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Abstract: 16 

Rust fungi are plant pathogens that cause epidemics that threaten the production of important 17 

plant species, such as wheat, soy, coffee and poplar. Melampsora larici-populina (Mlp) causes 18 

the poplar rust and encodes at least 1 184 candidate effectors (CEs), however their functions are 19 

poorly known. In this study, we used Arabidopsis plants constitutively expressing CEs of Mlp 20 

to discover processes targeted by these fungal proteins. For this purpose, we sequenced the 21 

transcriptome and used mass spectrometry to analyse the metabolome of Arabidopsis plants 22 

expressing individually one of the 14 selected CEs and of a control line. We found 2 299 23 

deregulated genes across the experiment. Among the down-regulated genes, the KEGG 24 

pathways “MAPK signaling pathway” and “Plant-pathogen interaction” were respectively over-25 

represented in six and five of the 14 transgenic lines. Moreover, genes related to hormone 26 

response and defense were down-regulated across all transgenic lines are. We further observed 27 

that there were 680 metabolites deregulated in at least one CE-expressing transgenic line, with 28 

highly unsaturated and phenolic compounds enriched in up-regulated metabolites and peptides 29 

enriched among down-regulated metabolites. Interestingly, we found that transgenic lines 30 

expressing unrelated CEs had correlated patterns of gene and metabolite deregulation, while 31 

expression of CEs belonging to the same family deregulated different genes and metabolites. 32 

Taken together, our results indicate that the sequence of effectors and their belonging to families 33 

may not be a good predictor of their impact on the plant. 34 

Importance: 35 

Rust fungi are plant pathogens that threaten the production of important crops, including wheat, 36 

soy, coffee and poplar. Effectors are used by pathogens to control the host, however in the case 37 

of Melampsora larici-populina, the causal agent of the poplar rust, and other rust fungi these 38 
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proteins are poorly known. We used Arabidopsis plants expressing candidate effectors (CEs) of 39 

Mlp to better understand the interaction between this pathogen and its hosts. We found that 40 

expression of unrelated CEs led to similar patterns of gene and metabolite deregulation, while 41 

transgenic lines expressing CEs belonging to the same family showed different groups of 42 

different genes and metabolites deregulated. Thus, our results suggest that functional annotation 43 

of effectors based on sequence similarity may be misleading. 44 

 45 

Keywords: Transcriptome, Metabolome, Plant-microbe interactions, Rust fungi, Effector 46 

biology, Melampsora larici-populina. 47 
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Introduction 49 

Plants have to defend themselves against different types of pathogens. Their first line of 50 

defense consists of passive barriers, such as the cuticle and cell wall, which prevent pathogens 51 

from entering the plant tissue and its cells. Upon successful entry of a pathogen, conserved 52 

pathogenic motifs, called Microbe-Associated Molecular Patterns (MAMPs), may be detected 53 

and activate the Pattern-Triggered Immunity (PTI) [1]. PTI includes the transient accumulation 54 

of reactive oxygen species (ROS), callose deposition, alteration of hormone networks and 55 

activation of defense genes [2, 3]. Finally, microorganisms secrete effectors into their host to 56 

modulate the host metabolism in favor of the pathogen. If detected, these effectors will activate 57 

the Effector-Triggered Immunity (ETI), leading to plant cell death in order to avoid pathogen 58 

spreading to surrounding cells [4].  59 

Rust fungi are the largest group of fungal plant pathogens, infecting ferns, gymnosperms 60 

and angiosperms and causing important losses in food production [5, 6]. They are obligate 61 

biotrophs, produce two to five types of spores and infect one or two unrelated species to 62 

complete their life cycle [6]. To guard themselves against the defense mechanism of two 63 

different host species and to be able to feed on them, rust fungi deploy a large arsenal of 64 

effectors. To better comprehend the interaction between these pathogens and their hosts, and to 65 

provide new mechanisms to target in order to improve plant immunity, it is imperative that we 66 

understand how these effectors are secreted into host cells, how they evolve and how they act to 67 

promote pathogen growth [7, 8]. While the precise number of bona fide effectors carried by 68 

each rust fungi species is unknown, Duplessis and colleagues [9] established that the poplar rust 69 

(Melampsora larici-populina) genome encodes 1 184 small secreted proteins (SSPs) whereas 70 

the wheat stripe rust (Puccinia graminis f. sp. tritici) genome encodes 1 106 SSPs [9], which are 71 
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considered candidate effectors (CEs). These CEs are grouped within families based on sequence 72 

homologies [10, 11]. Furthermore, effectors in the same family have been shown to interact 73 

with homologous R-proteins [12], however the virulence function of these effectors has seldom 74 

been investigated. 75 

Previous studies have proposed different criteria to screen the genome of plant 76 

pathogenic fungi for high-priority CEs, including having less than 300 amino acids, high 77 

cysteine content, being expressed in infection structures during host infection or being detected 78 

in the host tissue during infection [11, 13, 14]. Once identified, putative effectors must be 79 

functionally characterized. In pathogens that are not obligate biotrophs, this can be achieved by 80 

silencing or overexpressing the gene encoding the CEs and analysing the outcome of an 81 

infection [15, 16]. For rust fungi and other obligate biotrophs, which are not amenable to 82 

genetic transformation, this direct investigative approach is not possible. The alternative 83 

solution proposed by different research groups is to use heterologous systems, either by 84 

transforming model plants to express the CE-encoding gene or by infecting model plants with 85 

pathogens able to express these genes [17, 18]. This way, it is possible to evaluate if immunity 86 

is compromised, as it was shown that effectors expressed in heterologous systems conserve their 87 

capacity to alter the plant’s susceptibility to pathogens [19-24]. The stable and transient 88 

expression of CEs from M. larici-populina in Arabidopsis thaliana and Nicotiana benthamiana, 89 

from Phakopsora pachirhyzi in N. benthamiana and from Hyaloperonospora arabidopsidis in 90 

