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Abstract: Anthropogenic climate change is generating mismatches between the environmental
conditions that populations historically experienced and those in which they reside. Understanding
how climate change affects population performance is a critical scientific challenge. We combine
a quantitative synthesis of field transplant experiments with a novel statistical approach based in
evolutionary theory to quantify the effects of temperature and precipitation variability on popu-
lation performance. We find that species’ average performance is affected by both temperature
and precipitation, but populations show signs of local adaptation to temperature only. Contempo-
rary responses to temperature are strongly shaped by the local climates under which populations
evolved, resulting in performance declines when temperatures deviate from historic conditions.
Adaptation to other local environmental factors is strong, but temperature deviations as small as
2◦C erode the advantage that these non-climatic adaptations historically gave populations in their
home sites.

One sentence summary: Climate change is pulling the thermal rug out from under populations,
reducing average performance and eroding their historical home-site advantage.
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Anthropogenic climate change is increasing the likelihood of extreme weather conditions that
exceed current biological tolerances, posing severe threats to biodiversity [1]. While plasticity
can help individuals maintain performance in the face of climatic variability, there are limits to
its buffering capacity [2]. As a result, populations frequently adapt to local conditions, leading
to differences among populations in climatic optima [3]. Conditions that deviate strongly from
these optima can decrease organismal performance and threaten population persistence [4, 5]. To
anticipate and mitigate the effects of global change on biodiversity, we must identify which cli-
matic variables most affect performance and quantify the contribution of genetic differences among
populations to species-level responses.

If populations within a species respond similarly to climatic variation, then performance ef-
fects will manifest regardless of geographic origin—for example, all populations of a species may
perform well under moderate temperatures and poorly under extreme temperatures (Fig. 1A). If
adaptation to local environments has occurred, population responses to climatic variation may also
correspond to how strongly conditions deviate from those that they have historically experienced
[6] (Fig. 1B). Local adaptation offers a pathway to species persistence as climate changes: declining
populations may be rescued by migration of genotypes that are better adapted to contemporary
conditions [7, 8]. However, adaptation to local environments also poses a challenge. If populations
are strongly adapted to non-climatic components of the landscape (such as soils or competitors),
then climate-tracking migration may disrupt these adaptations. Here, we paired a comprehensive
quantitative synthesis of field transplant experiments with a new theoretical framework to evaluate
whether responses to temperature and precipitation are locally adapted, quantify the magnitude
of adaptation to these climatic variables vs. other components of the environment, and investigate
the extent to which climate change is disrupting local adaptation.

Transplant experiments—in which individuals are moved between locations and their perfor-
mance is measured—are a classic tool for parsing contributions of plasticity and genetic differenti-
ation to variation in performance [9, 10]. Transplants offer an opportunity to examine population
responses to an expanded range of climatic variation, including climates far outside the range of
what populations have experienced in recent history (Fig. 1C). We compiled data from 1787 popula-
tions moved among 541 sites between 1967 and 2015, drawn from 147 published transplant studies
within the native ranges of 164 species, the vast majority of which were plants (Materials and
Methods 1.1–1.2, Table S1, Fig. 2AB). We used monthly temperature and precipitation records for
each source population and transplant site to compare experimental conditions among transplant
sites and to calculate how much these conditions deviated from the historic baselines (Materials
and Methods 1.3, Fig. 2CD). Consistent with global trends, conditions during the transplant exper-
iments in our dataset have become increasingly warm (Materials and Methods 3.1, Fig. 2C, Table
S2A).

To characterize how sensitive performance was to the conditions at experimental sites, we cen-
tered temperature and precipitation around the average experimental conditions within each study,
and quantified species’ average performance responses to this range of conditions (Materials and
Methods 3.2). Performance was highest in transplant sites with relatively moderate temperatures
(Fig. 3A, Table S3), and declined in sites that were more thermally extreme than experiment av-
erages. For example, at a site 5◦C warmer than a study’s average, performance suffered a 20%
decline (95% highest density interval (HDI): 12 – 29%). Performance also declined in sites that
were drier than experiment averages (Fig. 3B, Table S3).

We then tested whether responses to climatic variation are locally adapted within species (Ma-
terials and Methods 3.2). The presence of local adaptation is frequently evaluated by comparing the
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performance of local and foreign populations across sites [11]. This quantifies the extent to which
populations have adapted to the unique selection pressures of their home environments and reveals
the effects of novel environments on populations. Among-site transplants allowed us to investigate
performance responses to a broad range of deviations from the historic climates that populations
have experienced: up to 21◦C temperature differences and 6-fold differences in precipitation. We
found that performance peaked when populations experienced temperatures slightly warmer than
their historic average (95% HDI: 1.0 – 2.2◦C, Fig. 3C, Table S4). This may reflect asymmetric
effects of warm vs. cool temperatures, thermal safety margins, or recent adaptation to contempo-
rary climate in some systems. Performance then declined away from this temperature optimum,
consistent with local adaptation to historic temperature regimes. Transplanting populations to
sites that deviated from their historic precipitation regimes did not affect their performance (Fig.
3D, Table S4).

As experiments are conducted under increasingly warm conditions, populations from histori-
cally warmer sites have been shown to outperform local populations at historically cool sites [12–14].
However, it is also plausible (though under-recognized) that at warm sites, the home-site advan-
tage of warm-adapted populations could be enhanced. Thus, contemporary deviations from historic
climate regimes may increase or decrease the strength of local advantage, depending on the popu-
lations being compared and the direction of the climatic deviation (Fig. 1D). To make quantitative
predictions for the effects of experimental conditions on local advantage, we developed a new metric
based in evolutionary theory (Materials and Methods 2). This metric, which we call the relative
experimental environment, incorporates three variables—the historic climate of the local popula-
tion, the historic climate of the foreign population, and the experiment conditions—into a single
predictor (Materials and Methods 3.3). Higher values predict that the local population is better
matched to the experimental climatic conditions, and therefore, local advantage should be strong
(Materials and Methods 2.3). We tested whether these predictions were supported by experimental
data, and found that the strength of local advantage is indeed positively correlated with the relative
experimental temperature (Fig. 4A, Table S5).

Because climate deviations sometimes weaken and sometimes strengthen local advantage, our
theory shows that their net effect should increase the variance in the strength of local adaptation
(Materials and Methods 2.5). Consistent with this prediction, we detected a nearly ten-fold in-
crease in the variance of local advantage, from 0.049 in 1975 (95% HDI: 0.044 – 0.055) to 0.47 in
2015 (95% HDI: 0.44 – 0.51) (Fig. 4B, Materials and Methods 3.3). However, very little of the
increased variance in local advantage can be attributed directly to temperature or precipitation
deviations per se (Materials and Methods 3.4, Supplementary Results 4.4). Nevertheless, we found
striking evidence that climate warming is reducing local adaptation: 1) when temperatures devi-
ated more than 2◦C above historic averages, the advantage of local populations over warmer foreign
populations vanished (Fig. 4C, Table S6); 2) the probability that the local population outperforms
all foreign populations in a site decreased as temperatures deviated from their historic averages
(Materials and Methods 3.5, Supplementary Results 4.5, Fig. 4D, Table S7A); and 3) temperature
deviations decreased the probability that a population did best at its home site compared to other
sites to which it was moved (Fig. 4D, Table S7B).

Such a strong signature of decreased local adaptation in the face of temperature deviations is
remarkable because adaptation to local environments is multidimensional, encompassing not just
climate but also microhabitat characteristics [15] and biotic factors such as competitors [16, 17],
pathogens [18], and predators [19, 20]. After accounting for the effects of temperature and precip-
itation, we found that foreign populations were still on average 24% less fit than local populations
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(Fig. 3C). This indicates that populations that move to track their climate optimum may suffer
from leaving their historic biotic or edaphic environments. Nonetheless, analyses that account for
environmental and spatial differences between local and foreign populations (Fig. 4CD, Table S6,
S7) suggest that as little as 2◦C warming can overwhelm all historical non-climatic and climatic
adaptations. To date, syntheses of local adaptation have focused on evaluating its ubiquity and
quantifying its average strength [21, 22] (but see [23, 24]). In contrast, our work partitions the
effects of temperature and precipitation from other environmental drivers of local adaptation to
assess the impacts of a changing environment. Whether population persistence will be robust to
these changes depends on both the relative importance of different drivers [25] and how these drivers
co-vary in space and time.

We found that both temperature and precipitation affected performance, but detected local
adaptation to temperature only (Fig. 3CD). Precipitation has been shown to be an important
driver of local adaptation in some systems [26–29], but the absence of an overall affect in our
analyses indicates that there is more to learn about how and when it is important. Adaptation to
precipitation may be mediated in ways that our analyses did not capture. For example, popula-
tions may be adapted to the seasonal timing of precipitation [30] or how precipitation conditions
amplify other abiotic or biotic pressures, such as competition [31] or wildfire [32]. Alternatively, if
precipitation has been historically more variable than temperature, populations may have evolved
broader tolerance to precipitation deviations than to temperature deviations [33, 34].

Local adaptation is a key element of biodiversity that often smooths out ecological dynamics
in space [35]. However, our results show that as the climatic rug is being pulled out from under
populations by anthropogenic warming, the stabilizing effect of local adaptation is being eroded.
A critical next step for revealing which populations and species will be most vulnerable or resilient
to ongoing rapid warming is to evaluate how local adaptation to temperature varies across species
and geographic regions [36]. Additionally, further work is required to infer how changes in relative
performance impact population persistence. Warming-driven changes in populations’ rank order
of relative performance do not necessarily imply that populations are falling below a persistence
threshold. They do, however, mean that populations are experiencing strong natural selection.
Given sufficient genetic variation, such strong selection could drive rapid adaptation and favor the
redistribution of lineages across the landscape. When natural migration is insufficient to keep pace
with rates of climate change, our results can provide a starting point for determining which foreign
populations will become best-matched to future conditions.

4

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 2, 2020. ; https://doi.org/10.1101/2020.11.01.364349doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.01.364349
http://creativecommons.org/licenses/by/4.0/


A   Performance may be driven by site climates  

B   Populations may be adapted to their average local conditions 

C   Transplants reveal the effects of large deviations from historic averages

D   Climate deviations may reinforce or counteract local advantage
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Fig. 1. Transplant experiments, where individuals of different populations are moved among sites,
are a powerful resource for understanding responses to climatic variation. (A) Site conditions may
affect the performance of individuals, regardless of where they are from. (B) Populations may
be adapted to the average climate in their home site, and their performance may decline when
conditions deviate from these optima. (C) Transplant experiments allow us to observe population
responses to a dramatic range of climate deviations. (D) The strength of local advantage may
depend on the conditions of that site relative to the populations’ optima (the relative experimental
environment) and the magnitude of adaptation to unmeasured factors.
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Fig. 2. Experiments in the dataset encompass a wide range of climate deviations from historic
averages. (A) Geographic locations of transplant sites (black circles) and source populations (purple
points) were mostly in the northern hemisphere. (B) Most experimental taxa were plants. Across
study sites, warm temperature deviations during transplant experiments became more prevalent
over time (C), while precipitation conditions during experiments did not become either wetter or
drier (D, nor did they become more variable, Table S2A). Shading represents 95% HDIs.
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Fig. 3. Populations exhibit both species-wide and locally adapted responses to deviations between
experimental conditions and their historical climate. (A and B) Species’ mean performance is
lower in sites with extreme temperature or precipitation conditions relative to other sites in the
experiment. Temperature and precipitation values were centered around the average value within
each study. Performance was averaged across all populations transplanted to a site and centered
around the average performance of each species. (C) Relative performance declines when popula-
tions experience deviations from the historic average temperatures (1951-1980) in their home sites,
but (D) does not decline with precipitation deviations. After controlling for climate deviations,
local populations have a home-site advantage over foreign populations. The range of deviations
captured in our database is indicated by the rugs of points. The darker portion of the local curve
indicates the range of deviations that local populations experienced during transplants (i.e., due to
interannual rather than spatial variation); the lighter portion is inferred from the model. In (C)
and (D), performance is relative to other populations in the same site, removing any site-specific
effects, such as those shown in (A) and (B). Shading represents 95% HDIs.
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Fig. 4. Experimental conditions affect the strength and prevalence of local advantage in transplant
experiments. (A) Temperature deviations that favor the local population strengthen home-site
advantage, while those that favor the foreign population reduce it. Local advantage is calculated as
the natural log of the ratio of local to foreign performance. The relative temperature environment
is calculated based on each population’s historic average temperature and the temperature during
the transplant experiment (Materials and Methods 2 and 3.3). (B) The average strength of local
advantage detected (solid green line) has not changed over time, but its variance has increased
(shaded region). (C) When temperatures during transplant experiments are similar to historic
averages, local advantage does not depend on the source temperature of the foreign population.
When experiments are conducted under temperature deviations 2◦C warmer than historic averages,
local populations lose their advantage when compared to warmer foreign populations but maintain
their advantage when compared to cooler foreign populations. (D) Temperature anomalies decrease
the probability that the local population will outperform all foreign populations in a site (red line)
and that a population moved to multiple sites will perform best in its home site (gold line). Shading
represents 95% HDIs.
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1 Material and methods: Data collection

1.1 Literature search and criteria for inclusion

We searched for papers through 19 March 2017 using the Web of Science interface. We searched
for: ((“reciprocal transplant*” OR “egg transfer experiment”) OR “local adaptation” AND ”trans-
plant*”) OR “provenance trial” OR “local maladapt*” OR ((“common garden*”) AND (“fitness”
OR “surviv*” OR “reproduc*” OR “mortality” OR “intrinsic growth rate” OR “population growth
rate”) AND (adapt*)) OR ((“common garden*” OR “reciprocal* transplant*” OR “transplant ex-
periment” OR “assisted migration”) AND (temperature OR climat* OR latitud* OR elevation*
OR altitud*) AND (“fitness” OR “surviv*” OR “reproduc*” OR “mortality” OR “intrinsic growth
rate” OR “population growth rate” OR “establish*” OR “success*” OR “perform*”)) NOT invas*
NOT marine NOT microb*). This returned 2111 results.

