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Abstract 

Viruses and their hosts can undergo coevolutionary arms races where hosts evolve increased 

resistance and viruses evolve counter-resistance. Given these arms race dynamics (ARD), viruses 

and hosts are each predicted to evolve along a single trajectory as more recently evolved genotypes 

replace their predecessors. Here, by coupling phenotypic and genomic analyses of coevolving 

populations of bacteriophage  and Escherichia coli, we find conflicting evidence for ARD. Virus-

host infection phenotypes fit the ARD model, yet whole genome analyses did not. Rather than 

coevolution unfolding along a single trajectory, cryptic genetic variation emerges during initial 

virus-host coevolution. This variation is maintained across generations and eventually supplants 

dominant lineages. These observations constitute what we term ‘leapfrog’ coevolutionary 

dynamics, revealing weaknesses in the predictive power of standard coevolutionary models. The 

findings shed light on the mechanisms that structure coevolving ecological networks and reveal 

the limits of using phenotypic assays alone in characterizing coevolutionary dynamics. 
 

Main text 

 

Introduction 

Bacteria and their viruses (phage) are the two most abundant and genetically diverse groups of 

organisms on Earth (Torsvik et al. 2002; Clokie et al. 2011; Thomas et al. 2011).  Together, 

bacteria and phage are part of ecological communities characterized by complex networks of 

interactions whose structures have important implications that extend beyond the microbial world. 

For example, when viral lysis of bacteria redirects organic matter towards the microbial loop and 

away from higher tropic levels, potentially reducing productivity of macroscopic organisms 

(Fuhrman 1999; Wilhelm & Suttle 1999; Suttle 2007; Weitz & Wilhelm 2012; Brum et al. 2016). 

Changes in phage-bacteria infection networks that arise due to evolution of resistance (or counter-

resistance) may have ripple effects throughout ecological communities and associated ecosystems.  

 

Viral infection and lysis represents a strong selective pressure for the evolution of phage resistance 

(e.g., (Luria & Delbrück 1943) and the corresponding evolution of expanded host ranges amongst 

phage (Luria 1945). Evolutionary changes in resistance and infectivity lead to dynamic arms races 

where bacteria evolve phage resistance (Labrie et al. 2010), and phage evolve counter defenses 

(Hampton et al. 2020). This dynamic causes continual remodeling of the interaction network, 

which can impact ecosystem processes, the stability of ecological communities, and maintenance 

of microbial diversity (Bohannan & Lenski 2000; Buckling & Rainey 2002; Rodriguez-Valera et 

al. 2009; Stern & Sorek 2011). There is a growing interest in characterizing the dynamics of phage-

bacteria coevolution and to understand the molecular and ecological mechanisms that shape their 

coevolving networks (Koskella & Brockhurst 2014). 

 

A starting point to study phage-bacteria coevolution is to characterize how their interactions 

change over time (Weitz et al. 2005; Childs et al. 2012; Weinberger et al. 2012; Valverde et al. 

2017). Models of coevolution tend to predict two types of dynamics (Agrawal & Lively 2002; 

Weitz et al. 2013). One such model is that of arms race dynamics (ARD) where bacteria evolve 

resistance to an increasing number of phage and phage counter by expanding their host range. For 

the bacteria, this leads to an escalation where increasingly resistant bacteria replace their less-

resistant predecessors. The increase of resistance is expected to cause rapid bacterial genomic 

divergence and an imbalanced phylogenetic pattern with a single pronounced branch. Similarly, 
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as the phage broadens its host range, the most recently evolved type is expected to supplant its 

predecessors, resulting in the formation of a similarly imbalanced phylogeny. A second model of 

coevolution is based on the evolution of specialized interactions, often described as lock and key 

interactions (Weitz et al. 2013). In this model, as coevolution progresses, bacteria gain resistance 

to contemporary phage, but lose resistance to phage encountered in the past. Likewise, as phage 

evolve counter-defenses, they lose the ability to infect other host genotypes. Under this model, 

host genotypes rise and fall according to how abundant their corresponding parasite genotypes are, 

while parasite genotypes track the abundance of their hosts creating a feedback loop and 

fluctuating selection dynamics (FSD) (Sasaki 2000; Gandon et al. 2008). FSD produces negative 

frequency-dependent selection that is expected to promote diversification and the formation of a 

balanced phylogeny with multiple branches. ARD and FSD represent distinct archetypes of 

possible coevolutionary dynamics and models have been proposed that span the space between the 

two end points (Leung & Weitz 2016). 