A. thaliana allowed the study of their subcellular localization in planta, their impact on the 91 

growth of different pathogens and the search for host proteins potentially targeted by CEs [19, 92 

25-27].  93 
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Still, the impact of CEs in the plant may not be easy to detect or the isolated effect of a 94 

single CE may be too subtle to affect pathogen growth. In the study of Germain and colleagues, 95 

14 CEs impacted the growth of H. arabidopsidis or Pseudomonas syringae pv tomato. Eleven 96 

of the analyzed CEs displayed nucleocytoplasmic localization in planta, providing very limited 97 

information on possible host targets or helpers of these protein [19].  Petre and colleagues found 98 

seven CEs of wheat yellow rust fungus (out of 16) with specific accumulation pattern in plant 99 

cells (other than nucleocytoplasmic) and discovered specific plant protein interactors for six 100 

CEs [28]. Only three of the 16 CEs studied had both specific accumulation pattern in N. 101 

benthamiana cells and specific plant protein interactors. Although the pathogen growth readout 102 

is informative regarding the impairment of the immune pathway, it is opaque with regards to 103 

which pathway has been tampered with or which metabolites are off-balance. Transcriptomic 104 

and metabolomic studies of stable transgenic plants expressing CEs have been useful in these 105 

cases, since they allow the detection of more subtle changes, unlikely to have a quantifiable 106 

impact on pathogen growth on their own [22, 29, 30]. 107 

Here we studied the transcriptome and metabolome of 14 transgenic Arabidopsis plant 108 

lines expressing Mlp CEs known to affect plant susceptibility to pathogen. We identified 2 299 109 

deregulated genes using this approach, including many related to response to biotic and abiotic 110 

stress, metabolism of specialized metabolites and plant development. Four lines expressing CEs 111 

from different families showed correlated patterns of gene deregulation demonstrating that the 112 

current grouping based on sequence homology does not reflect the virulence function of these 113 

CEs. We also found important down-regulation of highly unsaturated and phenolic compounds 114 

and up-regulation of peptides in almost all CE-overexpressing lines. Overall, our results show a 115 

lack of correlation between the sequence similarity of the studied CEs and their overall 116 
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deregulation of genes or metabolites. Taken together, our results demonstrate that CEs that have 117 

completely different sequences can alter the expression of the same genes sets, while CEs of the 118 

same family can target completely different gene sets. Therefore, it is not possible to estimate 119 

the function of a CE, its impact on the transcriptome or on the metabolome of the plant, based 120 

solely on its sequence, or its similarity to another CE. 121 

Results 122 

In planta expression of candidate fungal effectors results in important deregulation at the 123 

transcriptome level 124 

Melampsora larici-populina CEs have been previously studied in heterologous systems 125 

for functional characterization [19, 22, 25, 30, 31]. In Table 1, we present features of the 14 CEs 126 

studied here. Mlp37347 is a homolog of the well studied AvrL567 group from M. lini [32, 33], 127 

and accumulates at the plasmodesmata in Arabidopsis. Mlp72983 accumulates in the 128 

chloroplast [19] and Mlp124357 is found in the tonoplast and was shown to interact with 129 

Arabidopsis and poplar Protein Disulfide Isomerase [30]. The other 11 CEs selected here have 130 

nucleocytosolic accumulation, the same as the marker protein GFP used. Although information 131 

about these CEs is scarce, all of them impacted Arabidopsis susceptibility to either 132 

Pseudomonas syringae or to Hyaloperonospora arabidopsidis. 133 

To better understand the mechanism through which these 14 CEs impact plants, we 134 

studied the transcriptome and the metabolome of transgenic Arabidopsis plants constitutively 135 

expressing them. In total, we found 2 299 differentially expressed genes (DEGs) across the 136 

experiment. However, the number of DEGs in each line was variable, from 84 in Mlp106078 to 137 

898 DEGs in Mlp123531 (Fig 1), indicating each CE affects the plant transcriptome to a 138 

different degree. The list of deregulated genes in each transgenic line is available in Table S1. 139 
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We further assessed if the level of transgene expression could explain the number of DEGs in 140 

each sample and plotted the number of deregulated genes per transgenic line against expression 141 

level (in transcript per million) of the CE:GFP fusion transcripts. Linear regression shows a 142 

poor relation between the two (R
2 

= 0.1016, Fig S1) suggesting that the number of deregulated 143 

genes per line depends more on the identity of the expressed CE than on the strength of its 144 

expression.  145 

Hierarchical clustering based on gene expression groups effectors independently of amino acid 146 

sequence homology 147 

CEs are typically grouped into families based on their amino acid sequences [11] and it 148 

has been shown that R-protein recognize related effectors [12]. Nevertheless, the virulence 149 

activity of effectors from the same family has rarely been studied. To search for gene 150 

deregulation patterns of related and unrelated CEs, we used WGCNA to cluster the co-151 

expressed DEGs and Pearson’s correlation coefficient to cluster the transgenic lines (Fig 2). We 152 

found in total 208 GO terms enriched in the gene sets from WGCNA. A summary is presented 153 

in Table 2, and the full list of enriched terms is available at dos Santos et al. [34]. Set 0 clusters 154 

714 genes deregulated across the 14 transgenic lines, 63.17% of which were down-regulated. 155 

Functions enriched in this gene set are related to defense, specialized metabolism, stress, and 156 

signaling pathways. Set 1 is composed of down-regulated genes enriched in GO terms related to 157 

defense responses and all transgenic lines have down-regulated genes in this set. Of the 379 158 

genes in Set 2, 76.5% were down-regulated and this set is enriched GO terms related to 159 

specialized metabolite biosynthesis. In the case of Set 3, 81.8% of the genes were down-160 

regulated, but we did not find enriched GO terms in this gene set. Interestingly, this set is 161 

composed of genes with the same pattern of deregulation in 4 transgenic lines expressing 162 
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effectors without sequence similarity (Mlp72983, Mlp102036, Mlp123218, and Mlp123531, 163 

