables S4, S5). Briefly,
HTNet with phase performed worse than spectral
power for tailored and same modality conditions,
while using instantaneous frequency resulted in similar
performance to HTNet with spectral power.
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Figure 3: Fine-tuning HTNet improves performance, even when few training events are available. (A) For
pretrained, multi-participant HTNet decoders, we separately fine-tuned each convolution layer (with nearby batch
normalizations) and also fine-tuned all trainable layers. Layers with trainable parameters are highlighted. (B, E) For both
same and unseen modality cases, we find no performance differences between fine-tuning approaches when training on 17%
of available events, but our fine-tuned decoders often significantly improve test accuracy compared to the pretrained models
and, in some cases, the randomly-initialized tailored decoders (* p < 0.05, ** p ≤ 0.01). (C, F) Similarly, a breakdown
of performance by participant shows that fine-tuning usually improves performance compared to the pretrained model
(blue), but no single fine-tuning approach decodes consistently better than the others. (D, G) As we decreased the
number of training events below 400 (same modality) or 30 (unseen modality), fine-tuned decoders generally achieved
higher test accuracy than tailored decoders and remained close to accuracies achieved by tailored decoders trained on all
available events. Lines show logarithmic fits for each group, with shading denoting the 95% confidence interval of the
slope. Note that pretrained model accuracies are included for all fine-tuned models when there are 0 training events.

In addition to outperforming the other decoders
on average, we show in Figure 2D–F that HTNet
was the single best arm movement decoder for

almost every individual participant in all conditions.
HTNet performance was also consistently well-above
random chance for all but two participants (EC10
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Figure 4: HTNet extracts physiologically-relevant features at low frequencies and near the motor cortex.
By analyzing HTNet’s early convolution layers, we determined the types of spatial and temporal features consistently
used for multi-participant decoding. (A) The temporal convolution layer’s frequency response, averaged across filters
and folds, shows a consistent focus on low frequency features (<20 Hz). (B) Based on depthwise convolution weight
magnitudes, cortical regions near the central sulcus and towards the midline were found to be consistently important for
decoding, as expected for upper-limb movements. Out of the 144 total regions of interest used for decoding, we show here
the 51 regions (shaded circles) located on the cortical surface. (C–D) Difference spectrograms between arm movement
and rest events reveal a common low-frequency (<25 Hz) spectral power decrease near movement onset (0 sec) of similar
magnitude across ECoG and EEG datasets.

same modality and EE13), much more than any
other decoder. HTNet’s consistently high accuracy
demonstrates its ability to robustly generalize to a
variety of participants with differences in electrode
placement and signal quality.

3.2. Fine-tuning generalized decoders

By fine-tuning these pretrained HTNet decoders using
as few as 50 events from the held-out participant,
HTNet can approach performances of the best
tailored decoders trained using all available participant
data. We tested fine-tuning each convolutional
layer separately as well as re-training all layers of
the network, as shown in Fig. 3A. We found no
significant differences in performance between our

fine-tuning approaches, but we did find significant
improvements in test accuracy when comparing fine-
tuned decoders to pretrained decoders or tailored
decoders trained on the same data, even when
training on only 17% of the test participant’s available
events. For same modality (Fig. 3B), fine-tuning just
the depthwise convolution significantly increased test
accuracy compared to the pretrained models (p =
0.049; Wilcoxon signed-rank test with false discovery
rate correction). In the unseen modality condition
(Fig. 3E), all fine-tuning approaches significantly
increased test accuracy compared to the pretrained
models (temporal convolution: p = 0.0054, depthwise
convolution: p = 0.0094, separable convolution: p =
0.0054, all layers: p = 0.0054). Additionally, fine-
tuning the separable convolution and all HTNet layers

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 2, 2020. ; https://doi.org/10.1101/2020.10.30.362558doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.30.362558
http://creativecommons.org/licenses/by-nd/4.0/


Generalized neural decoders 10

Figure 5: HTNet performance improves with increases in training participants and electrode overlap.
(A) Adding more training participants significantly improved test accuracy for HTNet, EEGNet, and random forest
decoders (p < 0.05). The line of best fit is shown for each group, with shading denoting the 95% confidence interval of the
slope. The logarithmic relationship seen suggests that performance will not substantially improve once a certain number
of training participants are used. (B) We also compared test accuracy as a function of electrode coverage overlap between
the training and test participants and found a significant positive relationship only for HTNet and EEGNet (p < 0.05).

resulted in significantly higher test accuracy than
tailored HTNet decoders (p = 0.021 and p = 0.015,
respectively). No other comparisons were statistically
significant.