 

One way to gain insight on whether phage and bacteria coevolve according to ARD or FSD is to 

quantify their interaction networks (phage-bacteria interaction networks; PBINs) and test for 

nonrandom nested and modular patterns (Flores et al. 2011). Nestedness measures the extent to 

which interaction patterns form strict hierarchical subsets, analogous to nesting Russian dolls 

(Almeida-Neto et al. 2008). This pattern can be produced by ARD since at each step the phage 

adds on to its existing host range, expanding its range of infectable hosts in a way that encapsulates 

its ancestors’ ranges; likewise bacteria evolve resistance to previously evolved phage 

encapsulating its ancestors’ range of phage to which it is resistant.  Modularity arises in networks 

when groups of phage and bacteria tend to interact significantly more often within clusters than 

between clusters. This pattern is consistent with FSD where interactions are expected to be highly 

specialized. The majority of  PBINs are significantly nested supporting the prominence of ARD; 

however some PBINs are modular (Flores et al. 2011), and while rare, specialized interactions 

have been documented to evolve during phage-bacteria coevolution (Gómez & Buckling 2011). 

Surprisingly, nested patterns at short spatial scales can give way to modular patterns at large spatial 

scales (Flores et al. 2013), and ARD has been shown to give way to FSD during advanced stages 

of coevolution (Hall et al. 2011; Flores et al. 2013). Together, this variation and scale-dependence 

provide a glimpse of the challenges in connecting coevolutionary process to phenotypic outcome. 

 

While the phenotypic predictions for ARD and FSD are often tested, assessments of the 

phylogenomic predictions are not as common (ARD: imbalanced, FSD: balanced), and we are 

unaware of an example where PBINs have been coupled with phylogenomic analyses (note that 

the link between evolutionary interactions and phylogenomic structure is relatively well developed 

in studies of virus infection of human and animal hosts, sensu (Koelle et al. 2006; Volz et al. 

2013)). Here, we utilized a model phage-bacteria coevolutionary system; bacteriophage  and its 

host, Escherichia coli. When these species are cultured under certain laboratory conditions, they 

rapidly coevolve (Meyer et al. 2012; Meyer & Lenski 2020). E. coli is known to evolve resistance 

through mutations in the regulatory gene malT that suppress expression of the host receptor, the 

outer-membrane protein LamB.  counters this by evolving mutations in the binding domain of its 

host recognition protein J that allows it to use a new receptor, OmpF. E. coli then evolves additional 

mutations in OmpF or in an inner-membrane protein complex, ManXYZ, that transports  DNA 

into the cytoplasm (Erni et al. 1987; Esquinas-Rychen & Erni 2001). While much is already known 
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about the molecular details of their coevolution, little is known on the joint changes in interaction 

networks and genetic relatedness. 

 

For this study, we revived cryopreserved samples that were isolated from a previously reported 

coevolution experiment (Meyer et al. 2012). We focused our analyses on a single replicate; the 

first experimental community in which  evolved to use OmpF. We isolated a total of 50 bacteria 

and 44 phage spread across multiple time points. Next, we constructed a PBIN of all combinations 

of pairwise phage and bacteria interactions and used multiple analyses to characterize their 

coevolution based on phenotypes. All three phenotype-based analyses suggested that viruses and 

microbes engage in ARD. In parallel, we sequenced the full genomes of each isolate and 

reconstructed the isolates’ phylogenetic relationships. The genome sequences revealed a 

phylogenetic pattern that was inconsistent with the ARD model. Our study demonstrates that 

phenotypic analyses are not sufficient to test hypothesis on coevolutionary dynamics and reveals 

a new type of coevolutionary dynamic we refer to as Leapfrog Dynamics (LFD). 

 

Materials and methods 

Details on the initial coevolution experiment previously published 

Meyer et al. (Meyer et al. 2012) performed the original coevolution experiment with Escherichia 

coli B strain REL606 and a lytic bacteriophage  strain, cI26. This  strain was chosen because it 

cannot initiate lysogeny, a life cycle phase where  confers immunity to additional  infections. 

By choosing a lytic strain, we forced the bacteria to evolve genetic resistance. E. coli and  were 

cocultured in a carbon-limited minimal glucose media at 37 C for 37 days (Meyer et al. 2012). 

At the end of each day, 1% of the community was transferred to new flasks with fresh media, and, 

weekly, 2 ml of the community was preserved by adding ~15% of glycerol and freezing the 

mixture at -80 C.  