Table S2) which accumulate in two separate cell compartments (Table 1). Set 4 is related to 164 

metabolism and abiotic stress and 77.6% of its genes were down-regulated. Sets 5, 6, and 7 are 165 

composed almost exclusively of up-regulated genes (Table 2). Set 5 has genes deregulated in 166 

most transgenic lines that are related to abiotic stress and development. Set 6 is comprised of 167 

up-regulated genes almost exclusively found in the transgenic line Mlp124466 and related to 168 

transcription, vascular histogenesis, and response to different types of stress. Finally, Set 7 is 169 

made of genes related to photosynthesis and deregulated in the lines Mlp124256 and 170 

Mlp124518. In the cases of the Sets 0, 2, 3 and 4, there is mix of genes up and down-regulated, 171 

thus the enriched GO terms may be either up or down-regulated, or both. Interestingly, the 172 

dendrogram at the top of Fig 2 shows that CEs belonging to the same family (Mlp124497, 173 

Mlp124499 and Mlp124518; Mlp124256 and Mlp124266) fall in separate clusters despite their 174 

similarity at the amino acid level (Table S2).  175 

To analyze the relation between the sequence of each effector and its influence on the 176 

plant transcriptome, we compared the sequence alignment dendrogram to the differential 177 

expression dendrogram. After removal of the signal peptide, we aligned the sequences of the 178 

studied CEs, and compared the resulting dendrogram with the one obtained from the gene 179 

deregulation correlation (Fig 3). Pearson’s correlation showed that transgenic lines expressing 180 

CEs from different families had correlated patterns of gene deregulation. Only one cluster was 181 

present in both dendrograms, Mlp102036 and Mlp123218, however this grouping is not 182 

supported in the effector sequence dendrogram (bootstrap value 8%) while it is in the gene 183 

deregulation dendrogram (bootstrap 100%). This analysis indicates that the sequence similarity 184 

between the CEs is not a good predictor of the impact they have on plant gene expression. 185 
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Effectors converge on deregulating the same metabolic pathways while others display unique 186 

patterns. 187 

Even though the transcripts affected by related effectors are different, in theory they 188 

could fall within the same metabolic pathway and therefore similarly alter the plant. To test this 189 

hypothesis, we searched for KEGG pathways over-represented in the up- and down-regulated 190 

genes in each transgenic line. “Biosynthesis of secondary metabolites” and “Metabolic 191 

pathways” were enriched among gene sets (either up-, red, or down-regulated, blue) of eight 192 

transgenic lines, while “MAPK signaling pathway” and “Plant-pathogen interaction” were 193 

enriched only among the down-regulated genes of six and five transgenic lines, respectively 194 

(Fig 4). We also found that “Starch and sucrose metabolism” was down-regulated in the 195 

transgenic lines Mlp123227 and Mlp124266, but up-regulated in the lines Mlp123218 and 196 

Mlp124497, whereas several transgenic lines showed impact on specialized metabolism. This 197 

was also visible in the enriched GO terms found on the WGCNA gene sets (Table 2 and [34]). 198 

File S1 shows heatmaps of 11 different metabolic pathways in which there were at least 10 199 

genes deregulated across the experiment. The circadian rhythm pathway, although enriched only 200 

among the down-regulated genes of the lines Mlp124499, Mlp37347 and Mlp123531 and up-201 

regulated genes in the Mlp124357 transgenic line, has several genes deregulated in all the 202 

transgenic lines studied. The plant-hormone signal transduction pathway is enriched among 203 

down-regulated genes in the transgenic lines Mlp37347, Mlp123531, and  Mlp124497, and 204 

which we found several down-regulated genes (17, 23, and 17 DEGs, respectively) related to 205 

auxin response. From these results we conclude that CEs with similar sequences not only 206 

deregulate different genes but also alter different pathways.  207 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 2, 2020. ; https://doi.org/10.1101/2020.10.30.363010doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.30.363010
http://creativecommons.org/licenses/by-nd/4.0/


11 

 

As both primary and specialized metabolisms were affected at the transcriptomic level 208 

and their levels can have an important role in the outcome of an infection, we proceeded with an 209 

untargeted analysis of the metabolome of these plants. We extracted metabolites with solutions 210 

containing 20% and 80% methanol and used ultra-high resolution mass spectrometry in 211 

negative mode. A total of 5 192 masses were assigned across the experiment, ranging from 212 

2 679 (Mlp123227) to 3 151 (Mlp124357) masses in each transgenic line (Table S3). When 213 

separated in biochemical categories, assigned formula belonged mostly to highly unsaturated 214 

and phenolic and aliphatic categories, while peptides, sugars, condensed aromatics and 215 

polyphenolics were less important both in number of formulas and in relative abundance (Fig 216 

5). Compared to the control, we found 680 assigned molecular formulas with a | log2-217 

transformed Fold change | > 2 (Fig 6A), ranging from 69 metabolites in the line Mlp124466 218 

(1.95% of the masses detected in this sample and/or in the control) to 353 in the line Mlp123227 219 

(9.68% of the masses detected in this line and/or in the control, Table S3). In all transgenic 220 

lines, with exception of Mlp72983 and Mlp124256, there was over-representation of highly 221 

unsaturated and phenolic compounds among the down-regulated metabolites (accumulation 222 

level lower than in the control line) whereas up-regulated metabolites (accumulation level 223 

higher than in the control line) were enriched in peptides in all samples, except Mlp72983, 224 

Mlp106078 and Mlp124466 (Fig 6B, Table S4). As done with the transcriptomic data, we 225 

assessed whether the variation in the number of metabolites deregulated in each transgenic line 226 

could be explained by the level of expression of the transgene. For this, we plotted the number 227 

of deregulated metabolites per transgenic line (left Y-axis, blue) against the average expression 228 

level of the CEs in each transgenic line (X-axis, Fig S2). As the number of metabolites detected 229 

in each transgenic line varied (Fig 5A), we also plotted the ratio of deregulated 230 
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metabolites:identified (detected either in the control or in the corresponding sample) metabolites 231 

in the right Y-axis (red). We found that the variation in transgene expression could explain 232 

neither the number (R
2
=0.0063, p-Value=0.7872) nor the ratio of deregulated metabolites 233 