For inclusion in our analyses, we required that studies either moved ≥ 1 population to multiple
locations, or moved ≥ 2 populations to a single location, and subsequently measured at least one
component of fitness (germination, survival, reproduction, or a composite fitness metric such as
population growth rate). We only included studies that moved populations at a geographic scale
at which climatic differences could be detected between populations (>1 km or >200 m elevation
between populations), therefore studies testing performance between fine-scale microhabitats were
not included. We excluded studies in which the test environment was outside the species’ natural
range or in a lab, growth chamber, or greenhouse. We also excluded studies of marine organisms
because the climate variables used in our analyses are not likely to capture the climates expe-
rienced by these organisms [37]. We excluded studies that transplanted only hybrids or inbred
lines and studies that performed reciprocal transplants between subspecies that are reproductively
isolated.

Our initial search results were first screened based on their titles and abstracts. Studies that
were obviously unsuitable were excluded, yielding 741 potential studies. After a more in-depth
screening using the criteria described above, we retained 196 studies. Additionally, we checked the
reference lists of other published meta-analyses and reviews [21, 38–41] and added any appropriate
studies that were not returned by our initial search. We also added additional suitable studies
that we encountered while gathering data. This resulted in the inclusion of 25 studies that were
not returned in our initial database search. In total, we attempted to include 219 studies in our
meta-analysis. Of the 219 studies, 72 were excluded once data collection had begun: 58 because
we were unable to obtain adequate supplemental data from the authors and 14 because they were
duplicates of data analyzed in other papers. This resulted in a final dataset of 147 studies of 164
species, the vast majority of which were plants (Fig. 2B, Table S1). Slightly different versions of
this database have been used to examine the effects of biotic interactions on local adaptation [24]
and how local adaptation and population quality vary across species geographic ranges [36].

When data were not published at the resolution that our study required, we requested data from
authors. When data were presented in a figure, we used image analysis tools (WebPlotDigitizer,
automeris.io/WebPlotDigitizer; GraphClick, www.arizona-software.ch/graphclick) to extract values
as needed.
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1.2 Fitness data

Within a study, we collected fitness data for each unique combination of species, site, source, fit-
ness metric, temporal replicate, and lifestage. A “site” refers to the test location (e.g., transplant
garden), and a “source” refers to the population’s location of origin. For each data point, we cat-
egorized the source population as local or not local to the site. Sometimes this was obvious, for
example in cases where a population was collected at or very near the test site. In some common
garden studies (49 of 149) the authors did not explicitly designate a local population, so we used
geographic or elevational proximity to assign one. When multiple fitness metrics were presented,
we collected data from one representative metric in each of five possible categories (germination,
recruitment (germination and survival combined), survival, reproduction, or a composite fitness
metric). Reproductive estimates that account for mortality or failure to reproduce (i.e., population
means that included zeros for non-reproductive or dead plants) were considered to be composite
fitness estimates. When multiple measurements could be used for a single fitness metric (i.e., both
flower counts and total seed weight were available for an estimate of reproduction) we selected the
one that seemed most representative of fitness, at the discretion of the data collector. For any
fitness estimates that were reported at multiple time points for the same cohort, we recorded a
cumulative estimate (e.g., last reported survival as a proportion of starting sample size; summed
reproduction from multiple seasons). When possible, we calculated cumulative fitness metrics from
underlying components (e.g., composite fitness from germination x survival x reproduction). Some-
times transplants were conducted with starting material from different lifestages (i.e., seeds and
seedlings), and we collected results from each type of planting. When studies included manipulative
treatments (e.g., water addition or herbivore exclusion), we collected data from the treatment that
most closely represented natural conditions.

In some cases, experiments were repeated in multiple years and we collected data from each
temporal replicate. There was one exception to this: Wilczek et al. [12] was a uniquely large study,
and a single site in that study with three temporal replicates contributed 690 lines of data. To
avoid excessive influence of a single site on our results, we used only the fall temporal replicate of
the Norwich site from this study. Across all studies, we obtained a total of 9414 fitness component
measurements, each representing a unique combination of species, site, source, fitness metric, tem-
poral replicate, and lifestage transplanted. These measurements included 1787 source populations
at 541 sites.

We recorded latitude, longitude, and elevation for each source and site. We required precision
of geographic coordinates to at least the nearest minute or 0.01 degrees in latitude/longitude;
when data were presented at a coarser resolution, we contacted authors to request more precise
coordinates. In some cases, latitudes and longitudes weren’t reported, but we were able to estimate
locations from a map figure or other landmarks. In cases where elevations were not provided by
authors, we used Google Earth and landmarks to estimate them.

1.3 Climate data

We extracted time series of climatic records for each source and site using ClimateXY products
([42, 43]; ClimateNA for North America, ClimateSA for South America, ClimateEU for Europe, and
ClimateAP for the Asia-Pacific region). These products downscale coarsely gridded (0.5◦) historical
monthly time series (CRU TS 3.22; [44]) using elevation-adjusted kilometer-scale climatological
surfaces (PRISM for contiguous US, Western Canada, and Alaska; WorldClim2 elsewhere). For the
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411 locations not covered by these databases, either because they were outside the spatial range or
more recent than the latest available years in ClimateXY, we downscaled CRU TS 4.00 1901-2015
time series to the WorldClim2 climatology using the same change-factor (delta) method employed
in the ClimateXY products.

We then used these data to estimate climatic deviations from normal conditions at a site (here-
after “climate deviations”) and climatic differences between a source population’s normal climate
and the experimental conditions of test sites (hereafter “climate mismatch”). We estimated normal
climates within a baseline period from 1951-1980. This time window was chosen because prior
to 1950 the density of weather stations is too sparse for reliable estimations, while after 1980 the
signal of climate change is already detectable [45].

We calculated deviations and mismatch specific to the duration and seasonal time window of
data collection. For example, if a study recorded survival of seedlings transplanted in May of
2010 until August of 2010, we calculated deviations and mismatch based on the historical (1951-
1980) monthly averages of May-August and the experimental monthly average of May 2010-August
2010. We expressed precipitation deviations and mismatches on the log scale so that they reflect
proportional changes rather than absolute changes. We reasoned that a raw precipitation deviation
of 100 mm has a different biological impact at a site with 100 mm mean annual precipitation versus
one with 1000 mm.

1.4 Covariates

The magnitude of local adaptation detected in transplant studies is likely to be correlated with
the magnitude of environmental difference between the populations selected for the study. To
account for this, we assumed that average geographic and elevation distances were rough proxies
for environmental differences. We calculated a metric of study scale by putting geographic and
elevation differences between sites into comparable units. We based this conversion on the amount
of elevation or latitudinal distance required to generate an equivalent change in temperature. A
change in elevation of 1000 m is, on average, equivalent to a 6◦C change in temperature [46], while
a change in latitude of 145 km is equivalent to a 1◦C change in temperature [47]. Using these lapse
rates as a conversion factor, we generated “composite” distances between sites and sources that
account for both geographic distances and elevation differences between sites and sources.

2 Material and methods: Theory

Before using the data we compiled, we theoretically derive the expected fitness of foreign populations
relative to that of local populations in a transplant experiment. More specifically, we derive this
expectation as a function of the environmental distance (temperature or precipitation difference)
between the foreign source population’s native site and the local experimental site. In Section 3
(Materials and Methods: Statistical analyses), we describe the statistical methods we used to fit
this theory with data.
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Table A1. Glossary of symbols for Theory section

Symbol Description

deviationi Environmental deviation at time i
x Environmental gradient such as average temperature or precipitation
xopt Optimal environment where absolute fitness is maximized
xopt,L Optimal environment (xopt) for local population
xopt,F Optimal environment (xopt) for foreign population
Vs Niche breadth or strength of stabilizing selection
W Absolute fitness
Wmax Maximum absolute fitness when x = xopt

WL Absolute fitness of local population
WF Absolute fitness of foreign population

2.1 Fitness along an environmental gradient

Many ecological and evolutionary models assume that fitness peaks under the conditions to which
a population is best adapted and declines in environments that are further from the optimum. For
a single environmental gradient x, we model absolute fitness (W ) as a Gaussian function:

W = f(x) = Wmaxe
− (x−xopt)

2

VS (A1)

Gaussian fitness functions are commonly used in ecological and evolutionary models [48]. Here,
Wmax is the maximum absolute fitness in the optimum environment where x = xopt. VS determines
how quickly absolute fitness declines as x departs from xopt. This term is sometimes referred to as
niche breadth in ecological models (e.g., [49]) and “selective variance” or “strength of stabilizing
selection” in quantitative genetic models (e.g., [50]).

2.2 Local and foreign fitness along an environmental gradient

Next, we extend the model to two populations, local and foreign, adapted to different environmental
optima, xopt,L and xopt,F, respectively. The absolute fitness of each population along environmental
gradient x is:

WL = Wmaxe
−

(x−xopt,L)2

VS (A2)

WF = Wmaxe
−

(x−xopt,F)2

VS (A3)

Note that we assume for simplicity that maximum fitness (Wmax) and niche breadth (VS) are
the same for both local and foreign populations. However, their environmental optima (xopt,L and
xopt,F) can differ.

Here is a simple worked example that illustrates our underlying assumptions. Suppose that the
average historical environment of the local population is x̄ = 1 and that of the foreign population

17

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 2, 2020. ; https://doi.org/10.1101/2020.11.01.364349doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.01.364349
http://creativecommons.org/licenses/by/4.0/


is x̄ = −1. Further, suppose that both are perfectly adapted to these environments, so xopt,L = 1
and xopt,F = −1. During a transplant experiment, the site environment is x = 0.9, which is very
close to the historical average for the local population. If Wmax = 1 and VS = 1, then WL = 0.99
and WF = 0.03. The local population has much higher fitness than the foreign population because
of local adaptation to its environment.

2.3 The strength of local adaptation

In general, populations are considered to be locally adapted if they have higher fitness than a
foreign population transplanted to their native environment, as shown in the example above. But
the strength of local adaptation (how much higher local fitness is than foreign) varies considerably
[21]. We define the strength of local adaptation as the log-ratio of WL to WF. For brevity, we refer
to this quantity as ω. Along a single environmental gradient, the model above predicts that the
strength of local adaptation is:

ω = log

(
WL

WF

)
=
x2

opt,F + 2x(xopt,L − xopt,F)− x2
opt,L

VS
(A4)

This formulation has several desirable properties. First, populations are locally adapted when
WL > WF (which means that ω > 0). Second, the strength of local adaptation does not depend on
the absolute environment x, but on the position of x relative to the difference in population optima.
For example, ω = 3.6 when x = 0.9, xopt,L = 1, xopt,F = −1, and VS = 1. Symmetrically, ω = 3.6
also when x = −0.9, xopt,L = −1, xopt,F = 1, and VS = 1. The switch from local adaptation (ω > 0)
to foreign advantage (ω < 0) occurs when x is closer to xopt,F than it is to xopt,L. Finally, this
formulation shows that, all else being equal, greater difference between local and foreign optima
(x2

opt,F − x2
opt,L) and narrower niche breadth (smaller VS) increase the strength of local adaptation

(or foreign advantage, depending on whether the experimental environment favors the local or the
foreign population).