 

Isolation of host and phage clones 

We randomly isolated ten host and eleven phage individuals from different timepoints from the 

cryopreserved samples. In total, 50 strains of E. coli and 44 strains of  were isolated from days 8, 

15, 22, 28 and 37 of the experiment (no phage were detected on day 37). Bacteria were isolated by 

streaking onto Luria-Bertani (LB) agar plates (Sambrook & Russell 2001) and randomly picking 

10 colonies. These colonies were re-streaked three times to remove phage particles and grown 

overnight in liquid LB to create stocks. Phage were isolated by plating an appropriate dilution of 

the population onto overlay plates (Adams 1959) with the sensitive ancestral bacteria, REL606, 

and randomly picking 11 plaques. These plaques were grown overnight with REL606 in LBM9 

medium and stocks were created using chloroform isolation technique (Meyer et al. 2012). All 

phage and bacteria stocks were stored at -80 C with the addition of 15% v/v glycerol.  
 

Pairwise infection assays and efficiency of plating (EOP) 

We performed quantitative, pairwise infection assays for all combinations of host strains and phage 

strains that were isolated. Specifically, seven serial 1/10th dilutions were made of each phage 

isolate. 2 µl of each dilution plus undiluted phage stock was spotted on top of different host strain 

lawns including ancestor REL606. Thus, a total of 8*44 spots of phage were plated on 51 different 

types of bacterial lawns, leading to a total of 17,952 pairwise infections. Pairwise infection 

experiments measure how well each phage isolate infects every host isolate. We quantified phage 
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infectivity by calculating efficiency of plating (EOP), defined as the ratio of density of phage 

isolate calculated on a coevolved isolate to the density of phage calculated on the REL606 ancestor. 

 

Analysis of PBIN nestedness and modularity 

The BiMat software was used to assess the nestedness and modularity of the PBIN (Flores et al. 

2016). The raw EOP value matrix was binarized into 0 for EOP = 0 and 1 for EOP > 0, and then 

BiMat was run with default settings. Here we report the statistics for a conservative version of the 

analysis where the rows and columns that contained all zeros were removed from the matrix to 

reduce any bias these entries cause in establishing significant nested patterns.  

 

Resistance and infectivity calculations 

For a total number of 𝑛 host samples and 𝑚 phage samples, we denote the EOP value for the 𝑖th 

host sample against 𝑗th phage sample as 𝑒𝑖𝑗 where 𝑖 ∈ [1, 𝑛] and 𝑗 ∈ [1, 𝑚];  𝑛 = 50 and 𝑚 = 44. 

We denote the five checkpoint days of day 8, 15, 22, 28 and 37 for host by 𝑘, where 𝑘 = 1,2,3,4,5, 

and the four checkpoint days of day 8, 15, 22 and 28 for phage by 𝑙 where 𝑙 = 1,2,3,4. Host 

resistance for a host sample 𝑖 is calculated as 

𝑟𝑖 = ∑ 𝟏{𝑒𝑖𝑗=0}

𝑚

𝑗=1
 

where 𝟏𝑋 is the indicator function and 𝑟𝑖 measures the number of phage strains that the host is 

resistant to. The host range of a phage sample 𝑗 is calculated as 

ℎ𝑗 = ∑ 𝟏{𝑒𝑖𝑗>0}

𝑛

𝑖=1
 

which measures the number of host strains that the phage can successfully infect. The resistance 

percentage of host for each day is calculated as 

𝑅𝑃𝑘 =
∑ 𝑟𝑖𝑖∈𝐴𝑘

𝑚 × |𝐴𝑘|
 

where 𝐴𝑘 denotes the range of the host sample that belongs to the 𝑘th sample checkpoint and |𝐴𝑘| 
denotes the cardinality of the set 𝐴𝑘, i.e., the number of host samples at the 𝑘th checkpoint. 

Likewise, the host range percentage of phage for each day is calculated as 

𝐻𝑃𝑙 =
∑ ℎ𝑗𝑗∈𝐵𝑙

𝑛 × |𝐵𝑙|
 

where 𝐵𝑙 denotes the range of the phage sample that belongs to the 𝑙th checkpoint and |𝐵𝑙| denotes 

the cardinality of the set 𝐵𝑙, i.e., the number of phage samples at the 𝑙th checkpoint. 

 

Genomic DNA preparation for sequencing 

 genome extraction for whole genome sequencing were previously reported in (Meyer et al. 