Similarly, decoder performance for each partici-
pant shows that, in general, fine-tuning HTNet in-
creases test accuracy. All tested fine-tuning approaches
yielded similar performance (Fig. 3C,F). In addition,
computation times are consistent across fine-tuning
approaches (Tables S6, S7). By varying the number
of events used (Fig. 3D,G), we find that fine-tuning
approaches outperform randomly-initialized, tailored
decoders when fewer than ∼400 ECoG or ∼30 EEG
events from the test participant are available for train-
ing (see Fig. S3 for separated plots of each fine-tuning
approach). In addition, fine-tuned HTNet decoders ap-
proach performances of the best tailored decoders with
as few as 50 ECoG or 20 EEG events available for train-
ing. Finally, we demonstrated that we can fine-tune
HTNet decoders to ECoG events after pretraining on
EEG events (Fig. S4).

3.3. Interpreting network computations

Trained HTNet models achieve generalized decoding
by extracting physiologically-relevant features, specif-
ically at low frequencies and near the motor cortex
(Fig. 4). HTNet’s temporal and depthwise convolu-
tional layers are interpretable, so we can probe these
trained layers to determine the spatiotemporal features
most often used for decoding, just like with EEG-
Net [55]. Here, we analyzed the trained layers of gen-
eralized HTNet decoders that were used for the same
and unseen modality conditions.

Across decoders, we find a consistent emphasis on
low-frequency (<20 Hz) temporal features (Fig. 4A)
when analyzing the average frequency response over
temporal convolution filters. These decoders also
frequently focused on cortical regions near the motor
cortex (towards the central sulcus and midline), based
on trained depthwise convolution weights (Fig. 4B).
When we take the difference in spectral power between
arm movement and rest events near these motor
cortical regions, we find, consistent with previous
ECoG and EEG studies [75, 76], that low-frequency
spectral power decreases during movement onset,
with a similar magnitude for both ECoG and EEG
data. This consistent magnitude in low-frequency
power between recording modalities likely explains why
our trained HTNet models generalized to the EEG
participants prior to any fine-tuning.

Another crucial factor in HTNet performance
is the spatial overlap of electrodes between the
training and test participants, as well as how many
participants were used for training (Fig. 5). We
observe significant positive trends between electrode
fraction overlap and test accuracy for HTNet (0.33
slope, p = 0.005; t-test with false discovery rate
correction) and EEGNet (0.23, p = 0.025). We
also find significant logarithmic relationships between
the number of training participants and test accuracy
for HTNet (0.07 slope, p = 2.77e−7), EEGNet
(0.06, p = 2.77e−7, and random forest (0.03, p =
0.003). We initially tried a linear fit, but found
that logarithmic scaling of the number of training
events resulted in a better fit. This logarithmic
trend suggests that, at a certain point, adding
more participants will not noticeably improve decoder
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performance. The number of training participants
also affects computation time and number of epochs
used during training (Fig. S5). Our findings suggest
that HTNet is best able to incorporate information
when many training participants are used, especially
those with similar electrode placement to the test
participant.

4. Discussion

We demonstrated that HTNet can outperform state-
of-the-art neural decoders when generalizing to new
participants, even when a different recording modality
is used. Developed as an extension of EEGNet [55], our
key contributions to the neural network architecture
are the addition of a Hilbert transform layer and a
weight matrix to project individual electrode locations
onto common brain regions. These trained HTNet
decoders can be fine-tuned to a new test participant
with fewer than 100 of the test participant’s events and
still decode almost as well as tailored decoders that
have been trained on substantially more events. To
achieve this performance, HTNet decoders consistently
extract physiologically-relevant features, as revealed by
our analysis of trained decoder weights.

To our knowledge, HTNet is the first decoder that
can generalize and transfer its learning across both
ECoG participants and different recording modalities.
Previous studies have implemented decoders that can
transfer across different EEG devices [14, 46, 77, 78] or
leverage data from concurrent recording modalities [79,
80], but none of these decoders have demonstrated the
ability to generalize to an entirely different recording
modality. As for generalizing across participants, many
decoders can do this with EEG data [14], including
EEGNet [55], but development of analogous ECoG
decoders has been hindered by the high variation in
electrode placement across ECoG patients. Similarly,
several studies have implemented fine-tuning when
decoding EEG or ECoG data [21,50,81–84], but these
decoders were trained on either one participant or non-
brain data, instead of multiple ECoG participants. By
training on multiple participants’ data, HTNet can
generalize effectively to unseen participants and avoid
overfitting to any one participant.