2.4 The effect of climate mismatch on relative fitness of local and foreign pop-
ulations

In this section, we apply the theory introduced above for two populations (local and foreign)
to derive expectations for how climate mismatch affects the relative fitness of local and foreign
populations. Climate mismatch for population i at site j (mij) is defined as the difference between
the experimental conditions at site j (xj) and the average climate of population i in its home site
(x̄i):

mij = xj − x̄i (A5)

Relative fitness of population i at site j is the absolute fitness of population i at site j divided
by the average absolute fitness in site j:

wij =
Wij

W j

(A6)
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As above, we model population fitness with a Gaussian function (Equation A1) assuming that
optimal environment is population-specific, but that maximum absolute fitness (Wmax) and niche
breadth (VS) are the same within a species in a given experiment.

The average fitness in an experiment at site j with environment xj is the mean fitness of all n
foreign populations:

W j =
1

n

n∑
i=1

Wij (A7)

We estimate average fitness from foreign populations only to control for differing numbers of
foreign populations in each experiment. When populations are locally adapted, including the local
population in W j will cause the relative fitness of local populations to appear lower in smaller
experiments because local fitness contributes more to the average fitness. Assuming that foreign
populations are chosen randomly with respect to experiment size, the number of foreign populations
in an experiment will not bias the estimate of W j , though the variance will be larger among smaller
experiments.

The relative fitness of the local population at site j (wL,j) is its absolute fitness (WL,j) divided
the average fitness of foreign populations:

wL,j =
WL,j

W j

(A8)

Substituting Equation A2 in the numerator, we obtain:

wL,j =
Wmax e

−
(xj−xopt,L)2

VS

W j

(A9)

For one of the foreign populations, substituting Equation A3 yields the analogous equation:

wF,j =
Wmax e

−
(xj−xopt,F )2

VS

W j

(A10)

The relative fitness of the local population will be greater than a foreign population as long as the
experimental environment is closer to the local than the foreign optimum, xj−xopt,L < xj−xopt,F .
Even when the experimental environment is not in between to the two populations’ optima, it will
still be nearer to one than the other. Note that Wmax cancels out of both equations because it is a
scalar in the denominator as well.

Climate mismatches should decrease relative fitness of local and foreign populations in the same
manner if the expected mean fitness of foreign populations (W j) is constant for all values of climate
mismatch. This assumption is valid as long as a change in climate mismatch for a focal population
(local or foreign) increases the fitness of some foreign populations as much as it decreases fitness of
other foreign populations, keeping W j unchanged.
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If populations are locally adapted to their environment, then the optimal environment is close
to the average environment, xopt,i = x̄i. Substituting this into Equation A5, we can equate climate
mismatches to deviations of the experimental environment from the optimal environment, mij =
xj − xopt,i. Therefore a climate mismatch will lower absolute fitness, all else being equal.

If both the local population and a given foreign population have the same optimal environment,
then this model predicts they have equivalent relative fitness at a given climate mismatch. However,
since local populations are likely adapted to multiple environmental factors, we expect that local
populations will have higher relative fitness than foreign populations even with the same amount
of climate mismatch. In Section 3 (Materials and Methods: Statistical analyses), we account for
local adaptation to other unmeasured environmental factors.

2.5 Climate deviations increase the variation in local adaptation

We anticipate that climate deviations will not, on average, favor or disfavor local populations, but
will increase the variation in experimental outcomes. We define deviations as the difference between
the environment at time i and the average environment at a site:

deviationi = xi − x̄

We also assume that the local population is adapted to the average environment at its home
site:

xopt,L = x̄

Hence, deviationi = xi − xopt,L. We obtain ω at a given time as a function of deviations by
substituting x = xi = deviationi + xopt,L in Equation A4:

ω =
x2

opt,F + 2(deviationi + xopt,L)(xopt,L − xopt,F)− x2
opt,L

VS

This expression simplifies to:

ω =
2 deviationi(xopt,L − xopt,F) + (xopt,L − xopt,F)2

VS
(A11)

In an “average” time period, when deviationi = 0, the strength of local adaptation is the
squared difference in environmental optima divided by the niche breadth, ω = (xopt,L−xopt,F)2/VS.
Deviations strengthen local adaptation when they reinforce the difference in environmental op-
tima, deviationi(xopt,L − xopt,F) > 0; deviations weaken local adaptation when they counteract the
difference in optima, deviationi(xopt,L − xopt,F) < 0:

deviationi > 0 deviationi < 0

xopt,L > xopt,F strengthen weaken
xopt,L < xopt,F weaken strengthen
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The net result is that climate deviations increase the variance in experimental outcomes. For
example, as warm deviations increase in frequency, local populations adapted to warmer climates
than foreign populations experience an even stronger local advantage. Conversely, warm devia-
tions will cause foreign populations adapted to warmer climates to have higher fitness than local
populations.

Here we illustrate this verbal argument mathematically. For simplicity, we assume that niche
breadth is the same for local and foreign populations. We treat both deviations and the difference
between local and foreign optima (dclim = xopt,L − xopt,F) as random variables. Prior to climate
change, we assume that deviations are equally likely to be warm or cold, wet or dry (µdev,t0 = 0)
with some variance (Vdev). Likewise, differences in climatic optima are equally likely to be positive
or negative (µdiff = 0) with some variance (Vdiff). With climate change, there is a directional shift
(e.g. warmer average temperature), so µdev,t1 6= 0, but the variation around the mean remains
the same as in the past. Although we assume it is constant for this derivation, if variation has
increased because of global climate change, this would further increase variance in experimental
outcomes.

To keep the notation simpler, let x = 2 deviation and y = dclim. Substituting x and y into
Equation A11 yields:

ω =
xy + y2

VS
. (A12)

Based on standard random variable algebra, the variance in ω, denoted Vω, is:

Vω =
Vxy + Vy2 − 2Cxy,y2

V 2
S

, (A13)

where Vxy is the variance of xy, Vy2 is the variance of y2, and Cxy,y2 is the covariance between
xy and y2. We can further decompose Vxy and Vy2 . The variance of the product of two random
variables (Vxy) is defined as:

Vxy = E(x)2Vy + E(y)2Vx + 2E(x)E(y)Cx,y + VxVy + C2
x,y.

E(x) is the expected value of x, i.e. the average value of a climate deviation. If we assume
that there is no correlation between climate deviations and the difference between local and foreign
optima, then Cx,y = 0. The above equation simplifies to:

Vxy = E(x)2Vy + E(y)2Vx + VxVy. (A14)

The variance in the square of population climatic differences (Vy2) is:

Vy2 = 2Vy(2E(y)2 + Vy). (A15)
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Now, substituting Equations A14 and A15 into Equation A13, we obtain an expression for the
variance ω as function of the mean and variance in climate deviations and the difference in climatic
optima:

Vω =
E(x)2Vy + E(y)2Vx + VxVy + 2Vy(2E(y)2 + Vy)− 2Cxy,y2

V 2
S

. (A16)

This equation is complex, but it reveals some key insights. First of all, the variance in local
adaptation increases when there is greater temporal variation in climate (increased Vx, the variance
in deviations) and greater variation in the difference between local and foreign optima (Vy). If either
of these variances change over time because of climate change and/or experimental practices, it will
affect the variance in local adaptation. For example, greater interannual variation in temperature
would increase the variance in local adaptation. We would see a similar effect if scientists were
comparing local fitness to a wider variety of foreign populations. The variance in local adaptation
will decrease if the niche breadth is wider.

The variance in local adaptation will also increase with a directional shift in climate, even
if climatic variability remains the same. Directional climate change shifts the expected value of
deviations, E(x), from 0 to some new value (e.g. 1◦ warmer). All else being equal, the variance
in ω increases with the square of E(x). Therefore, if climate deviations are changing directionally
(e.g., more warm deviations and fewer cold deviations), experimental outcomes should become
more variable after accounting for other factors, such as niche breadth and differences in climatic
optima, that determine the strength of local adaptation.

3 Materials and methods: Statistical analyses

We first examined whether we observe larger climate deviations over time, consistent with global
climate trends, in our database of transplant experiments (Model A). Next, we tested whether the
fitness of populations (relative to the average foreign fitness in a site) is affected by experimental
conditions and deviations from their climates of origin (Model B).

If climate deviations are becoming more frequent and populations are locally adapted to cli-
mate, then it follows that our measurements of the strength of local adaptation may be changing.
Our theoretical model predicts that climate deviations strengthen local adaptation when the local
population is better adapted to anomalous conditions than the foreign population; for example,
warm deviations will strengthen local adaptation when the local population is adapted to warmer
conditions than the foreign population. Conversely, warm deviations are predicted to weaken or
even overturn local adaptation when the local population is adapted to cooler climates than the
foreign population. We tested whether deviations have these predicted effects on local adaptation
and whether these effects are leading to increased variance in local adaptation over time in Model
C.

We fit these models in Stan [51]; all Stan code and data required to fit these models has been
submitted for review and will be published in an appropriate repository upon acceptance. We
provide further information on model fitting and posterior predictive checks in Section 3.6.

When estimating effect sizes from many different datasets, it is best practice to account for
variance in estimates, as studies may differ in their sample sizes and power to detect significant

22

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 2, 2020. ; https://doi.org/10.1101/2020.11.01.364349doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.01.364349
http://creativecommons.org/licenses/by/4.0/


effects. However, our data set includes data on many different scales (i.e., survival proportions vs.
counts of seed numbers), which means that uncertainty is not reported using a consistent metric
across the original studies. In some cases, uncertainty in estimates is not reported at all. Rather
than lose data by omitting those that did not report variance, we accounted for other factors that
might affect the magnitude local adaptation detected, such as the number of populations being
compared and the geographic extent from which populations are drawn.

3.1 Model A: Are climate deviations becoming more frequent?

We tested whether temperature and/or precipitation deviations are becoming more frequent using
a Bayesian mixed effects model. Table A2 summarizes model parameters. Temperature deviations
were expressed as ◦Cexperiment - ◦Csite normal. We calculated these deviations over each temporal
window in which fitness was measured at each site, for a total of 809 deviation observations. For each
site, we treated mid-year (average of start and end years for studies that spanned multiple years)
of the experiment as a fixed effect regressed against temperature deviation. If warm deviations
are becoming more common, then the coefficient βyear,A should be significantly greater than zero.
We rescaled year by subtracting 1975 (the earliest mid-year in our dataset) so that the y-intercept
(β0,A) is the average temperature deviation in 1975. We also included site as a random effect. We
also tested whether the variance in temperature deviations is increasing through time by estimating
the effect of year (scaled) on the residual scale term, assuming residuals are normally distributed.
We repeated this process with precipitation deviations, which were expressed as log10mmexperiment

- log10mmsite normal. Because we did not have an a priori expectation about whether dry deviations
or wet deviations might be becoming more frequent among the sites in our data set, we also
tested whether the absolute values of precipitation deviations were changing over time. Parameter
estimates are presented in Table S2.

3.2 Model B: Do site conditions and climate deviations affect relative fitness?

We first tested whether relative fitness is lower in sites that are hotter, cooler, wetter, or drier
than other sites in an experiment, regardless of how conditions match the source climates of pop-
ulations (Model B1, Fig. 1A). This could occur if performance responds plastically to weather
conditions in a similar manner across populations, instead of or in addition to locally adapted
responses. To estimate this, we centered the temperature and precipitation conditions at each site
j around the average within each study (Tj , Pj) . Site temperature conditions were expressed in
◦C difference from the experiment average and precipitation conditions as the difference between
log10(experiment average precipitation) and log10(site precipitation).

We treated centered temperature and precipitation conditions as fixed effects regressed against
relative fitness. We calculated relative fitness for each population i at site j (wij) by dividing the
fitness of that population by the average fitness of all foreign populations at all sites (within each
temporal window and for each fitness metric). This put diverse fitness metrics (e.g., proportion
survival, seed number) on a common scale. Our results should be interpreted accordingly; we
cannot make inferences about absolute fitness or population growth, only relative performance. We
estimated model parameters using quadratic regression of site temperature and precipitation against
log-transformed relative fitness (logwij) to normalize the residual variance. This model allowed us
to evaluate the shape of the relationship between site temperature/precipitation conditions and
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fitness.

logwij = β0,B + βT1,BTj + βT2,BT
2
j + βP1,BPj + βP2,BP

2
j (A17)

Table A3 describes model parameters. We included a covariate of the composite distance over
which a population was moved, which may coarsely account for the displacement a population ex-
periences along ecological axes. We also included a covariate of whether a population was local or
foreign in a given site, as local adaptation to any aspect of the environment might result in popu-
lations performing better in their home site. We included a random intercept for each combination
of study and taxon.