2016). To summarize,  particles were concentrated using PEG precipitation, the phage were 

treated with DNase I to remove free-floating DNA not protected by phage capsids, the DNase is 

denatured with heat, which also releases capsid-enclosed phage DNA. The DNA was extracted 

using Invitrogen’s PureLink kit. E. coli genomic DNA was extracted and purified from a 1 ml 

sample of culture by using PureLink kit. Genomic DNA was further processed by fragmenting the 

DNA and attaching adapters and barcodes using a method outlined in (Baym et al. 2015). 

Sequencing was done at UC San Diego IGM Genomics using paired-end Illumina HiSeq 4000 

platform. 
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Construction of mutation profile tables 

After collecting the raw sequencing reads, we removed the adapters using cutadapt (Martin 2011) 

and performed quality control (QC) for each isolated strain using FastQC (Andrews 2010). The 

QC filtered sequencing reads were then analyzed using the breseq (v0.32.1) (Deatherage & Barrick 

2014). We ran breseq in the consensus mode with default parameters except for the consensus-

frequency-cutoff, which was set to 0.5. 

 

Phylogenomics 

Due to the prevalence of large insertions and deletions in the host genomes, conventional 

nucleotide substitution models were not suitable for estimating the host phylogenetic tree. 

However, such models were suitable for estimating the maximum-likelihood phylogenetic tree for 

phage genomes. As a result, two different approaches were taken to reconstruct the evolutionary 

trajectories of the host and virus. 

 

To construct the phage phylogeny, multiple sequence alignments were performed for all recovered 

genomes and the ancestral genome using mafft (v7.305b) (Katoh et al. 2002) with default settings 

except that ‘retree’ was set to 2 and ‘maxiterate’ was set to 1,000. A maximum likelihood tree was 

constructed using raxml-ng (Stamatakis 2014). Finally, the TreeTime (Sagulenko et al. 2018) 

program was used to generate the phylogenetic tree. 

 

To reconstruct the host’s phylogeny, we constructed a Hamming distance matrix to calculate 

genetic distances between different host isolates. Neighbor-joining (NJ) trees were then built based 

on the hamming distance matrix using T-REX (Makarenkov 2001). Finally, the TreeTime program 

was used to build the host phylogenetic tree.  

 

Whole genome whole population sequencing 

We sequenced the full population of phage and bacteria from Day 8 of the experiment to 3,726-

fold and 142-fold coverage, respectively. Whole population sequencing uncovered alleles in the 

bacterial and phage populations that existed at lower frequencies than we could detect by isolating 

individuals. To do this,  and E. coli populations were revived by growing 120 l of frozen stock 

of the whole community in the laboratory conditions from the original experiment (Meyer et al. 

2012). Phage and bacteria were then separated, and their genomic DNA was extracted in the same 

manner as described before for clonal stocks. Genomic libraries were prepared using NexteraXT 

kit at UC San Diego IGM Genomics. IGM also sequenced the samples using 75 base single reads 

on the Illumina HiSeq 4000 platform. breseq v0.32.1 was used to analyze whole population 

sequencing data of Day 8. We ran breseq in polymorphism mode with default settings to construct 

the mutation profile tables. 

 

Results 

Phage-bacteria infection network 

The pairwise interaction study revealed multiple  genotypes with phenotypically distinct host 

ranges, and E. coli genotypes that vary in resistance (Fig. 1a). In line with the ARD model, we 

found that the interactions were highly nested (Fig. 1b) and had a low level of modularity (Fig. 

S1). Also, in line with ARD, E. coli evolved increasing resistance (Fig. 1c, 𝑅𝑎𝑑𝑗
2 = 0.5051, F1,48 = 

51.01, P = 4.453e-09 for linear model: response ~ time), and  gained increasing host range and 

infectivity (Fig. 1d, 𝑅𝑎𝑑𝑗
2 = 0.8131, F1,42 = 188.1, P = 2.2e-16) through time. Note, all mean EOP 
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values were zero for day 8 phage because all isolated hosts were resistant to all day 8 phage (Fig. 

1a and 2a).  