(R
2
=0.0033, p-Value=0.8444), suggesting that the magnitude of the impact on the metabolome 234 

depends on the identity of the CE expressed in the plant rather than the strength of the CE 235 

expression.  236 

In order to find shared patterns of metabolite deregulation across the transgenic lines 237 

studied, we used Pearson’s correlation to group metabolites with correlated deregulation across 238 

the experiment and transgenic lines which deregulated the same metabolites. As observed with 239 

the gene deregulation, we found that transgenic lines expressing CEs without sequence 240 

similarity have correlated patterns of metabolite deregulation (Fig 6B). In the case of the 241 

CPGH1 family (CEs Mlp12497, Mlp124499, Mlp124518), lines Mlp124499 and Mlp124518 242 

are correlated at 0.77 (Pearson’s correlation), but their correlation with the line Mlp124497 is 243 

less strong (Mlp12497-Mlp124499: 0.59; Mlp124497-Mlp124518: 0.64). The two AvrP4 244 

homologues, Mlp124256 and Mlp124266, have 46.3% of amino acid sequence similarity [34], 245 

but the correlation in metabolites deregulation patterns of the transgenic lines expressing these 246 

CEs is of 0.32. On the other hand, although Mlp124266 and Mlp124357 have 21.2% of amino 247 

acid sequence similarity (Table S2), multiple sequence alignment groups the AvrP4 homologues 248 

with the CE Mlp124357 (Fig 7) and their metabolite deregulation correlation is 0.69.  249 

Remarkably, there was no correlation between the dendrograms gene and metabolite 250 

deregulation (cophenetic correlation of 0.1046, Fig 7). When considering the number of genes 251 

and metabolites deregulated in each sample, the correlation was also low (Pearson’s 252 

correlation = -0.1182). These results suggest these two omics approaches are needed to 253 
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understand the magnitude of the impact of the CEs in the plant. Nevertheless, the possibility 254 

that the metabolic pathways deregulated at the metabolite level are the same as those 255 

deregulated in the gene level cannot be discarded. 256 

To identify the molecular formula assigned in each sample and associate the 257 

metabolomic results with metabolic pathways, we searched for compounds with matching 258 

formula or matching m/z values in the KEGG database. From the 5 192 m/z detected across the 259 

experiment, 385 (7.42%) had a single match in KEGG database, while other 600 corresponded 260 

to multiple metabolites. When only considering the 680 deregulated metabolites, 54 (7.07%) 261 

matched a single metabolite and 82 (12.06%) matched multiple metabolites [34], leaving 546 262 

unmatched. 263 

Discussion 264 

Effector biologists have tackled both the identification and the functional 265 

characterization of candidate effectors (CEs) [14, 35], as this is a key step towards a better 266 

understanding of plant-microbe interactions. In rust fungi, different approaches are used in the 267 

functional characterization of these proteins, including analysis of subcellular localization in 268 

planta [19, 25, 28, 30, 31], infection assays in true host or in a model plant, and 269 

induction/repression of plant cell death [19, 30, 36, 37]. The transcriptome or metabolome of 270 

the host in responses to the pathogen are frequently evaluated [38-43], but the assessment of the 271 

role of individual CEs in these processes is not easily measured and seldom analyzed [22, 44]. 272 

Here we investigated 14 CEs from Melampsora larici-populina by evaluating their individual 273 

impact on the transcriptome and metabolome of stable transgenic Arabidopsis plants. By 274 

studying the impact of several individual CEs, we were able to compare patterns of gene and 275 

metabolite deregulation. Unexpectedly, we found that transgenic lines expressing CEs 276 
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belonging to the same family did not have comparable patterns of gene or metabolite 277 

deregulation.  278 

Previous studies in M. larici-populina have shown that genes encoding fungal effectors 279 

are expressed in waves in the telial host [45] and that members of the same family may be 280 

expressed during the infection of different hosts [46]. This reflects the functional diversification 281 

of effectors, indicating that the fungus uses different sets of effectors for each stage of the 282 

infection and suggesting that effector families can have different functions, may target different 283 

host proteins or the same host protein that diverged in different hosts. The concurrent study of 284 

individual M. larici-populina CEs allows the comparison of their individual impact in the plant 285 

[19]. We found variability in the magnitude of the impact of each CE on the transcriptome 286 

(from 84 to 898 DEGs) and the metabolome (from 69 to 363 metabolites deregulated, Figs 1 287 

and 6) of the transgenic plants, a variability which is not related to the level of expression of the 288 

transgenes (Figs S1 and S2). This suggests that the identities of the CEs are orienting the 289 

deregulations. By comparing the correlation of gene and metabolite deregulation patterns with 290 

the CEs sequence similarity (Figs 3 and 7), we show that CEs belonging to the same family do 291 

not deregulate the transcriptome or the metabolome in a same way nor do they deregulate the 292 

same metabolic pathways (Fig 4). These results corroborate the infection assays from Germain 293 

and colleagues [19]. In their study, Arabidopsis plants, constitutively expressing Mlp CEs, were 294 

infected with P. syringae DC3000 or H. arabidopsidis Noco2. Mlp124497, Mlp124499 and 295 

Mlp124518 (family CPGH1) and Mlp124256 and Mlp124266 (family CPG5464) [47], all 296 

increased Arabidopsis susceptibility to H. arabidopsidis. However, only Mlp124266, 297 

Mlp124497 and Mlp124499 made Arabidopsis more susceptible to P. syringae.  298 
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It has been suggested that proteins with higher sequence similarity have higher 299 

probability of having the same function [48], thus small secreted proteins from many fungal and 300 

oomycete plant pathogens [9, 11, 49-51] have been grouped in protein families to guide 301 

functional annotation and to help understand effector evolution. Nevertheless, recent studies 302 

have hypothesized that effectors from the same family may have different functions in the same 303 

host. This is the case for HopAF1 effectors from P. savastanoi [52] and GALA effectors from 304 