When wij for a given population was measured as 0 (8.2% of observations), our calculation of
logwij is −∞. We censored these observations as described for Model C (see section 3.3.6 below)
using the minimum non-zero relative fitness for a given combination of study, taxon, and fitness
type as a lower censor. We excluded 6 observations of performance for which fitness was measured
as 0 at all sites, and 288 observations in which populations were transplanted to only one site,
resulting in 9120 observations used to fit this model.

We assumed that residual variation is normally distributed but decreases linearly with the
square root of n, the number of populations used to calculate average fitness. If n is high and
foreign populations are sampled randomly, the variability in wij is primarily due to absolute fitness
of the focal population Wij ; when n is low, sampling variance in the foreign populations also
contributes, but this additional variance should decrease with the square-root of sample size. We
estimated this parameter (βn,σ,B) on a log-link scale and predicted it should be less than 0, meaning
that the residual variance decreases in proportion to

√
n. Parameter estimates are presented in

Table S3.

We next tested whether a population’s fitness declines as they experience more extreme tem-
perature or precipitation mismatch (Model B2). Our transplant dataset allows us to examine a
broad range of climate mismatch between experimental conditions at a site and the climate a popu-
lation has historically experienced. This is because transplanted populations experience deviations
caused by interannual variability within a site but also climatic mismatch introduced by moving
across space (Fig. 1C). We calculated overall climatic mismatch for each population at each site
(see Equation A5): temperature mismatch for each population-site combination ij (mT,ij) was ex-
pressed as the difference between temperature during the experiment and average temperature at
the source (in ◦C) and precipitation mismatch for each population-site combination ij (mP,ij) was
expressed as the difference between log10(precipitation during the experiment) and log10(average
precipitation at the source). For local populations, this mismatch is simply the result of interannual
variability in their home sites; for foreign populations it incorporates both experimental conditions
and spatial differences in climate.

For each site, we treated temperature and precipitation mismatch as fixed effects regressed
against relative fitness. We calculated relative fitness for each population i at site j (wij) by
dividing the fitness of each population by the average fitness of all foreign populations (see Section
2.4, Equation A6) at that site within each temporal window, for each fitness metric. In contrast
to our relativization for Model B1, here we relativize within sites, which removes the effect of
differences in site quality. Following the assumptions in Section 2 (Materials and Methods: Theory),
we predicted that relative fitness would peak when mismatch is near zero and decline as mismatch
becomes larger.
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Based on the theory developed in Section 2.4 (Materials and Methods: Theory), we predicted a
Gaussian relationship between climate mismatch for both local and foreign populations (Equation
A9–A10). We estimated model parameters using quadratic regression of temperature and precipita-
tion mismatch against log-transformed relative fitness (logwij) to normalize the residual variance.
Exponentiating a quadratic equation yields a Gaussian curve when the coefficient on the squared
term is negative.

logwij = β0,B + βT1,BmT,ij + βT2,Bm
2
T,ij + βP1,BmP,ij + βP2,Bm

2
P,ij (A18)

Table A4 describes model parameters. First, this model allowed us to evaluate whether a hump-
shaped relationship between climate mismatch and fitness was present in our data if βT2,B < 0 or
βP2,B < 0. We predicted that linear parameters (βT1,B and βP1,B) should be approximately 0 if the
optimal climate mismatch is 0. If the linear parameters βT1,B or βP1,B 6= 0, this either indicates
that the fitness response peaks at a non-zero climate mismatch (if the quadratic term is significant)
or an exponential relationship between relative fitness and climate (if the quadratic term is not
significant). Temperature and precipitation mismatch were not highly correlated in our dataset
(r = 0.034, correlation between absolute value of the two mismatch types: r = 0.23).

We also predicted that the average relative fitness of foreign populations should be 1 when
climate mismatch is 0 (β0,B ≈ 0 because log(1) = 0), but that local populations would have
higher relative fitness than foreign populations for a given degree of climate mismatch. We tested
this latter prediction by including a fixed effect of local origin (βlocal,B). When wij for a given
population was measured as 0 (8.2% of observations), our calculation of logwij is −∞. We censored
these observations as described for Model C (see section 3.3.6 below) using the minimum non-zero
relative fitness for a given combination of study, taxon, and fitness type as a lower censor. Fitness
type and functional group did not significantly alter the relationship between mismatch and relative
fitness (results not shown), so these were not included here. We excluded 58 observations for which
there was no non-zero fitness estimate at the site, resulting in a dataset of 9356 observations. As
described for Model B1, we assumed that residual variation is normally distributed but decreases
linearly with the square root of the number of foreign populations used to calculate average fitness,
and included terms to account for this.

When the quadratic term was significantly negative for temperature or precipitation mismatch,
we estimated from these quadratic fits:

• The optimal temperature and precipitation mismatch (the location of the peak of the curves)
as −βT1,B/2βT2,B and −βP1,B/2βP2,B;

• The Gaussian variance in response to temperature and precipitation (the breadth of the
curves) as −1/βT2,B and −1/βP2,B.

3.3 Model C: Are populations locally adapted to climate?

Next, we hypothesized that populations are adapted to the historic climate at their site of origin and,
hence, maladapted to the historic climate at foreign sites. Based on this hypothesis, we developed
a theoretical model of local adaptation to derive quantitative predictions to test with our dataset
(see Section 2, Materials and Methods: Theory). This model predicts that the strength of local
adaptation (ω) should be a function of the experimental site environment (x), the environmental
optima of local and foreign populations (xopt,L and xopt,F), and the niche breadth (VS):
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ω =
x2

opt,F + 2x(xopt,L − xopt,F)− x2
opt,L

VS

We fit this model using only data from transplant experiments with designs that allowed for
the contrast of a local population and at least one foreign population in the same site. There is no
information about the fitness ratio when both local and foreign fitness (WL and WF) are 0, so we
removed these observations. After applying these filters, our dataset contained 5705 local-foreign
contrasts.

The simple model above does not account for local adaptation to unmeasured environmental
axes, differences in experimental design, or variation in niche breadth across taxa. In later sec-
tions, we explain how we incorporated these additional factors into a Bayesian linear mixed effects
model.

3.3.1 Relative experimental environment (EErel)

Equation A4 shows that ω is proportional to the quantity x2
opt,F + 2x(xopt,L−xopt,F)−x2

opt,L. This
quantity scales the site environment during the experiment relative to the optimal environments
for each of the populations. For brevity, we refer to this quantity as the Relative Experimental
Environment (EErel):

ω =
EErel

VS

If populations are locally adapted, then the optimal environment should be close to the histor-
ical average environment at that site. Hence, we estimated xopt,L and xopt,F for temperature or
precipitation as the average historical values in the respective home sites of the populations. We
also obtained data for the site climate (x) during the experiment (see Section 1.3 for further de-
tail). When the experimental environment favors the local population over the foreign population,
EErel will be large. This doesn’t necessarily mean that the experimental environment is close to
the optimal environment for the local population, only that the experimental environment is closer
to the local optimum than it is to the foreign optimum. We estimated the average niche breadth
from the inverse of the slope of EErel against ω:

ωij = βEErel,C EErelij + εij

βEErel,C is therefore an estimate of V −1
S . The variables ωij , EErelij , and εij are the relative exper-

imental environment, log-fitness ratio, and residuals of the jth observation from the ith study, site,
taxon, and fitness type combination (see explanation below). If populations are locally adapted
such that the population that is best matched to the environment performs better, then our niche
breadth term should be positive, meaning the slope (βEErel,C) should also be positive. Estimated
slopes near or less than 0 would indicate no adaptation or maladaptation, respectively. For fit-
ting purposes, the slope parameter had better statistical properties, but we transformed posterior
estimates to niche breadth, which is more biologically meaningful.
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3.3.2 Local adaptation to other environmental factors

In this study, we focused on climate because human activity has increased average temperature
globally and altered precipitation regimes. However, populations could simultaneously be locally
adapted to many other biotic and abiotic factors. If temperature or precipitation were strongly
correlated with these other unmeasured factors, this could make local adaptation to climate appear
much stronger than it is. We accounted for local adaptation to unmeasured environmental factors
in three ways:

• An intercept term (β0,C) to estimate average local adaptation to unmeasured factors;

• A composite distance metric combining geographic and elevational distance between a pop-
ulation’s original location and the experimental site (βdist,C), assuming that this may be a
proxy for overall environmental distance (see Section 1.4 for calculation of this metric).

After incorporating these effects, the statistical model becomes:

ωij =β0,C+

βdist,C dij+

βEErel,C EErelij + εij

dij is the geographic distance between the experimental site and focal population. If there is

local adaptation to unmeasured factors, then β̂0,C > 0. If geographic distance is a good proxy for

differences in these selection pressures, then β̂dist,C > 0. A negative value for β̂dist,C would indi-
cate that greater distance weakens local adaptation, after accounting temperature or precipitation
differences. This could occur if, for example, more distant populations are less susceptible to local
pathogens or herbivores.

3.3.3 Variation in niche breath

Niche breadth, which measures the sensitivity of fitness to deviations from the optimal climate,
likely varies among taxa and populations. To account for this additional variation, we included
a random effect of each combination of study, taxon, source population, and fitness type on the
slope:

ωij =β0,C+

βdist,C dij+

(βEErel,C + βsstft,EErel,C,i) EErelij + εij

3.3.4 Experimental differences in measuring fitness

As described in Section 1.2, the studies in our database measured a variety of fitness metrics. Studies
that measured a single fitness component may have captured less of the total fitness difference than
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studies that measured multiple fitness components. The overall intercept is the expected ω for the
composite fitness type including all components and the effect of less-complete fitness types were
estimated as fixed effects.

With these effects, the final statistical model becomes:

ωij =β0,C+

βdist,C dij+

βgerm,C germij + βgerm-surv,C germ-survij + βsurv,C survij + βrepro,C reproij+

(βEErel,C + βsstft,EErel,C,i) EErelij+

εij

3.3.5 Is the variance in local adaptation changing over time?

Our theoretical model predicts that if deviations are changing directionally over time (e.g. warmer
or drier, see Section 3.1), then the variance in the strength of local adaptation should be increasing
through time (see Section 2.5). The effect is caused by the fact that more extreme deviations
can both 1) overturn local adaptation, leading to foreign advantage where it otherwise would
not have occurred, and 2) reinforce local advantage, leading to stronger local adaptation than
would have otherwise occurred. We tested whether overall variance in local adaptation increased
through time by regressing study year against the scale parameter of residuals (εij), using a log
link because the variance must be positive. We modeled εij using a Student t distribution, a
robust regression approach which is less influenced by extreme data points [52]. As the “degrees
of freedom” parameter ν approaches ∞, the t distribution converges to a normal distribution with
mean µ and standard deviation σ. We modeled the effect of time on the scale parameter to test if
the variance changes over time:

εij ∼ StudentT(0, νC, σε,C,ij)

log(σε,C,ij) = log(σε,C,0) + βε,C,year yearij

We predicted that the slope of study year against log(σε,C,ij) will be positive.

Because climate deviations can both reinforce and counteract historical climatic differences
between populations, we did not predict that the average strength of local adaptation would change
over time, only the variance. We tested whether the average strength of local adaptation changed
through time by including a fixed effect of study year (βC,year), which we did not expect to be
significantly different from 0. With these parameters, the final model becomes:
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ωij =β0,C + βsstft,C,i+

βdist,C dij+

βgerm,C germij + βgerm-surv,C germ-survij + βsurv,C survij + βrepro,C reproij+

(βEErel,C + βsstft,EErel,C,i) EErelij+

βyear,C yearij+

εij

Increased variance in deviations, increased variance in EErel, or decreased variance in niche
breadth (VS) over time should also cause the variation in ω to increase (see Equation A16). Statis-
tical Model A (Section 3.1) tests whether the variance in deviations is increasing; statistical Model
C accounts for the latter effects. For example, if the variation in EErel increased through time
because scientists were choosing foreign populations with a wider variety of temperature optima,
this variation would be explained by the EErel coefficient. Random effects also allow us to account
for variance in niche breadth among taxa. Hence, if the variance in local adaptation increases
after accounting for these factors, it strongly implies that unmeasured changes in climate and/or
experimental practice are responsible.