 

To further test between indicators of ARD and FSD, we performed a time-shift analysis using 

efficiency of plating (EOP) values to determine how phage infectivity varies when presented with 

past, contemporary, or future bacteria (Fig. 2a) (Gaba & Ebert 2009). ARD predicts that phage 

will be able to infect past and contemporary, but not future hosts, while FSD predicts that phage 

will be best at infecting contemporary hosts. The time-shift analysis was conducted for each  

isolate by calculating its mean EOP value for all 10 bacterial isolates on each day (Fig. 2b). This 

analysis was repeated for the bacteria using the same EOP data but by calculating levels of 

resistance to  isolates from different time points (Fig. 2c). In line with ARD,  isolates from days 

22 and 28 had higher infectivity on past hosts than contemporary or future hosts (Fig. 2b). The 

analysis for day 15 phage was inconclusive because the EOP values across time were not 

statistically significant. The pattern for bacteria was also in line with ARD: isolates from days 8, 

15 and 22, had lower resistance (higher EOP) for phage samples from the future versus the phage 

isolated from the same time or in the past (Fig. 2c). A full time-shift analysis could not be 

conducted for isolates from days 28 and 37 since the phage went extinct between days 28 and 37, 

however isolates from these time points were the most resistant.  

 

At all timepoints, phage were isolated using the ancestral host (REL606) in an effort to minimize 

sampling bias. Notably, in previous studies we found that all evolved phages were able to infect 

the ancestor (Flores et al. 2011). However, if phages evolve to specialize on coevolved bacterial 

genotypes in line with FSD, they may have lost the ability to infect the ancestor and not be sampled, 

thereby artificially reducing support for FSD and strengthen the signal of ARD. To test whether 

phages evolved that lost the ability to infect REL606, we isolated phages using lawns of all unique 

E. coli genotypes (16 unique genotypes, however no plaques formed on 3). Eight phages were 

sampled from each host yielding a sample size of 104 phage isolates. Each phage isolate was able 

to form plaques on REL606 (Table S3, Supplementary Information). An additional efficiency of 

plaquing analyses was performed for a subset of the phages; one phage isolate from each host. 

This analysis revealed that most phages were more likely to produce plaques on REL606 than on 

the coevolved hosts from which they were isolated (Table S3, Supplementary Information). 

Together, these results suggest that REL606 was suitable for sampling the coevolved phage 

diversity in this system.  

 

Genome sequencing 

The genome sequencing revealed 22 unique E. coli genomes and 34 unique phage genomes. 

Among the E. coli strains, we found a total of 18 unique mutations: 6 missense mutations, 1 

nonsense mutation, 1 intergenic point mutation, 7 deletions and 3 duplications (Fig. 3a). The most 

abundant mutation that occurred in 38 out of 50 host genomes was a frameshift mutation caused 

by a 25-base duplication in the malT gene, in line with the original study (Meyer et al. 2012). 

Disruptions in malT interferes with the expression of LamB protein which ancestral  needs to 

bind to E. coli cells. We also observed one isolate with a lamB mutation (1-base deletion) in lieu 

of the typical malT mutation. The most resistant E. coli strains on day 37 have multiple mutations 

that are expected to confer resistance; a malT deletion, a nonsynonymous change in ompF, and a 

deletion in manZ (Meyer et al. 2012; Burmeister et al. 2021). 
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One of the most common bacterial mutations observed in our dataset was a 777 bp deletion caused 

by the excision of an IS element. Despite occurring in 25 genomes, we had not observed the 

deletion in any previous studies and the deletion did not affect any genes known to protect against 

 infection; insB-22 which encodes for IS1 protein InsB, insA-22 which encodes for IS1 protein 

InsA, and ECB_02825 which encodes for a pyrophosphorylase (Maynard et al. 2010). Similar IS 

mutations are known to occur at high rates (Cooper et al. 2001) and the deletion was only observed 

in genomes with a malT mutation, suggesting it might be a neutral genomic hitchhiker. We tested 

this hypothesis in a follow-up experiment which revealed that the deletion enhances resistance 

when it cooccurs with the malT mutation, suggesting the deletion was adaptive and epistatic with 

malT mutations (Fig. S2, Supplementary Information). We are unsure of how the deletion confers 

resistance; however, our results suggest that experimental evolution is likely to reveal novel sites 

in the -E. coli interactome than previously known. 

 

In the  genomes, we found a total of 176 unique mutations: 53 nonsynonymous point mutations, 

87 synonymous point mutations, 2 insertions, 3 deletions and 31 intergenic mutations (Fig. 3b). 

While this level of molecular evolution may seem surprising for such a short-term experiment, 

similar levels have been observed for other phage evolving in the laboratory (Wichman et al. 

2005). 116 of these mutations were in the host-recognition gene J. The J protein is positioned at 

the end of the phage’s tail, and initiates infection by binding to E. coli’s LamB protein. Some of 

these J mutations have been shown to increase adsorption rates to LamB and allow  to exploit a 

novel receptor, OmpF (Burmeister et al. 2016; Maddamsetti et al. 2018; Petrie et al. 2018). 