Ralstonia solanacearum [53], which impact differently the plant defense. It is also the case for 305 

XopD effectors from plant pathogenic bacteria, which show different levels of SUMO protease 306 

activity and have different impacts in Nicotiana leaves [54]. This hypothesis is also supported 307 

by the evolution of the Tin2 effector in Ustilaginaceae. Tin2 from Ustilago maydis interacts 308 

with Zea mays TTK1 protein to stabilize it, leading to accumulation of anthocyanin. However, 309 

Tin2 from Sporosorium reiliannum interacts with Zea mays TTK2 and TTK3, inhibiting their 310 

activity [55]. 311 

The CEs studied here deregulate diverse biochemical pathways in the plant (Fig 4). In 312 

relation to primary metabolism, genes in the “starch and sucrose metabolism” pathway were 313 

over-represented among up-regulated genes in the transgenic lines expressing the CEs 314 

Mlp123218 and Mlp124497, comparable to what is observed in susceptible wheat infected with 315 

Puccinia triticina [43]. On the other hand, the plants expressing Mlp123227 and Mlp124266 316 

showed an enrichment of this pathway among down-regulated genes and the transgenic lines 317 

Mlp72983 and Mlp124266 had several genes down-regulated in this pathway as well (File S1), 318 

a pattern seen in resistant wheat infected with P. triticina [43]. This difference in the direction 319 

of gene deregulation within the same pathway by different CEs may be an indication that 320 

deregulated genes have different functions. It can also suggest that these CEs are used in 321 
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different stages of the infection. When considering pathways related to defense, the 322 

transcriptomic deregulations found in this study differ from previous reports of susceptible 323 

plants infected by rust fungi. While genes encoding Glutathione-S-transferase are down-324 

regulated in at least one of 12 transgenic lines studied here (File S1), these genes are up-325 

regulated in apple leaves infected with Gymnosporangium yamadae [39]. Moreover, Tremblay 326 

and colleagues [40] reported up-regulation of genes in the “photosystem” and “nitrogen 327 

metabolism” pathways in susceptible Glycine max infected with P. pachyrhizi, whereas genes 328 

from these pathways were down-regulated in our transgenic lines.  329 

There are several possible explanations for the differences between previous studies and 330 

our own. First, our results may be due to the long-term exposure of our plants to CEs, as they 331 

are stable transgenic lines, whereas during the infection rust fungi secrete effectors in waves 332 

[45], these proteins are not constitutively present in the host. It is also possible that results from 333 

Tao and colleagues [39] and Tremblay and colleagues [40] included the activation of PTI as 334 

well as the combinatory effect of multiple effectors, as they investigated plant response to the 335 

fungal infection, not to individual CEs. Our approach was to express CEs from M. larici-336 

populina in a plant that cannot be infected by this fungus, thus should not recognize these 337 

proteins nor mount active defense responses against them. Nevertheless, as we evaluated the 338 

impact of each CE in the plant using one single transgenic line, it is not possible to know for 339 

sure if the impact on the transcriptome and metabolome is caused by the CE or is a secondary 340 

effect of the DNA insertion site in each of these transgenic lines. Yet, the probability that the 341 

insertion site impacted in the same manner the results of all the 14 transgenic lines studied here 342 

is low, thus the results that consider the 14 transgenic lines are robust. Finally, although there 343 

are limitations in the use of heterologous systems, they allow faster functional characterization 344 
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of CEs [17, 56] and they may be indispensable for high-throughput studies of CEs of obligate 345 

biotrophic pathogens or other microorganisms not amenable to genetic manipulation [57, 58].  346 

Taken together, our results reinforces the hypothesis that the CEs studied here and 347 

functionally characterized by Germain and colleagues [19] are bona fide effectors. Nevertheless, 348 

future studies interested in CEs evaluated here should analyze more independent transgenic 349 

lines. In addition, since our methodology for the metabolomic analysis is semi-quantitative and 350 

does not allow the distinction of metabolites with the same m/z, follow up studies should use 351 

chromatography in tandem with mass spectrometry and should analyze more replicates for the 352 

mass spectrometry. Our study also questions the validity of grouping CEs by sequence 353 

similarity. The importance of this approach for understanding the evolution of effectors is 354 

obvious [9], but basing functional characterization on sequence similarity may be misleading 355 

[52, 53, 55].  356 

Materials and Methods 357 

Plant growth conditions 358 

Arabidopsis thaliana transgenic plants in Columbia-0 background expressing GFP alone 359 

(control) or fused to a candidate effector of the fungus Melampsora larici-populina (Mlp37347, 360 

Mlp72983, Mlp102036, Mlp106078, Mlp123218, Mlp123227, Mlp123531, Mlp124256, 361 

Mlp124266, Mlp124357, Mlp124466, Mlp124497, Mlp124499, Mlp124518) previously 362 

obtained in our laboratory [19, 30], were grown at 22°C at 12h/12h light/dark cycles. 363 

RNA extraction and transcriptome analysis 364 

RNA was extracted from pooled aerial tissue of 2-week-old soil-grown plants, using 365 

three replicates per genotype, with the Plant Total RNA Mini Kit (Geneaid) using RB buffer 366 

following manufacturer’s protocol. The samples were treated with DNAse, then RNA quality 367 
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was assessed using agarose gel electrophoresis. QC was performed using a 2100 Bioanalyzer 368 

(Agilent) and only samples having an RNA Integrity Number higher than 7 were kept for 369 

library preparation. Libraries were generated with the NeoPrep Library Prep System (Illumina) 370 

using the TruSeq Stranded mRNA Library Prep kit (Illumina) and 100 ng of total RNA as per 371 

the manufacturer’s recommendations. The libraries were then sequenced with Illumina HiSeq 372 