3.3.6 Censoring nonfinite observations

Some observations (6.8%) of log-relative fitness were not finite because either the local or foreign
fitness were measured as 0 (log(0/x) = −∞; log(x/0) = ∞). When the expected absolute fitness
is very low, fitness will often be 0 because of finite sample sizes. For example, if the expected
number of fruits in a sample is Poisson-distributed with a mean of 2, there is a ∼13.5% chance
of measuring 0 fruits. Values of −/ +∞ have 0 likelihood in the statistical model and cannot be
included. However, excluding these instances is not ideal, since they likely represent cases of very
strong local adaptation or foreign advantage.

Therefore, we treated nonfinite observations of ω as censored because researchers were unable
to observe below a certain value (the censor). For example, assume the lowest observable fitness
value is Wmin. If the local fitness is WL, then the upper (a.k.a. right) censor is cr = WL

Wmin
. If

WL = 0, then lower (a.k.a. left) censor is cl = Wmin
WF

.

We estimated Wmin for every combination of study, site, taxon, and fitness type as the minimum
non-zero fitness value observed in that experiment. This can be considered an upper (lower) bound
for cr (cl) since there are likely non-zero fitness values that could have been measured but were not.
The site-specific minimum fitness for site j is denoted Wmin,j. When WF = 0 and WL > Wmin,j , we
right-censored the data at cr = log( WL

Wmin,j
). When WL = 0 and WF > Wmin,j), we left-censored the

data at cl = log(
Wmin,j

WF
).

Uncensored data (ω > cl or ω < cr) have a likelihood of Luncensored = f(X = x; θ) where f(X; θ)
is the probability density function with parameters θ. To calculate the likelihood of censored data,
we use the associated cumulative density function F (x; θ). The likelihood of censored data is the
cumulative probability density from −∞ to cl or cr to −∞ for left- and right-censored observations,
respectively:
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Lleft−censored = F (cl; θ) =

∫ cl

−∞
f(x; θ)dx

Lright−censored = 1− F (cr; θ) =

∫ ∞
cr

f(x; θ)dx

3.4 Extending Model C: Have temperature deviations increased the variance
in local adaptation?

As we report in the main text, warm temperature, but not precipitation, deviations are increasing
(Fig. 2CD) and local adaptation is becoming more variable (Fig. 4B). We explore the effects of
climate on the magnitude of local advantage in three additional analyses. First, we examine whether
warm climate deviations reinforce and counteract local adaptation in predictable ways depending on
whether the foreign population is expected to be better or worse suited to a warm climate. Second,
we modified statistical Model C (Section 3.3) to quantify how much temperature deviations per se
are contributing to increased variance in local adaptation. This approach asks whether increased
variance associated with temperature deviations contributes significantly to the overall increase in
variance.

In the first approach, we extracted two subsets of observations from our dataset for Model C:
one in which sites resembled their historic normals (< 0.5◦ absolute temperature deviations, 1820
observations) and the other in which sites had > 2◦ warm temperature deviations (515 observa-
tions). We then classified each contrast as either one in which we expect local adaptation to be
reinforced (when the foreign population is from a cooler location than the local population, 1367
observations) or one in which we expect local adaptation to be counteracted (when the foreign
population is from a warmer location than the local population, 968 observations). We then fit
a model that estimated the effect of site conditions (normal or warm), foreign temperature origin
(warmer or cooler) and the interaction between these two factors on the magnitude of local adapta-
tion. We included covariates of composite distance and fitness component, and fit the model using
the robust regression approach described for Model C.

In a second approach, we estimated the effect of study year on variance in the magnitude of local
advantage after removing the model-predicted effect of temperature and precipitation deviations.
For each observation, the average climate deviation in that study year, estimated from model A,
was used to modify the observed value of ωij . We refer to the modified, baseline value as ωbaseline,ij .
Rearranging Equation A11, we removed the estimated effect of temperature and precipitation
deviations as:

ωbaseline,ij = ωij −
2 deviationP (yeari) dP,ij

VP,S,ij
−

2 deviationT (yeari) dT,ij
VT,S,ij

Estimated deviations in the year of each SSTFT combination i are calculated from parameters
estimated from model A, denoted with the β̂:

deviationP (yeari) = β̂0,P,A + β̂P,year,A × yeari

deviationT (yeari) = β̂0,T,A + β̂T,year,A × yeari
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dP,ij and dT,ij are the historic differences between average source and site precipitation and
temperature, respectively, for the jth observation at SSTFT combination i. VP,S,ij and VT,S,ij are
the niche breadths for precipitation and temperature, calculated as:

VP,S,ij = (β̂EErel,P,C + β̂sstft,EErel,P,C,i) EErel,P,ij

VT,S,ij = (β̂EErel,T,C + β̂sstft,EErel,T,C,i) EErel,T,ij

If temperature deviations make a large contribution to the increased variance in local adaptation,
then the rate at which the variance increases through time should be reduced once the effect of
deviations are statistically removed. We compared the posterior distributions of βε,C,year in models
with and without the effect of deviations.

3.5 Effects of temperature deviations on the prevalence of local adaptation

In the preceding analyses, we evaluated whether temperature and precipitation deviations alter the
strength of local advantage—that is, the ratio of local to foreign fitness for any pair of populations
compared. Shifting from this pairwise framework, local adaptation can also be conceptualized more
generally as 1) the local population outperforming all foreign populations moved to its home site
or 2) a population performing better in its home site than any other site that it is transplanted
to.

If temperature deviations weaken local advantage and disrupt the fit of populations to their
home environments, it follows that they may decrease the prevalence of local adaptation as defined
above, even if they do not alter the average strength of local advantage. To test this, we regressed
the binary outcome of whether a population outperforms all other populations in its home site
on the absolute temperature deviation of that site during the experiment. We included covariates
of the average composite distance that populations were moved, as well as the number of foreign
populations that were moved to that site. We expected that the probability of the local population
outperforming all foreign populations would decline under more anomalous thermal conditions. We
also predicted that the probability of the local population outperforming all foreign populations
would be higher if foreign populations were moved over greater distances, but might decrease as
more foreign populations are included in the experiment, since that increases the probability that
a foreign population might outperform the local population due to random chance and that one of
the foreign populations might be better suited to the site environment.

We ran a similar regression in which the response variable was the binary outcome of whether
a population performed best in its home site compared to other sites (after standardizing by the
average performance of all populations in a site). We expected that the probability of a population
performing best at home would decline under more anomalous thermal conditions. In this model
we included covariates of the average distance that a population was moved and the number of sites
a population was tested at. We expected greater distances to increase the probability a population
would do best at home and more test sites to decrease the probability a population would do best
at home.

These models were fit in Stan using the package brms [53], using a Bernoulli response distribu-
tion, a logit link function, and weakly informative priors. The number of populations or number of
sites were included in the model as 1/(the number of populations or number of sites), because . We
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included a random intercept for each combination of study and taxon. Convergence was assessed
as described below.

3.6 Fitting models with Stan

We fit Bayesian mixed effects Models A-C using Stan [54], a probabilistic programming language,
via the R package rstan version 2.18.2 [51]. In all models, we assigned diffuse normal priors (µ = 0,
σ = 10) to fixed effect parameters and weakly informative half-cauchy priors (µ = 0, σ = 1) to
variance parameters (random effect and residual variances). Because some parameters are shared
across models, all models were run simultaneously on two chains for 104 warm-up and 104 sampling,
each, with a thinning interval of 101. All key parameters (Tables A2 to A5) converged when the
Gelman-Rubin R̂ < 1.01 [55] and the effective sample size (ESS) was greater than 103. R̂ and
ESS statistics were calculated using the ‘summarize draws’ function in the R package posterior
version 0.0.3 [56]. We tested a priori predictions using 95% highest posterior density intervals.
For example, if we predicted a parameter should be greater than 0, then the 95% HPDI for that
parameter should include only positive values.

32

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 2, 2020. ; https://doi.org/10.1101/2020.11.01.364349doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.01.364349
http://creativecommons.org/licenses/by/4.0/


Table A2. Model A parameters and predictions. Each parameter has a mathematical
Symbol used in the text, a Stan character string used in the model code, a brief Description of the
parameters, and associated a priori Predictions where applicable. Parameter estimates from fitted
models are presented in Table S2 and in Fig. 2CD.

Symbol Stan Description Prediction
(where
applicable)

Regression on climate deviations
β0,T,A b0_t_A Average temperature deviation in year 0 (=

1975)

βT,year,A b_t_A_year Effect of year on average temperature deviation β̂T,year,A > 0
βT,site,Ai

b_t_A_site[i] Effect of site i on average temperature deviation
σT,site,A sigma_t_A_site Standard deviation of βT,sitei,A
β0,P,A b0_p_A Average precipitation deviation in year 0 (=

1975)
βP,year,A b_p_A_year Effect of year on average precipitation deviation
βP,site,Ai

b_p_A_site[i] Effect of site i on average precipitation devia-
tion

σP,site,A sigma_p_A_site Standard deviation of βP,sitei,A
β0,AP,A b0_ap_A Average absolute precipitation deviation in

year 0 (= 1975)
βP,year,A b_p_A_year Effect of year on average absolute precipitation

deviation
βP,site,Ai b_p_A_site[i] Effect of site i on average absolute precipitation

deviation
σAP,site,A sigma_ap_A_site Standard deviation of βAP,sitei,A

Regression on σε,A
βε,T,A,year b_t_A_resid_year Effect of study year on log(σε,T,A,0)
log(σε,T,A,0) log_sigma0_t_A_resid Standard deviation of temperature deviations

(log-scale) in study year 0 (= 1975)
βε,P,A,year b_p_A_resid_year Effect of study year on log(σε,P,A,0)
log(σε,P,A,0) log_sigma0_p_A_resid Standard deviation of precipitation deviations

(log-scale) in study year 0 (= 1975)
βε,AP,A,year b_ap_A_resid_year Effect of study year on log(σε,AP,A,0)
log(σε,AP,A,0)log_sigma0_ap_A_resid Standard deviation of absolute precipitation de-

viations (log-scale) in study year 0 (= 1975)
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Table A3. Model B1 parameters and predictions. Each parameter has a mathematical
Symbol used in the text, a Stan character string used in the model code, a brief Description of the
parameters, and associated a priori Predictions where applicable. Parameter estimates from fitted
models are presented in Table S3 and Fig. 3AB.

Symbol Stan Description Prediction
(where
applicable)

Regression on log(wij)
β0,B b0_B Average log(wij) under average temperature

and precipitation conditions
β0,B = 0

βT1,B b1_ta_B Linear effect of T on log(wij)
βT2,B b2_ta_B Quadratic effect of T on log(wij)
βP1,B b1_pa_B Linear effect of P on log(wij)
βP2,B b2_pa_B Quadratic effect of P on log(wij)

βlocal,B b_local_B Effect of being local β̂local,B > 0

βdist,B b_dist_B Effect of composite distance moved β̂dist,B < 0
βstudy taxon,Bi

b_study_taxon_B[k] Effect of study-taxon k on log(wij)
σstudy taxon,B sigma_B_study_taxon Standard deviation of βstudy taxon,Bi

Regression on σε,B
βε,B,n b_B_n Effect of

√
n on log(σε,B)

log(σε,B,0) log_sigma0_B_resid Standard deviation (log-scale) of residual
log(wij) when n = 0

Table A4. Model B2 parameters and predictions. Each parameter has a mathematical
Symbol used in the text, a Stan character string used in the model code, a brief Description of the
parameters, and associated a priori Predictions where applicable. Parameter estimates from fitted
models are presented in Table S4 and Fig. 3CD.

Symbol Stan Description Prediction
(where
applicable)

Regression on log(wij)
β0,B b0_B Average log(wij) when mT = 0 and mP = 0 β0,B = 0
βT1,B b1_t_B Linear effect of mT on log(wij) βT1,B = 0

βT2,B b2_t_B Quadratic effect of mT on log(wij) β̂T2,B < 0
βP1,B b1_p_B Linear effect of mP on log(wij) βP1,B = 0

βP2,B b2_p_B Quadratic effect of mP on log(wij) β̂P2,B < 0

βlocal,B b_B_local Effect of being local β̂local,B > 0
βstudy taxon,Bi b_B_study_taxon[k] Effect of study-taxon k on log(wij)
σstudy taxon,B sigma_B_study_taxon Standard deviation of βstudy taxon,Bi

Regression on σε,B
βε,B,n b_B_n Effect of

√
n on log(σε,B)

log(σε,B,0) log_sigma0_B_resid Standard deviation (log-scale) of residual
log(wij) when n = 0
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Table A5. Model C parameters and predictions Each parameter has a mathematical Sym-
bol used in the text, a Stan character string used in the model code, a brief Description of the
parameters, and associated a priori predictions where applicable.