Interestingly, the extensive sequencing effort performed here revealed a mutation in another tail 

fiber protein called H (C→T substitution at nucleotide position 11,451). This mutation rises late in 

the experiment and likely plays a role in expanding ’s host range. The tape-measure gene H helps 

determine the length of ’s tail, and mutations in this gene have been shown to increase ’s host 

range (Scandella & Arber 1976).   
 

Phylogenomic reconstruction of coevolution 

Even though multiple analysis of the phenotypic data supported the ARD model for coevolution, 

the pattern produced by the phylogenies are in line with predictions of FSD (Fig. 4). The 

phylogenies of both E. coli and  show that multiple lineages coexist for weeks, rather than a single 

dominant branch. A second unexpected observation was that the bacteria that had acquired the 

highest level of resistance at the end of the experiment on day 37 was not most closely related to 

isolates at previous time points (e.g., days 28, 22, or 15), instead it was most closely related to a 

common ancestor of isolates identified at the early stages of the experiment (on day 8). This finding 

suggests that a rare lineage leapt ahead of the dominant lineage, a process we term leapfrog 

dynamics (LFD). Similarly, for , we found that that the clade dominant at the final timepoint with 

the broadest host range was more closely related to wildtype  than the clade dominant at preceding 

timepoints. For both species, the clades that win out later in the arms race appeared to persist as 

cryptic subpopulations early in the coevolutionary experiment. 

 

Whole population sequencing at an early stage of coevolution   

To test the key prediction of LFD that cryptic lineages coexist with dominant lineages and can 

supply the genetic reservoir used for later stages of coevolution, we sequenced full populations of 

E. coli and  from day 8 and searched for mutations that rose to prominence at the end of the study. 

For E. coli, we were specifically searching for two mutations: a Δ16 bp deletion at position 
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1,882,915 in manZ and a non-synonymous mutation at 1,003,271 in ompF. These mutations are 

present in most of the day 37 isolates and are thought to confer resistance. The Δ16 bp deletion in 

manZ was detected, but not the ompF mutation (Table S1). We also found a 141 bp deletion in 

malT that cooccurs in the day 37 genomes with the manZ mutation. The malT deletion was at the 

same frequency, suggesting that these mutations were indeed linked and that they evolved 

sometime before day 8.   For , we focused on the mutation in the tail fiber gene H that rises to 

dominance between days 22 and 28. Indeed, this specific H mutation was present at day 8 (Table 

S2). Unlike E. coli, we did not find any other mutations present in the day 28 isolates, suggesting 

that the H mutation was the first adaptation to occur in this lineage. 

 

Besides revealing the eventual mutations associated with the winning lineages of the arms race, 

we also discovered much more genetic diversity via whole population sequencing than through 

isolate sequencing (as anticipated). Whole genome sequencing revealed 52 unique mutations in E. 

coli and 38 mutations in  from full population sequencing compared to 7 and 30 through isolate 

sampling, respectively. The combined sequencing strategy suggests that there is significant genetic 

diversity generated at the earliest phases of the arms race that can become the grist for subsequent 

adaptation as the host (for phage) or phage (for hosts) change as a result of coevolution.  

 

Discussion 

Through large scale phenotypic assays and whole genome sequencing, we were able to test existing 

paradigmatic models of coevolution and learn that each were inadequate to explain  and E. coli’s 

coevolutionary dynamics. Three complimentary phenotypic analyses in Fig. 1 and Fig. 2 suggested 

that coevolution between  and E. coli followed arms race dynamics (ARD). However, the 

phylogenetic pattern revealed by whole genome sequencing was consistent with fluctuating 

selection dynamics (FSD) (Fig. 3). These observations lead us to develop a new conceptual model 

to characterize  and E. coli’s coevolution: which we term leapfrog dynamics (LFD). In this model, 

selection operates similarly to the ARD model, where parasite genotypes with ever-expanding host 

ranges are selected and hosts with ever-increasing resistance are favored. However, the difference 

is that in the LFD model there is a genetically diverse pool of hosts and parasites that evolve early, 

and on occasion, rare individuals are drawn from this pool with advantageous phenotypes and 

replace the dominant strains.   