4000 Sequencer with paired-end reads of 100 nt at the Genome Quebec Innovation Centre 373 

(McGill University, Montreal, Canada).  374 

The bioinformatic analyses were done with Compute Canada servers, the parameters 375 

used are presented in Table S5. We trimmed the reads using Trimmomatic [59] and we aligned 376 

the surviving paired reads to the genome of A. thaliana assembly TAIR10 with HISAT2 [60]. 377 

Unmapped reads were aligned to the sequences of the CEs, without signal peptide, attached to 378 

eGFP. We counted the reads assigned to each transcript with the R (v3.6) packages Rsamtools 379 

(v2.2.3 [61]), GenomicAlignments and GenomicFeatures [62]. The general information of the 380 

sequencing results and mapping data is presented in Table S6. Before comparing the samples, 381 

we used the CustomSelection package [63] to select as reference genes the top 5% genes with 382 

lowest coefficient of variation of TPM among the 45 samples [34]. We assessed the variation 383 

between the replicates and the similarity of the samples with principal component analysis (Fig 384 

S3). Differential expression analysis was performed with DeSeq2 [64], using the un-normalized 385 

counts as input, and genes with |log2 Fold change| ≥ 2 (p-Value ≤ 0.01), when comparing each 386 

CE-expressing lines to the control line, were considered as deregulated. We used clusterProfiler 387 

[65] for GO term enrichment analysis and KEGGprofile (v1.24.0 [66]) for KEGG enrichment 388 

analysis. Sets of deregulated genes were computed using WGCNA [67]. We calculated the 389 
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similarity of gene deregulation of different transgenic lines with the R package pvclust (v2.2-0 390 

[68]), using Pearson’s correlation and 5 000 bootstrap replications. 391 

Metabolite extraction and metabolomics analysis 392 

Metabolites were extracted from pooled aerial tissue of 2-week-old soil-grown plants, 393 

with four replicates per genotype. After pulverizing the tissues with a TissueLyser (30 cycles 394 

per second for 45 seconds repeated 3 times), we added 300 μL of distilled water to it. From the 395 

mix of tissue and water, we used 100 μL of tissue slurry for an extraction with 1 mL of 20% 396 

methanol and a separate 100 μL for an extraction with 1 mL of 80% methanol. After agitation 397 

with the solvent, we pooled the samples of the same genotype and extraction together and 398 

filtered them using glass microfiber filters (Whatman GF/F CAT No. 1825-025). We evaporated 399 

the extracts with a speed vacuum at room temperature and chamber vacuum of 7.4 torr’s and 400 

resolubilized them in 2 mL of distilled water. Then, we solid phase extracted 50 µg of dissolved 401 

organic carbon (DOC) of each sample, using Agilent PPL cartridges, and eluted it in 1mL of 402 

100% methanol.  403 

The mass spectrometry was performed in an Orbitrap LTQ-Velos calibrated and tuned to 404 

maximize the peak at 369.1 in Suwannee River Fulvic Acid (SRFA) reference material. The 405 

extracts were analysed by direct injection in negative mode at a resolution setting 100 000, with 406 

accumulation time set to a maximum of 500 ms and a target of 1 x 10
6
 ions. Peaks were only 407 

considered for formula assignment if their intensity was higher than 10x the median noise 408 

baseline. We assigned formulas to masses using an in-house MATLAB script [69] and we 409 

allowed assignments with mass error < 2 ppm. Briefly, formulas were considered over the 410 

ranges C4-50H4-100O2-40N0-2 under the conditions O ≤ C; 0.3C ≤ H ≤ 2.2C. For each sample, the 411 

intensity of the peaks was normalised so that the sum of the intensities equalled 10 000. 412 
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Following analyses were performed using R software (v4.0). We used the molecular formulas to 413 

calculate the modified aromaticity index (AImod) of each metabolite [70] and the compound 414 

categories were defined as: condensed aromatic (AImod > 0.66), polyphenolic (0.66 ≥ AImod > 415 

0.5), highly unsaturated and phenolic (AImod < 0.5 and H/C < 1.5), aliphatic (2 ≥ H/C ≥ 1.5, N 416 

= 0), peptide (2 ≥ H/C ≥ 1.5, N > 0) or sugar (O/C > 0.9) [71]. 417 

The results of the two extractions, with 20% and 80% methanol, were combined and the 418 

fold changes (FC) were calculated as log2(
0.5+𝑀𝑥𝑦

0.5+𝑀𝑐𝑦 
), where Mx

y
 is the relative abundance of the 419 

metabolite y in the CE-sample x and Mc
y
 is the relative abundance of the metabolite y in the 420 

control. For each sample, only metabolites with |FC| > 2 were considered to have relative 421 

abundance different to that of the control. Categories enriched among up- and down-regulated 422 

genes were found by applying Fisher’s test. We calculated the similarity of metabolite 423 

deregulation of different transgenic lines with the R package pvclust (v2.2-0 [68]), using 424 

Pearson’s correlation and 5 000 bootstrap replications. Pairwise correlation of metabolite 425 

deregulation between specific transgenic lines was calculated with the function cor from the R 426 

package stats, using the method “pearson”. We were not able to analyze the extraction with 80% 427 

methanol of the transgenic line Mlp123218, thus the results presented for this line are only of 428 

the extraction with 20% methanol and they are compared to the results of the Control for the 429 

same extraction for consistency.  430 

We searched the molecular formulas, obtained with the in-house script, in KEGG 431 

database using the R package KEGGREST (version 1.24.0 [66]) for identification of the 432 

metabolites detected. We also used Pathos [72] to search for metabolites with the same m/z 433 

(settings: negative mode, all organisms, -H
+
 as adduct and mass error at 3 ppm).  434 