Symbol Stan Description Prediction
(where
applicable)

Regression on ω

β0,C b0_C Average strength of local adaptation
(ω)

β̂0,C > 0

βdist,C b_C_dist Effect of geographic distance on ω β̂dist,C < 0
βgerm,C b_C_ft_germ Effect of germination fitness type on ω
βgerm surv,C b_C_ft_germ_surv Effect of germination-survival fitness

type on ω
βsurv,C b_C_ft_surv Effect of survival fitness type on ω
βrepro,C b_C_ft_repro Effect of reproduction fitness type on ω

βyear,C b_C_year Effect of study year on ω β̂year,C = 0

Precipitation-specific parameters

βEErel,P,C b_p_C_eerel Effect of precipitation EErel on local
adaptation, inverse of niche breadth

V̂ −1
S,P = β̂EErel,P,C > 0

βsstft,EErel,P,C,i b_p_C_eerel_sstft[i] Effect of SSTFTi on βEErel,P,C

σsstft,EErel,P,C sigma_p_C_eerel_sstftStandard deviation of βsstft,EErel,P,C,i

Temperature-specific parameters

βEErel,T,C b_t_C_eerel Effect of precipitation EErel on local
adaptation, inverse of niche breadth

V̂ −1
S,T = β̂EErel,T,C > 0

βsstft,EErel,T,C,i b_t_C_eerel_sstft[i] Effect of SSTFTi on βEErel,T,C

σsstft,EErel,T,C sigma_t_C_eerel_sstftStandard deviation of βsstft,EErel,T,C,i

Regression on σε,C
βε,C,year b_C_resid_year Effect of study year on log(σε,C) β̂ε,C,year > 0
log(σε,C,0) log_sigma0_C_resid Scale parameter (log-scale) of residual

ω in study year 0 (= 1975)
νC nu_C_resid Degrees of freedom parameter of resid-

ual ω
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4 Supplemental results

4.1 Model performance and adequacy

Trace plots and posterior densities for all key parameters also indicated good mixing and sta-
tionarity (Fig. S1 and . ‘mcmc areas’, ‘mcmc trace’, and ‘ppc dens overlay’ functions from the R
package bayesplot version 1.7.2 [57] were used for area, trace, and posterior predictive check plots,
respectively.

Area and trace plots are included in an additional pdf. The parameter is listed at the top. In
area plots, the plotting region shows the posterior density of the parameter, the point estimate
(median of the posterior, dark blue line), and 80% probability mass interval (shaded blue area). In
trace plots, the plotting region show lines plots of the parameter value during sampling for both
chains.
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Fig. S1. Posterior predictive check of the response variable (local advantage) from Model C.
Agreement between the data (dark blue line) and simulated responses from 1000 draws of model
posterior (light blue lines) suggested the model adequately fits the data.
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4.2 Comparing parameters from Models B and C

We estimate local adaptation to factors other than average temperature and precipitation in both
Model B and Model C. In Model B, this is the effect of being local (vs. foreign), and in Model C it
is the intercept, i.e., the magnitude of local adaptation when the experimental climate conditions
favor both local and foreign populations equally. Estimates of the costs of being foreign from Model
C are less severe than those of Model B (Fig. S2A, Table S4, Table S5). This may be because Model
C accounts for composite (geographic and elevational) distance between the foreign population and
the transplant site, and this parameter likely accounts for the magnitude of local adaptation to
biotic and abiotic factors other than average temperature and precipitation that are collinear with
distances between sites.

We estimate the sensitivity of fitness to variation in climate (VS) in both Model B and Model
C. We find that our estimate of VS is larger in model B (Fig. S2, Table 3.2) than in model C (Table
3.3). This may occur because because our estimate from Model B includes both the sensitivity to
climate as well as variability in the optima of the foreign populations that we have used to relativize
fitness. The optima of foreign populations are included in our estimate of EErel, and as a result,
the estimate of VS from Model C is likely to more accurately reflect the sensitivity of populations
to variation in climate.
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Fig. S2. (A) The magnitude of local adaptation to non-climatic factors estimated using two
approaches, with the parameter βlocal,B in Model B and β0,C in Model C. (B) We also estimate
temperature niche breadth using these two models, with the Gaussian variance parameter in Model
B and the inverse of the estimate of temperature EErel in Model C.
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4.3 Increasing variance may reduce the overall frequency of local advantage

Even in the absence of a change in the average strength of local advantage over time, an increase
in the variance in experimental outcomes should lead to an increase in the proportion of pairwise
contrasts in which the foreign population outperforms the local population (i.e., the relative width
of the blue vs. green shaded areas in Fig. 4B, which is plotted as the orange line and interval in
Fig. S3). This decrease in the frequency of local advantage over time does not emerge from our
data (grey line and interval in Fig. S3, βyear = −0.01, 95% HDI: -0.03 - 0.01). Low data density in
early years may reduce our ability to detect temporal trends.
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Fig. S3. Increased variance in experimental outcomes (Table S5, Fig. 4B) is expected to decrease
the probability of detecting local advantage in transplant experiments (orange line). This pattern
does not emerge from studies to-date (grey points, the grey line and shaded interval represent
estimates from a binomial model).
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4.4 Temperature and precipitation deviations cannot explain most of the in-
creased variance in local adaptation

We compared the change in variance through time in Model C to a modified model in which the
effect of temperature and precipitation deviations were statistically removed (Section 3.4). This did
not substantially reduce the rate at which variance increased (Figure S4), indicating that changes
in other environmental parameters and/or experimental practice must account for most of this
pattern.
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Fig. S4. Temperature and precipitation deviations cannot explain most of the increased variance
(σ2) in local adaptation (y-axis). The dashed line shows the median estimated residual standard
deviation in Model C. The solid line is the same parameter with the effect of temperature and
precipitation deviations statistically removed (Section 3.4). The change in variance through time is
similar in both models, indicating that these climate deviations do not explain most of this pattern.
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4.5 Temperature anomalies decrease the prevalence of local adaptation

Temperature deviations decrease the probability that 1) the local population will outperform all
foreign populations in a site, and 2) that a population will perform best in its home site (Fig 4D,
Table S7). These probabilities also depend on the number of sites or populations being compared
(Fig. S5). When more populations are compared in a site, this reduces the probability that the
local population will be the best performer. Similarly, the more sites a population is tested at, the
lower the probability that it will do best in its home site. The average composite distance that
populations are moved also affects the prevalence of local adaptation: when foreign populations
are moved across greater distances, or when a population is tested at sites that are further from
its home, the probability of the local population being best or the home site being best is higher
(Table S7).
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Fig. S5. Temperature anomalies decrease (A) the probability that the local population outper-
forms foreign populations in a site or (B) the probability that a population performs best in its home
site relative to other (”away”) sites. The more populations (A) or sites (B) that are compared, the
lower the probability of the local population or home site being best.
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5 Supplemental tables

5.1 Table S1: Included studies

Table S1. Studies included in our database. All studies were used in analyses of relative fitness, but only a subset of studies that
included local populations in their design were included in our analyses of local adaptation. Functional groups include annual plant
(annual), herbaceous perennial (herb. per.), woody perennial (wood. per.), fungus, arthropod, and mollusk. Fitness types are germination
(G), recruitment (RC; germination and subsequent survival), survival (S), reproduction (RP), composite (C; lifetime fitness estimate
incorporating at least survival and reproduction). Note that in some cases some fitness types were only measured for a subset of sites or
sources, but the total numbers of sites and sources for each taxon in each study are tallied here.

Study Taxon In LA Functional Number Number Fitness types
dataset? group of sites of sources G RC S RP C

Abdala-Roberts and Marquis 2007 Oecologia Chamaecrista fasciculata yes annual 3 3 x x x
Adler et al. 2016 Am J Bot Gelsemium sempervirens yes herb. per. 2 9 x
Afkhami et al. 2014 Ecol Lett Bromus laevipes yes herb. per. 10 6 x
Ågren and Schemske 2012 New Phytol Arabidopsis thaliana yes annual 2 2 x x x x x
Alexander 2010 J Biogeography Lactuca serriola yes annual 5 10 x
Alexander et al. 2012 J Ecol Plantago lanceolata no herb. per. 4 15 x x x
Andersen et al. 2008 Forest Ecol Manag Abies guatemalensis yes wood. per. 2 9 x
Anderson et al. 2015 Am Nat Boechera stricta yes herb. per. 3 50 x x x x x
Anderson et al. 2013 Evolution Boechera stricta yes herb. per. 2 2 x x
Angert and Schemske 2005 Evolution Mimulus cardinalis yes herb. per. 2 6 x

Mimulus lewisii yes herb. per. 3 6 x
Aparicio et al. 2012 Tree Genet Genomes Austrocedrus chilensis yes wood. per. 2 10 x
Arany et al. 2009 Plant Ecol Arabidopsis thaliana yes annual 2 5 x x x
Ariza and Tielbörger 2011 Funct Ecol Biscutella didyma yes annual 4 4 x

Hymenocarpos circinnatus yes annual 3 3 x
Baack and Stanton 2005 Evolution Ranunculus adoneus yes herb. per. 8 6 x
Bennington et al. 2012 J Ecol and McGraw et al. Eriophorum vaginatum yes herb. per. 6 6 x x

2015 Global Change Biol
Bischoff et al. 2006 J Ecol Holcus lanatus yes herb. per. 3 3 x

Lotus corniculatus yes herb. per. 3 3 x
Plantago lanceolata yes herb. per. 3 3 x

Bischoff et al. 2010 Restoration Ecol Cichorium intybus yes herb. per. 1 4 x
Echium vulgare yes herb. per. 1 5 x
Legousia speculum veneris yes herb. per. 1 3 x
Origanum vulgare yes herb. per. 1 5 x

Boudry et al. 2002 J Ecol Beta vulgaris ssp. maritima yes herb. per. 4 6 x
Bowman et al. 2008 J Ecol Lychnis flos-cuculi yes herb. per. 15 15 x
Breed et al. 2014 PLoS One Eucalyptus gracilis yes wood. per. 3 3 x
Bresnan et al. 1994 Sylvae Genetica Juglans nigra yes wood. per. 7 66 x
Bucharova et al. 2016 J Appl Ecol Arrhenatherum elatius yes herb. per. 4 7 x x x
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Study Taxon In LA Functional Number Number Fitness types
dataset? group of sites of sources G RC S RP C

Centaurea jacea yes herb. per. 4 8 x x x
Daucus carota yes herb. per. 4 8 x x x
Galium album yes herb. per. 4 7 x x x
Hypochaeris radicata yes herb. per. 4 7 x x x
Knautia arvensis yes herb. per. 4 6 x x x
Lychnis flos-cuculi yes herb. per. 4 7 x x x

Buckley and Bridle 2014 Ecol Lett Aricia agestis yes arthropod 9 6 x x x
Byars et al. 2007 Evolution Poa hiemata yes herb. per. 6 6 x
Carter and Blair 2012 Ecosphere Elymus canadensis yes herb. per. 3 3 x

Oligoneuron rigidum yes herb. per. 3 3 x
Sorghastrum nutans yes herb. per. 3 3 x

Castanha et al. 2013 Plant Ecol Divers Picea engelmannii yes wood. per. 2 2 x x
Pinus flexilis yes wood. per. 2 2 x x x

Castellanos-Acuña 2015 Ecosphere Pinus devoniana yes wood. per. 3 4 x
Pinus leiophylla yes wood. per. 3 4 x
Pinus pseudostrobus yes wood. per. 3 4 x

Center et al. 2016 Am J Bot Quercus oleoides yes wood. per. 2 4 x x x
Chambers and Emery 2016 Am J Bot Vittaria appalachiana yes herb. per. 6 6 x
Chapin and Chapin 1981 Ecology Carex aquatilis ssp. aquatilis yes herb. per. 5 5 x
Correia et al. 2010 Ann Forest Sci Pinus pinaster yes wood. per. 5 22 x
Costa e Silva et al. 2014 PLoS One Eucalyptus globulus ssp. globulus yes wood. per. 2 2 x
Crémieux et al. 2010 Am J Bot Plantago lanceolata yes herb. per. 1 4 x
Deacon and Cavender-Bares 2015 PLoS One Quercus oleoides yes wood. per. 2 2 x
De Frenne et al. 2011 Global Change Biol Anemone nemorosa yes herb. per. 3 7 x