 

ARD models fall short in making accurate predictions for the phylogenies likely because of 

simplifying assumptions about the genetics of host range expansion and resistance. Evolutionary 

models tend to assume that mutations have additive effects on phenotypes (as highlighted in (Weitz 

et al. 2013)). Applied to ARD, this would mean that the phage with the broadest host range is 

likely to expand its host range faster than lagging genotypes, and for bacteria, the strain with the 

greatest resistance is most likely to acquire the next level of resistance and outcompete other 

strains. This genetic architecture favors the evolution of directed phylogenies with one dominant 

branch. Instead,  J mutations are known to possess high-order epistasis and are nonadditive 

(Meyer et al. 2016; Maddamsetti et al. 2018). This may allow rare lineages with certain 

combinations of mutations to suddenly leap ahead if new modifications have synergistic 

interactions with preexisting mutations. Non-additivity was also discovered in the bacteria in this 

study with respect to the interactions between malT– and the 777 mutations (Fig. S2). A second 

problem with evolutionary models is the assumption of small effect-size mutations since mutations 

like the malT mutation can cause nearly complete resistance to some  phage (Fig. 1a). Acquiring 
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such large effect mutations could also help lineages leap ahead. Lastly, these models typically do 

not incorporate recombination, which was observed within this phage population to cause sudden 

increases in fitness (Borin et al. 2020) and could contribute to the phage’s ability to leap ahead. In 

contrast, evidence of recombination was not observed in the bacterial genome sequences, 

consistent with earlier findings in which recombination is not known to occur in this strain of E. 

coli (Souza et al. 1997).  

 

One question left unanswered by this study is how multiple lineages persisted in this population 

for long durations. We hypothesized that trade-offs between host range and other viral traits for 

phage, and resistance and competitive fitness for bacteria, could explain the evolution of genomic 

diversity. Trade-offs between host range and  stability were previously observed (Petrie et al. 

2018); however, we were unable to detect trade-offs in E. coli for phage resistance. Our study also 

comes with limitations. We sampled clones at weekly resolution rather than sampling the full 

community at higher resolution (e.g., daily), which limits opportunities to quantitatively assess the 

emergence and changes in the frequency and linkage of mutations (e.g., (Lang et al. 2013)) as well 

as the extent of potential trade-offs given the changing ecological context.  

 

Our findings have important implications for understanding the dynamic mechanisms that 

structure nested PBINs. The nested pattern is ubiquitous in PBINs (Flores et al. 2011), as well as 

many other ecological networks (Bascompte et al. 2003; Guimarães et al. 2007; James et al. 2012), 

so it is important to understand the processes that produce this ordering. One hypothesis is that the 

structure is determined by the genetics of the interactions (as in the gene-for-gene mechanism of 

coevolution, see (Weitz et al. 2013)). An alternative hypothesis for the emergence of nestedness 

is ecological: nestedness emerges because of how the selection steadily shifts during an arms race 

to promote incremental increases in host range and resistance. The conventional wisdom for which 

process controls the arms races is the underlying genetics. This stems from a pervasive idea that 

genetic mutation and evolution happen more slowly than changes in ecology, so coevolutionary 

systems must be constrained by their access to genetic variation. The coevolution experiment 

studied here was initiated with small population size of isogenic stocks of  and E. coli. This 

should have favored genetic control because all of the variation had to evolve de novo. However, 

significant and evolutionarily relevant genetic variation was generated at the earliest phase of the 

arms race that appeared to remain cryptic in an ecological sense for many generations, suggesting 

that the ecology controlled the dynamics, not the availability of genetic variation.  

 

Lastly, our results provide a cautionary tale for over-interpreting phenotypic data based on phage-

bacteria infection networks and/or phenotype-based time shift experiments alone. Our initial 

prediction before performing genomic analysis was that -E. coli coevolution under these 

laboratory conditions would fit the ARD model. However, this proved to be erroneous due to the 

large amount of cryptic genetic variation and its role in driving late stages of coevolution. 

Interestingly, this study also reveals a potential limitation of using PBIN data for making 

dynamical predictions. Based on the matrix in Fig. 1a one would predict that the phage should go 

extinct on day 8. Still,  did not go extinct in the coevolution experiment, consistent with a 

phenomenon known as ‘leaky-resistance’ (Chaudhry et al. 2018). Leaky resistance denotes a 

phenomenon by which a small number of resistant hosts revert to sensitive, thereby sustaining 

phage in the population until phage evolve to gain access to a new receptor, e.g., OmpF in the case 

of phage  (Meyer et al. 2012). Together, the mechanisms of LFD and leaky-resistance show that 
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host-phage dynamics revealed from PBINs alone miss the rich dynamics occurring at lower 

frequencies in the population. 