Sequence analysis and integration 435 
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Multiple sequence alignment of CE amino acid sequences without signal peptides was 436 

performed with the software MEGA X [73] using Muscle [74] default settings. Evolutionary 437 

history was inferred using UPGMA method and 1 000 bootstrap replicates. Comparisons of 438 

dendrograms from CE sequence alignment, gene and metabolite deregulation correlation were 439 

done with dendextend R package [75] by calculating the cophenetic correlation between two 440 

dendrograms. We performed pairwise sequence alignment of the 14 CEs using Needle [76], 441 

with default parameters.  442 

Data availability 443 

Transcriptomics: Raw reads and count matrices are available in NCBI GEO under the 444 

accession GSE158410 [77]. 445 

Metabolomics: Raw and mzXML files along with annotation of metabolites and their 446 

relative abundances in each sample are available at MetaboLights under the accession 447 

MTBLS2096 [78]. 448 

Data underlying figures, full list of enriched GO terms in the WGNCA gene sets, 449 

information on the deregulated metabolites and the list of selected reference genes is available 450 

at [34]. 451 
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Table 1. Features of the CEs investigated in this study.  699 

CE 
Length 

(Cysteine) 
Family (members) 

Subcellular 

localization
a U, P, B, L

b,c 

Mlp37347 151 (2) - Plasmodesmata E, HE, E, E 

Mlp72983 220 (8) CPG332-CPG333(13) Chloroplast E, HE, E, HE 

Mlp102036 107 (0) CPG2528(5) Nucleocytosolic E, HE, E, E 

Mlp106078 137 (10) - Nucleocytosolic E, HE, E, E 

Mlp123218 209 (6) CPG543(7) Nucleocytosolic E, HE, E, E 

Mlp123227 124 (3) CPG1059(2) Nucleocytosolic E, HE, E, HE 

Mlp123531 102 (8) CPG4557(3) Nucleocytosolic E, HE, E, E 

Mlp124256 89 (6) CPG5464(13) Nucleocytosolic N, N, E, E 

Mlp124266 92 (7) CPG5464(13) Nucleocytosolic N, N, E, E 

Mlp124357 98 (6) CPG4890 Tonoplast N, N, E, E 

Mlp124466 76 (0) - Nucleocytosolic - 

Mlp124497 77 (4) CPGH1(33) Nucleocytosolic N, N, N, N 

Mlp124499 72 (3) CPGH1(33) Nucleocytosolic N, N, E, HE 

Mlp124518 76 (3) CPGH1(33) Nucleocytosolic N, N, E, E 
a 

Subcellular localization was evaluated in Arabidopsis [19]. 
b, c 

U, P, B, L refers to expression 700 

on: U) urediniospores, P) poplar leaves, B) basidiospores or L) larch needles [46], where E, HE, 701 

and N indicate that the CE is expressed, highly expressed,  or was not detected, respectively, 702 

and - indicates no data is available. 703 

Table 2. Summary of “biological process” GO terms enriched in the WGCNA gene sets.  704 

Set Genes in the 

set 

Up-

regulated
a 

Down-

regulated
a
 

Enriched GO terms 

Set 0 714 262 451 Response to water deprivation 

Cold acclimation; Leaf senescence 

Response to fungus, to chitin, to ROS 

Response to salt stress and to hypoxia 

Defense response to fungus 

Response to toxic substance 

Response to nitrogen compound and to ET 
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Isoprenoid, triterpenoid and terpenoid biosynthesis 

Plant-type cell wall loosening 

Phosphorelay signal transduction system 

Set 1 624 10 615 Response to drug, nitrogen, ROS and ozone 

Response to SA, JA and karrikin 

Response to wounding, to herbivore and insect 

Cellular response to light stimulus and hypoxia 

Cellular response to acid chemical 

Defense response (incompatible interaction) 

Defense response by callose deposition in cell wall 

Defense response by cell wall thickening 

SAR and ISR 

Camalexin, indole phytoalexin and SA biosynthesis 

Sulfur compound biosynthesis 

Toxin and phenol-containing compound biosynthesis  

Set 2 379 89 290 Response to karrikin, to nutrient levels and to copper 

ion 

S-glycoside and unsaturated fatty acid biosynthesis  

Chlorophyll biosynthesis 

Tetraterpenoid, terpenoid and carotenoid biosynthesis 

Isoprenoid, glycosyl and xanthophyll metabolism 

Sulfur compound, cofactor and leucine biosynthesis 

Defense response to insect 

De-etiolation; Chloroplast organization 

Set 3 253 47 207 No GO term enriched 

Set 4 140 32 109 Response to water deprivation 

Response to salt stress and to starvation 

Cellular amino acid catabolism/metabolism 

ET-activated signaling pathway 
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Indole-containing compound metabolism 

Set 5 116 113 4 Circadian rhythm; Starch catabolism 

Response to cold 

Regulation of reproductive process 

Regulation of post-embryonic development  

Set 6 40 38 2 Response to hypoxia and to wounding,  

Response to drug, to chitin and to salt stress 

Transcription; Phloem or xylem histogenesis 

Set 7 32 32 0 Photosynthesis; Proton transmembrane transport 

a 
Up- and down-regulated indicate the number of genes in the set the are up- or down-regulated 705 

in at least one transgenic line, thus there may be genes that are deregulated in both directions in 706 

the set because they are deregulated in opposite directions in different samples. 707 

Fig 1. In planta expression of candidate fungal effector results in important deregulation 708 

at the transcriptome level. Blue and red bars indicate the number of down- and up-regulated 709 

genes, respectively, in each CE-expressing transgenic line compared to the control line. The 710 

underlying data for this figure can be found at dos Santos et al. [34]. 711 

Fig 2. Heatmap of genes deregulated in each CE-expressing transgenic line. Transgenic 712 

lines are displayed as columns and deregulated genes as lines. Sets of co-expressed genes (Sets 713 

0 to 7) were calculated with WGCNA. Transgenic lines were grouped by correlation of gene 714 

deregulation using Pearson’s correlation coefficient. The underlying data for this figure can be 715 

found at dos Santos et al. [34]. 716 

Fig 3. Hierarchical clustering of gene deregulation groups effectors independently of 717 

amino acid sequence homology. CE sequence alignment was computed with Muscle alignment 718 

and tree (left) was calculated with UPGMA. Dendrogram based on correlation of gene 719 

deregulation (right) was calculated with Pearson’s correlation coefficient of Fold Change levels 720 

and bootstrap values were obtained with pvclust. Branches with bootstrap support < 70% are 721 

shown in grey. Central lines indicate shared clusters and cophenetic correlation between the 722 

dendrograms is shown in the bottom. The underlying data for this figure can be found at dos 723 