Milium effusum yes herb. per. 3 8 x
Denic et al. 2015 Limnologica Margaritifera margaritifera yes mollusc 4 4 x
Dunlap et al. 1994 Can J Forest Res Populus trichocarpa yes wood. per. 2 8 x
Ellis et al. 2007 New Phytol Argyroderma pearsonii yes herb. per. 6 6 x x x
Ennos and McConnell 1995 Can J Bot Crumenulopsis sororia yes fungus 3 3 x
Eränen and Kozlov 2009 Plant Ecol Betula pubescens ssp. czerepanovii yes wood. per. 4 4 x
Erfmeier and Bruelheide 2010 Biol Invasions Rhododendron ponticum yes wood. per. 2 12 x
Etterson 2004 Evolution Chamaecrista fasciculata yes annual 3 3 x
Fawcett 1984 Ecology Tegula funebralis yes mollusc 6 7 x
Fetcher et al. 2000 Biotropica Clibadium erosum yes wood. per. 2 2 x

Prestoea acuminata var. montana yes wood. per. 2 2 x
Psychotria berteriana yes wood. per. 2 2 x

Galen et al. 1991 Evolution Polemonium viscosum yes herb. per. 2 2 x
Galloway and Fenster 2000 Evolution Chamaecrista fasciculata yes annual 3 3 x x
Garrido et al. 2012 Plant Ecol Helleborus foetidus yes herb. per. 3 3 x x x
Geber and Eckhart 2005 Evolution Clarkia xantiana ssp. parviflora yes annual 2 2 x x x x

Clarkia xantiana ssp. xantiana yes annual 2 2 x x x x
Gellie et al. 2016 Biol Cons Eucalyptus leucoxylon ssp. leucoxylon yes wood. per. 1 3 x
Gibson et al. 2013 J Torrey Bot Soc Andropogon gerardii yes herb. per. 1 12 x
Giménez-Benavides et al. 2007 Ann Bot Silene ciliata yes herb. per. 3 3 x x x
Gömöry et al. 2012 Eur J Forest Res Picea abies yes wood. per. 4 11 x
Gordon and Rice 1998 Restoration Ecol Aristida beyrichiana yes wood. per. 3 3 x
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Gosden et al. 2015 Proc R Soc Lond Biol Enallagma cyathigerum yes arthropod 4 4 x
Grassein et al. 2014 Global Change Biol Bromus erectus yes herb. per. 2 2 x

Carex sempervirens yes herb. per. 2 2 x
Dactylis glomerata yes herb. per. 2 2 x
Festuca paniculata yes herb. per. 2 2 x
Sesleria caerulea yes herb. per. 2 2 x

Griffith and Watson 2005 J Evol Biol Xanthium strumarium yes annual 4 3 x
Haggerty and Galloway 2011 J Ecol Campanulastrum americanum yes annual 2 4 x x x
Halbritter et al. 2015 J Evol Biol Plantago lanceolata yes herb. per. 3 9 x

Plantago major yes herb. per. 5 9 x
Hamann et al. 2000 Forest Ecol Manag Alnus rubra yes wood. per. 4 65 x
Hamann et al. 2016 J Ecol Poa alpina yes herb. per. 6 5 x
Hancock et al. 2013 Restoration Ecol Acacia falcata yes wood. per. 2 5 x

Bursaria spinosa yes wood. per. 2 4 x x x
Hardenbergia violacea yes herb. per. 2 5 x
Themeda australis yes herb. per. 2 5 x

Harwood et al. 1997 New Forest Eucalyptus pellita yes wood. per. 4 7 x
Hautier et al. 2009 J Plant Ecol Poa alpina yes herb. per. 5 4 x
Heimes et al. 2016 Plant Ecol Barbarea vulgaris ssp. arcuata yes herb. per. 6 6 x x
Helenurm 1998 Conserv Biol Lupinus guadalupensis yes annual 3 3 x
Hereford and Winn 2008 New Phytol Diodia teres yes annual 6 6 x
Hsu et al. 2014 Plant Ecol Asplenium antiquum yes herb. per. 3 3 x
Hufford and Mazer 2012 Restoration Ecol Nassella pulchra yes herb. per. 2 2 x
Hufford et al. 2008 Restoration Ecol Bromus carinatus var. carinatus yes herb. per. 2 2 x

Elymus glaucus yes herb. per. 2 2 x
Ishizuka and Goto 2012 Evol Appl Abies sachalinensis yes wood. per. 6 8 x
Jakobsson and Dinnetz 2005 Evol Ecol Carlina vulgaris yes herb. per. 12 12 x x x x x
Jordan 1992 Am Nat Diodia teres yes annual 2 2 x x
Joshi et al. 2001 Ecol Lett Dactylis glomerata yes herb. per. 6 8 x

Plantago lanceolata yes herb. per. 6 7 x
Trifolium pratense yes herb. per. 6 7 x

Kalske et al. 2012 J Ecol Vincetoxicum hirundinaria yes herb. per. 4 4 x
Kim and Donohue 2013 J Ecol Erysimum capitatum yes herb. per. 6 6 x x x
Kindell et al. 1996 J Ecol Aristida stricta yes herb. per. 6 2 x
Knight et al. 2006 Molecular Ecol Boechera holboellii yes herb. per. 2 2 x
Koutecká and Leps̆ 2013 Botany Myosotis caespitosa yes herb. per. 5 2 x

Myosotis nemorosa yes herb. per. 5 2 x
Myosotis palustris ssp. laxiflora yes herb. per. 5 2 x

Kreyling et al. 2014 Ecol Evol Fagus sylvatica no wood. per. 1 7 x
Lawrence and Kaye 2011 Restoration Ecol Castilleja levisecta yes herb. per. 9 6 x
Leinonen et al. 2009 Am J Bot Arabidopsis lyrata ssp. petraea yes herb. per. 3 4 x
Liancourt and Tielbörger 2009 Funct Ecol Brachypodium distachyon yes annual 2 2 x x

Bromus fasciculatus yes annual 2 2 x x
Lopez et al. 2007 Aust J Bot Pinus canariensis yes wood. per. 4 21 x
Lopez et al. 2015 Perspect Plant Ecol Evol Syst Omphalodes littoralis ssp. gallaecica yes annual 5 5 x x x x
López-Gallego 2013 Bot Rev Zamia fairchildiana yes wood. per. 2 2 x x
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Lowry et al. 2008 Evolution Mimulus guttatus yes herb. per. 3 4 x x x
Lu et al. 2014 Ecol Evol Picea glauca yes wood. per. 16 242 x
Macel et al. 2007 Ecology Holcus lanatus yes herb. per. 3 3 x

Lotus corniculatus yes herb. per. 3 3 x
Maes et al. 2014 Plant Ecol Milium effusum yes herb. per. 2 8 x
Martin and Husband 2013 Evolution Chamerion angustifolium (diploid) yes herb. per. 9 7 x

Chamerion angustifolium (tetraploid) yes herb. per. 9 7 x
McCarragher et al. 2011 Phys Geog Acer saccharum yes wood. per. 2 3 x x x
McLane and Aitken 2012 Ecol Appl Pinus albicaulis yes wood. per. 4 6 x x x
Melo et al. 2014 New Phytol Senecio lautus yes herb. per. 2 2 x x x x x
Milla et al. 2009 Ann Bot Lupinus angustifolius yes annual 1 3 x x x
Montalvo and Ellstrand 2000 Conserv Biol Lotus scoparius yes wood. per. 2 12 x
Mylecraine et al. 2005 Forest Ecol Manag Chamaecyparis thyoides yes wood. per. 3 34 x
Nagamitsu et al. 2015 Tree Genet Genomes Pinus densiflora yes wood. per. 2 2 x
O’Farrill et al. 2011 Seed Sci Res Manilkara zapota yes wood. per. 2 2 x x x
Pánková et al. 2014 PLoS One Aster amellus yes herb. per. 4 6 x
Pelini et al. 2009 PNAS Erynnis propertius yes arthropod 6 6 x

Papilio zelicaon yes arthropod 6 6 x
Peterson et al. 2016 New Phytol Mimulus guttatus yes herb. per. 1 11 x
Postma and Ågren 2016 PNAS Arabidopsis thaliana yes annual 2 2 x x x x x
Putnam and Reich 2017 Ecol Monograph Acer saccharum yes wood. per. 7 3 x
Raabová et al. 2011 Basic Appl Ecol Inula hirta yes herb. per. 6 6 x x x
Raabová et al. 2007 Biol Conservation Aster amellus yes herb. per. 6 6 x x x x
Raabová et al. 2008 Oecologia Aster amellus (diploid) yes herb. per. 9 3 x x x

Aster amellus (hexaploid) yes herb. per. 9 6 x x x
Ramı́rez-Valiente et al. 2009 Forest Ecol Manag Quercus suber yes wood. per. 1 13 x
Reeves and Richards 2014 Int J Plant Sci Helianthus pumilus yes herb. per. 1 24 x
Remington et al. 2013 Genetics Arabidopsis lyrata yes herb. per. 1 4 x x x
Rice and Knapp 2008 Restoration Ecol Elymus glaucus yes herb. per. 2 2 x x

Nassella pulchra yes herb. per. 2 2 x x
Rice et al. 1997 Proc Symp Oak Woodl Quercus douglasii yes wood. per. 2 2 x
Richards et al. 2016 Evolution Senecio lautus yes herb. per. 5 5 x
Richter et al. 2012 Oecologia Pinus sylvestris yes wood. per. 1 2 x x
Rosenblatt et al. 2016 Evol Ecol Melanoplus femurrubrum yes arthropod 2 2 x
Roy 1998 Oecologia Arabis holboellii var. retrofracta yes herb. per. 3 3 x x
Rysavy et al. 2016 J Veg Sci Sarcopoterium spinosum yes herb. per. 4 2 x
Sambatti and Rice 2006 Evolution Helianthus exilis yes annual 4 4 x x
Samis et al. 2016 Evolution Camissoniopsis cheiranthifolia yes herb. per. 4 8 x
Santelmann 1991 Ecology Carex exilis yes herb. per. 4 3 x
Scheepens and Stöcklin 2013 Oecologia Campanula thyrsoides yes herb. per. 1 10 x
Schreiber et al. 2013 J Appl Ecol Populus tremuloides yes wood. per. 5 43 x
Sexton et al. 2011 PNAS Mimulus laciniatus yes annual 1 2 x
Smith et al. 2005 Biol Cons Lotus corniculatus yes herb. per. 1 27 x
Stanton-Geddes et al. 2012 Ecology Chamaecrista fasciculata yes annual 3 5 x x x
Stanton-Geddes et al. 2012 PLoS One Chamaecrista fasciculata yes annual 4 5 x x x
Streisfeld and Kohn 2007 J Evol Biol Mimulus aurantiacus yes wood. per. 2 6 x
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Täıbi et al. 2016 J Envir Manag Pinus nigra ssp. salzmannii yes wood. per. 3 5 x
Tomiolo et al. 2015 Ecology Biscutella didyma yes annual 2 2 x x

Brachypodium distachyon yes annual 2 2 x x
Stipa capensis yes annual 2 2 x x

Toränge et al. 2015 New Phytol Arabis alpina yes herb. per. 2 7 x x x
Travis and Grace 2010 Ecol Appl Spartina alterniflora yes herb. per. 1 23 x x x
van Niejenhuis and Parker 1996 Can J Forest Res Pinus banksiana yes wood. per. 1 64 x
Vantienderen and van der Toorn 1991 J Ecol Plantago lanceolata yes herb. per. 3 3 x x
Vergeer and Kunin 2012 New Phytol Arabidopsis lyrata ssp. petraea yes herb. per. 4 8 x x x
Verhoeven et al. 2004 Evolution Hordeum spontaneum yes annual 2 2 x x x
Vizcáıno-Palomar et al. 2014 PLoS One Pinus pinaster yes wood. per. 2 2 x x x
Volis 2009 Israel J Plant Sci Avena sterilis yes annual 4 4 x x x x x
Volis et al. 2002 Biol J Linnean Soc Hordeum spontaneum yes annual 4 4 x x x x x
Volis et al. 2002 Oecologia Hordeum spontaneum yes annual 2 2 x x x x x
Volis et al. 2015 PLoS One Triticum turgidum ssp. dicoccoides yes annual 4 4 x x x x x
Walter et al. 2016 Evolution Senecio pinnatifolius yes annual 4 12 x
Welk et al. 2014 PLoS One Carlina vulgaris no herb. per. 6 1 x x x

Centaurea scabiosa no herb. per. 9 1 x x x
Centaurea stoebe no herb. per. 9 1 x x x
Dianthus carthusianorum no herb. per. 9 1 x x x
Dianthus deltoides no herb. per. 9 1 x x x
Inula conyzae no herb. per. 8 1 x x x
Inula hirta no herb. per. 8 1 x x x
Koeleria macrantha no herb. per. 9 1 x x x
Koeleria pyramidata no herb. per. 9 1 x x x
Scabiosa columbaria no herb. per. 7 1 x x x
Silene nutans no herb. per. 9 1 x x x
Silene otites no herb. per. 9 1 x x x

Wilczek et al. 2014 PNAS Arabidopsis thaliana yes annual 4 241 x
Yanick et al. 2003 Aquacult Res Mytilus trossulus yes mollusc 1 2 x
Young 1996 Can J Bot Iris douglasiana yes herb. per. 3 3 x

Iris innominata yes herb. per. 3 3 x x
Zeiter and Stampfli 2008 J Veg Sci Bromus erectus yes herb. per. 3 3 x x
Zhou et al. 2013 J Ecol Oryza rufipogon yes herb. per. 1 22 x
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5.2 Table S2: Model A results (climate deviations over time)

Table S2. Bayesian mixed effect model estimates of the change in the frequency and magnitude of (A) temperature, (B) precipitation and
(C) absolute precipitation deviations over time (Model A). Estimates of slope with credible intervals that do not include 0 are indicated
with bold text. In these models, year is scaled so that the intercept represents the average deviation size in 1975. SE = standard
error; Lower/Upper CI = lower/upper 95% highest posterior density interval from the model posterior; R̂ = Gelman-Rubin convergence
statistic (1 = convergence); ESS = effective sample size from the posterior. Temperature deviations are expressed as deviations from
normal in degrees Celsius. Precipitation deviations are expressed as the log10 ratio of experiment precipitation to normal precipitation.
Temperature and precipitation results are plotted in Fig. 2CD.