 

In summary, by studying coevolving phage and bacterial populations with both phenotypic and 

genomic approaches we revealed emergent coevolutionary patterns that are not wholly explained 

by archetypical models of coevolution. Moreover, we found that phenotypic assays alone fall short 

in characterizing the underlying nature of coevolution – given the potential for cryptic genetic 

variation to fundamentally alter coevolutionary trajectories. We also showed that highly organized 

ecological pattern like nestedness can emerge despite the apparent absence of fundamental genetic 

constraints, demonstrating the power of selection in driving emergent ecological patterns. Moving 

forward, these results suggest the critical need to incorporate both phenotypic and phylogenomic 

approaches in evaluating phage-bacteria coevolution. 
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Fig. 1. Host resistance and phage infectivity measured by pairwise plaque assays. (A) Phage-

bacteria infection network where the color of each cell is determined by the EOP values obtained 

for that host-phage interaction pair; grey cells represent no infection by  on the given E. coli 

strain, yellow represents low infectivity and red represents high infectivity. (B) The original 

network in a) reassembled using the software BiMat to visualize maximal nestedness (Flores et al., 

2016). Filled squares indicate a combination of host and phage that result in successful interactions 

(EOP > 0), and the red line highlights the isocline using the nestedness temperature calculator 

(NTC) algorithm. The nestedness value of the network utilizes the nestedness based on 

overlapping and decreasing fill (NODF) metric, which was significantly greater than the null 

expectation when constraining the fill of the bipartite network (measured value of nestedness 0.839 
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vs. null value of nestedness 0.638  0.011 based on 200 trials). (C) Boxplots showing the total 

number of  isolates from all days that E. coli genotypes are resistant to across different sampling 

days. (D) Boxplots showing the total number of E. coli isolates from all days that  genotypes can 

infect across different sampling days. Lowercase letters in c) and d) denote significant difference 

between different days via Tukey’s honest significance test: c) ANOVA: F4,45 = 13.3, P = 3.11e-

07), d) ANOVA: F3,40 = 67.05, P = 1.17e-15. A simple linear regression model with time as the 

predictor variable was also used to test if E. coli evolved increasing resistance in c) and  evolved 

increasing host range in d) (statistics in the main text).   

 

 

 

  

 
 

Fig. 2. Time-shift analysis results from different checkpoints. (A) Schematic for the time-shift 

analysis that compares the mean EOP from hosts or phage interacting with their counterparts from 

the past, contemporary and the future. (B) Time-shift results from phage checkpoints day 8, 15, 22 

and 28 respectively. The gray dotted line shows the time-shift curve for each individual phage and 

the black line shows the average. The vertical dashed line represents the phage sample day. The 

P-values shown here are the maximum P-value from one-sided paired t-tests comparing the initial 

checkpoints with each of the later checkpoints. (C) Time-shift results from host checkpoints day 

8, 15, 22, 28 and 37, respectively. The gray dotted line shows the time-shift curve for each 

individual host and the black line shows the average. The vertical dashed line represents the host 

sample day. The P-values shown here are the maximum P-value from one-sided paired t-tests 

comparing the final checkpoints with each of the previous checkpoints. 
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Fig. 3. Genomic diversity in clones isolated from different days and full population 

sequencing for (A) E. coli and (B) . The outermost gray ring represents the reference genome 

with red bars indicating the placement of mutations uncovered by the whole-population 

sequencing at day 8. The inner colored rings represent the isolates sequenced from different time 

points (outer rings are genomes isolated from earlier time points). Shades within each color depict 

unique genomes sequenced from each time point. White gaps in the genomic rings indicate the 

location of mutations. All mutations found in clonal isolates have been labeled for E. coli in A); 

however, due to the large number of mutations in , only the gene names that harbor mutations 

have been identified (gray bars). The mutations that become dominant at later stages of coevolution 

and were also found in day 8 population sequencing have been highlighted with rectangular boxes. 

 

 

 

 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 1, 2021. ; https://doi.org/10.1101/2020.10.31.337758doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.31.337758
http://creativecommons.org/licenses/by-nc/4.0/


 
 

Fig. 4. Reconstructed phylogenetic trees of the host and phage. (A) The host phylogenetic tree 

based on host mutation profiles. All completely-resistant host strains are located on the red branch. 

Bars above the time scale in (B) represents the proportion of host strains from each colored branch 

across different checkpoints. (C) The phage phylogenetic tree based on the phage mutation 
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profiles. All day 28 phage strains are located on the dark blue branch. Bars below the time scale 

in (B) represents the proportion of phage strains from each colored branch across different 

checkpoints. 
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