When we compared performance across different
types of decoders, HTNet consistently outperformed
EEGNet, even in the tailored condition. These
performance differences between HTNet and EEGNet
arise solely from HTNet’s Hilbert transform layer
because for all decoders, we projected onto common
brain regions when training on multiple participants.
We used the Hilbert transform to compute spectral
power, which unlike the time-domain signal does not
include a phase component. When we used just

this phase component for decoding, we found that
HTNet performance substantially worsened compared
to using spectral power (see Fig. S2). This difference
in accuracy suggests that decoding directly from the
time-domain signal is suboptimal for our specific
decoding task because the phase component is less
informative than spectral power. Based on this insight,
we would expect EEGNet to perform as well as
or better than HTNet when decoding neural data
with highly informative phase, such as event-related
potentials [85, 86], depending on whether HTNet uses
phase or spectral power to decode.

More broadly, HTNet demonstrates the value
of integrating computational models, such as deep
learning, with insights from neural signal processing.
Fusing computational methods with scientific insight
has inspired novel solutions that leverage the strengths
of both approaches [45, 53, 87]. An alternative to our
approach would have been to develop an end-to-end
neural network model that simply learns to compute
spectral power or project electrode-level signals onto
a common grid. However, incorporating explicit
transformations to spectral power and common cortical
regions minimized the number of trainable parameters
(and hence the amount of training data needed) and,
like EEGNet, kept HTNet’s initial layers interpretable.
Furthermore, we were able to apply insights from
previous ECoG/EEG research by explicitly baseline-
subtracting spectral power within HTNet in order to
generalize from ECoG to unseen EEG data [88, 89].
On the other hand, deep learning models can generate
data-driven features that may be computationally
expensive to obtain using other available methods.
While many data-driven spatial filtering methods are
available [17, 90], identifying frequencies with relevant
spectral power often requires either a brute force search
or applying techniques such as wavelet convolution to
compute power at several frequencies, increasing the
size of an already high-dimensional dataset [91, 92].
In contrast, HTNet converges quickly and provides a
low-dimensional feature representation in the spectral
domain. We believe that further embedding of neural
signal processing into data-driven methods such as
deep learning will continue to enhance the robustness
and generalizability of future neural decoders.

Our study has several important limitations to
consider. First, we classified two event types (arm
movement versus rest), which is substantially less
than the types of complex behaviors present in many
neural decoding paradigms. Nonetheless, HTNet’s
architecture allows for decoding more than two types
of events, and EEGNet has been shown to perform
well when decoding among four types of behavior [55].
We chose ECoG and EEG datasets from a task with
only two event types because the electrode positions
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were in a common coordinate system (MNI), which
was essential when projecting data onto common brain
regions for multi-participant decoding. Our analysis
also may have been limited by projecting only onto
144 sensorimotor brain regions, which we chose based
on the decoding task. For real-world decoders, the
most informative regions may not be clear, requiring
data-driven region-selection approaches to avoid high
memory usage and slow computation times [37, 38].
Finally, we could have constrained HTNet’s temporal
convolution layer to learn more meaningful narrow-
band filters [93].

We are currently exploring extensions of HTNet
for a variety of applications such as cross-frequency
coupling [94, 95], long-term state decoding [6], cross-
task decoding [96], and data-driven regression [97,
98]. In addition, other decoding measures could
be substituted for the Hilbert transform, including
non-Fourier methods [99, 100], and more complex
interpolation schemes could be used to generate the
projection matrix by incorporating participant-specific
cortical anatomy [101, 102]. Besides ECoG and
EEG, HTNet may also be useful for generalizing
across participants with stereotactic EEG or local
field potential recordings [103, 104]. Overall, HTNet
provides a useful decoding framework applicable across
a variety of tasks and overcomes important obstacles
towards developing robust, generalized neural decoders
that can be fine-tuned with minimal data.

Code and data availability

Our HTNet code is publicly available at: https://git
hub.com/BruntonUWBio/HTNet_generalized_decoding.
The code in this repository can be used in conjunction
with publicly available ECoG (https://figshare.com/
projects/Generalized_neural_decoders_for_trans

fer_learning_across_participants_and_recording

_modalities/90287) and EEG [56] datasets to gener-
ate all of the main findings and figures from our study.
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