Santos et al. [34]. 724 
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Fig 4. Effectors converge on deregulating the same metabolic pathways while others 725 

display unique patterns. KEGG pathways over-represented among the sets of genes down- 726 

(blue) and up-regulated (red) in each transgenic line (columns) were calculated with 727 

KEGGprofile. Transgenic lines are ordered according to dendrogram of sequence similarity 728 

calculated with Muscle. The underlying data for this figure can be found at dos Santos et al. 729 

[34]. 730 

Fig 5. Metabolic composition of samples in number of formulas (A) and relative 731 

abundance of compounds (B). Samples were analyzed in negative mode and estimated 732 

molecular formulas were separated in six categories: highly unsaturated and phenolic (green), 733 

aliphatic (purple), peptide (orange), polyphenolic (yellow), condensed aromatic (blue), and 734 

sugar (pink). The underlying data for this figure can be found at dos Santos et al. [34]. 735 

Fig 6. (A) Metabolites down-regulated (left) are enriched in highly unsaturated and 736 

phenolic compounds while peptides are over-represented among those up-regulated 737 

(right). Samples were analyzed in negative mode and relative abundance of metabolites in 738 

samples was compared to that in the control plants. Estimated molecular formulas were 739 

separated in six categories: highly unsaturated and phenolic (green), aliphatic (purple), peptide 740 

(orange), polyphenolic (yellow), condensed aromatic (blue), and sugar (pink). (B) Transgenic 741 

lines expressing candidate effectors with no similarity in amino acid sequence have correlated 742 

patterns of metabolite deregulation. Both metabolites and transgenic lines were clustered using 743 

Pearson’s correlation. 
*
 indicates transgenic lines with CEs from the CPG5464 family; 

#
 744 

indicates transgenic lines with CEs from the CPGH1 family. The underlying data for this figure 745 

can be found at dos Santos et al. [34]. 746 

Fig 7. Hierarchical clustering based on metabolite deregulation groups effectors 747 

independently of amino acid sequence homology and gene deregulation patterns are not 748 

correlated to metabolite deregulation patterns in CE-expressing lines. CE sequence 749 

alignment was computed with Muscle alignment and tree (left) was calculated with UPGMA. 750 

Dendrograms based on correlation of metabolite deregulation (center) or gene deregulation 751 

(right) were calculated with Pearson’s correlation coefficient of Fold Change levels and 752 
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bootstrap values were obtained with pvclust. Branches with bootstrap support < 70% are shown 753 

in grey. The underlying data for this figure can be found at dos Santos et al. [34]. 754 

Fig S1. Magnitude of impact of CE on the plant’s transcriptome is independent of its level 755 

of expression. Reads not mapped to Arabidopsis genome were aligned to the transgene 756 

sequences (CE:GFP fusion) and average expression (in transcripts per million) across replicates 757 

of each transgenic line was calculated. Linear regression was performed using the number of 758 

genes deregulated in each transgenic line as the dependent variable and the average expression 759 

of the CE as the independent variable. The underlying data for this figure can be found at dos 760 

Santos et al. [34]. 761 

Fig S2. Magnitude of impact of CE on the plant’s metabolome is independent of its level of 762 

expression, considering either the absolute number of deregulated metabolites (triangles, 763 

linear regression results in blue) or the ratio of metabolites deregulated by those identified 764 

(circles, linear regression results in red). Reads not mapped to Arabidopsis genome were 765 

aligned to the transgene sequences (CE:GFP fusion) and average expression (in transcripts per 766 

million) across replicates of each transgenic line was calculated. Two separate linear regressions 767 

were performed using the number of metabolites deregulated and the ratio between metabolites 768 

deregulated by those detected in each transgenic line as the dependent variables and the average 769 

expression of the CE as the independent variable in both cases. The underlying data for this 770 

figure can be found at dos Santos et al. [34]. 771 

Fig S3. Principal component analysis of the replicates of 14 transgenic lines expressing 772 

candidate effectors from Melampsora larici-populina attached to GFP and a control line 773 

expressing only GFP (black dots). Replicates of the same transgenic lines are close together, 774 

indicating the homogeneity of the sample, with exception of one replicate of each of the 775 

following transgenic lines: Mlp102036 (yellow), Mlp106078 (red), Mlp124256 (sky blue) and 776 

Mlp124357 (dark green). The underlying data for this figure can be found at dos Santos et al. 777 

[34]. 778 
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File S1. Heatmaps of deregulated genes separated by KEGG pathway. Pathways with at 779 

least 10 genes deregulated across the experiment were selected for display of genes deregulated 780 

in each transgenic line. The underlying data for this figure can be found at dos Santos et al. [34]. 781 

Table S1. List of deregulated genes across the experiment with log2-transformed fold 782 

changes (FC) and false discovery rates (FDR) for each transgenic line. 783 

Table S2. Percentage of identity and similarity, presented as “ID (SIM)”, calculated with 784 

pairwise sequence alignment of CEs using Needle. 785 

Table S3. Summary of metabolomic analysis in negative mode of extractions with 20% 786 

and 80% methanol combined. Assigned, CHO, CHON and Mean mass refer exclusively to the 787 

sample in question, while the amount of deregulated formulas considers those m/z detected in 788 

the sample or in the Control. 789 

Table S4. Metabolites assigned and deregulated in each sample separated by category. 790 

Identified metabolites are m/z detected either in the sample or in the control. The percentages 791 

were calculated by dividing the number of formulas assigned or deregulated in the sample in 792 

each category by the number of formulas identified in that sample and multiplying by 100. 793 

Table S5. Parameters used for bioinformatic analyses. 794 

Table S6. Sequencing results and alignment summary. 795 
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