Term Estimate SE Lower CI Upper CI R̂ ESS

A. Temperature
Intercept (year 1975 = 0, β0,T,A) 0.071 0.092 -0.11 0.25 1.00 1995
Slope (βT,year,A) 0.025 0.0032 0.018 0.031 1.00 1966
Effect of year on residual variance (βε,T,A,year) 0.0044 0.0040 -0.0038 0.012 1.00 1964
Site SD (σT,site,A) 0.43 0.033 0.36 0.49 1.00 1661
Residual SD in year 1975 (log-scale, log(σεT,A,0)) -0.72 0.13 -0.97 -0.47 1.00 1952

B. Precipitation
Intercept (year 1975 = 0, β0,P,A) -0.046 0.021 -0.085 -0.0057 1.00 1790
Slope (βP,year,A) 0.0011 0.00068 -0.00025 0.0024 1.00 1877
Effect of year on residual variance (βε,P,A,year) -0.263 0.0038 -0.034 -0.019 1.00 1926
Site SD (σP,site,A) 0.064 0.0057 0.052 0.075 1.00 1484
Residual SD in year 1975 (log-scale, log(σεP,A,0)) -1.54 0.11 -1.74 -1.32 1.00 2017

C. Absolute precipitation
Intercept (year 1975 = 0, β0,AP,A) 0.094 0.017 0.061 0.13 1.00 1827
Slope (βAP,year,A) -0.00059 0.00055 -0.0017 0.00050 1.00 1843
Effect of year on residual variance (βε,AP,A,year) -0.374 0.0044 -0.046 -0.029 0.99 1897
Site SD (σAP,site,A) 0.059 0.0037 0.052 0.066 1.00 1716
Residual SD in year 1975 (log-scale, log(σεAP,A,0)) -1.62 0.122 -1.85 -1.37 0.99 1852
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5.3 Table S3: Model B1 results (relative fitness vs. site conditions)

Table S3. Bayesian mixed effect model estimates of quadratic fits of the effects of temperature and precipitation mismatch on relative
fitness (Model B). Parameters of interest with credible intervals that do not include 0 are indicated with bold text. SE = standard
error; Lower/Upper CI = lower/upper 95% highest posterior density interval from the model posterior; R̂ = Gelman-Rubin convergence
statistic (1 = convergence); ESS = effective sample size from the posterior. These effects are plotted in Fig. 3AB.

Term Estimate SE Lower CI Upper CI R̂ ESS

Intercept: log(relative fitness when foreign) (β0,B) -0.19 0.028 -0.25 -0.14 1.00 631
Linear effect of site temperature (βT1,B) 0.0104 0.0047 0.0012 0.020 1.00 4777
Quadratic effect of site temperature (βT2,B) -0.0109 0.00104 -0.013 -0.0089 1.00 2116
Linear effect of site precipitation (βP1,B) 0.31 0.092 0.11 0.47 1.00 4206
Quadratic effect of site precipitation (βP2,B) -0.95 0.22 -1.39 -0.54 1.00 2814
Effect of being local (β0,B) 0.20 0.033 0.14 0.26 1.00 4076
Linear effect of composite distance moved (βdist,B) -0.19 0.014 -0.21 -0.16 1.00 3177
Effect of number of foreign pops on residual variance (βε,B,n) 0.0028 0.00072 0.0015 0.0043 1.00 2647
log(Residual SD) (log(σε,C,0)) -0.085 0.012 -0.11 -0.062 1.00 5176
Study-taxon SD (σstudy taxon,B) 0.29 0.023 0.25 0.33 1.00 1496
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5.4 Table S4: Model B2 results (relative fitness vs. climate mismatch)

Table S4. Bayesian mixed effect model estimates of quadratic fits of the effects of temperature and precipitation mismatch on relative
fitness (Model B). Parameters of interest with credible intervals that do not include 0 are indicated with bold text. SE = standard
error; Lower/Upper CI = lower/upper 95% highest posterior density interval from the model posterior; R̂ = Gelman-Rubin convergence
statistic (1 = convergence); ESS = effective sample size from the posterior. These effects are plotted in Fig. 3CD.

Term Estimate SE Lower CI Upper CI R̂ ESS

Intercept: log(foreign relative fitness) (β0,B) -0.11 0.023 -0.15 -0.064 1.00 1970
Linear effect of temperature mismatch (βT1,B) 0.0160 0.0029 0.010 0.021 1.00 2071
Quadratic effect of temperature mismatch (βT2,B) -0.0048 0.00031 -0.0054 -0.0042 1.00 1917
Linear effect of precipitation mismatch (βP1,B) 0.11 0.060 -0.0090 0.23 1.00 1928
Quadratic effect of precipitation mismatch (βP2,B) -0.043 0.11 -0.25 0.17 1.00 1926
Effect of being local (β0,B) 0.27 0.025 0.22 0.32 1.00 1888
Effect of number of foreign pops on residual variance (βε,B,n) 0.028 0.0016 0.025 0.031 1.00 1953
log(Residual SD) (log(σε,C,0)) -0.38 0.012 -0.41 -0.36 1.00 2070
Study-taxon SD (σstudy taxon,B) 0.26 0.018 0.22 0.29 1.00 1797
Optimal temperature mismatch 1.6 0.28 1.0 2.2 1.00 2132
Gaussian variance in temperature response 210 14 180 230 1.00 1917
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5.5 Table S5: Model C results (local adaptation vs. climate deviations)

Table S5. Bayesian mixed effect model estimates of the effect of temperature and precipitation deviations on local adaptation (the
log ratio of the performance of local populations to the performance of foreign populations). Models were run with (A) temperature
and (B) precipitation. Temperature and precipitation deviations are represented by EErel, which relates experimental conditions to the
historic conditions of the local and foreign populations based on Gaussian fitness responses to deviations in climate. Also included are
the composite geographic distance between the foreign source and the transplant site and the effects of different fitness proxies on local
adaptation. Parameters with credible intervals that do not include 0 are indicated with bold text. SE = standard error; Lower/Upper
CI = lower/upper 95% highest posterior density interval from the model posterior; R̂ = Gelman-Rubin convergence statistic (1 =
convergence); ESS = effective sample size from the posterior. The effects of temperature EErel are shown in Fig. 4A, the change in
variance over time is shown in Fig. 4B, and the expected effects of this change in variance on local advantage is shown in Fig. S3

.

Term Estimate SE Lower CI Upper CI R̂ ESS

Regression on ω
Intercept (when deviation favors neither local or foreign, β0,C) 0.13 0.025 0.085 0.18 1.00 1947
Effect of year (βyear,C) 0.00089 0.00059 -0.00042 0.0019 1.00 1941
Effect of distance between local and foreign pops (βdist,C) 0.020 0.0073 0.0053 0.034 1.00 1960
Effect of fitness type = germination (βgerm,C) -0.12 0.032 -0.18 -0.058 1.00 1973
Effect of fitness type = germ + surv (βgerm surv,C) -0.071 0.032 -0.13 -0.0057 1.00 1996
Effect of fitness type = reproduction (βrepro,C) -0.056 0.029 -0.11 -0.00023 1.00 1860
Effect of fitness type = survival (βsurv,C) -0.14 0.020 -0.18 -0.10 1.00 1887
Effect of temperature EErel (βEErel,T,C) 0.0067 0.00095 0.0049 0.0086 1.00 1795
SD of study-site-taxon-fitness type effects of temp. EErel(σsstft,EErel,T,C) 0.013 0.00098 0.011 0.015 1.00 417
Effect of precipitation EErel (βEErel,P,C) -0.016 0.24 -0.51 0.46 1.00 1296
SD of study-site-taxon-fitness type effects of precip. EErel(σsstft,EErel,P,C) 2.7 0.37 2.0 3.4 1.00 126

Regression on σ
Effect of year on residual variance (βε,C,year) 0.057 0.0021 0.053 0.061 1.00 1888
Scale parameter of residual ω in study year 0 (= 1975) (log(σε,C,0)) -3.0 0.061 -3.1 -2.9 1.00 1865
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5.6 Table S6: Reinforcing vs. counteracting deviations

Table S6. Bayesian mixed effect model estimates of the interactive effects of site conditions (normal vs. warm) and the climatic origin
of the foreign population (warmer or cooler than the local population) on local adaptation. Parameter estimates with credible intervals
that do not include 0 are indicated with bold text. SD = standard deviation; Lower/Upper CI = lower/upper 95% highest posterior
density interval from the model posterior; R̂ = Gelman-Rubin convergence statistic (1 = convergence); ESS = effective sample size from
the posterior. Effects are plotted in Fig. 4C.

Term Estimate SD Lower CI Upper CI R̂ ESS

Intercept (β0,C) 0.28 0.076 0.15 0.40 248 1.00
Effect of site condition (normal vs. warm) -0.35 0.14 -0.60 -0.12 391 1.00
Effect of foreign origin (warmer vs. cooler) -0.0061 0.013 -0.028 0.014 1888 1.00
Interaction between site condition and foreign origin 0.40 0.055 0.31 0.49 1616 1.00
Effect of composite distance of foreign source 0.076 0.0090 0.061 0.090 1707 1.00
Effect of fitness type = germination 0.089 0.12 -0.12 0.27 536 1.00
Effect of fitness type = germination + survival 0.044 0.10 -0.11 0.22 602 1.00
Effect of fitness type = reproduction 0.13 0.074 0.013 0.26 473 1.00
Effect of fitness type = survival -0.014 0.066 -1.2 1.0 437 1.00
Study-taxon SD 0.47 0.049 0.40 0.56 413 1.00
Residual SD 0.20 0.0082 0.19 0.21 1271 1.00
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5.7 Table S7: Prevalence of local adaptation vs. temperature anomalies

Table S7. Bayesian mixed effect model estimates of the effect of temperature anomalies on (A) the probability that the local population
outperforms foreign populations in a site or (B) the probability that a population performs best in its home site relative to other (”away”)
sites. Also included in the models are the number of populations compared or the number of sites tested, and the average composite
distance that populations were moved. Parameters of interest with credible intervals that do not include 0 are indicated with bold
text. SD = standard deviation; Lower/Upper CI = lower/upper 95% highest posterior density interval from the model posterior; R̂ =
Gelman-Rubin convergence statistic (1 = convergence); ESS = effective sample size from the posterior. Parameter estimates are on the
logit link scale. Effects on the response scale are plotted in Fig. 4D and Fig. S5.

Term Estimate SD Lower CI Upper CI ESS R̂

A. Probability that the local population outperforms foreign populations in a site
Intercept -0.99 0.22 -1.42 -0.57 2854 1.00
Absolute temperature anomaly in site -0.45 0.13 -0.70 -0.19 2293 1.00
1/(Number of populations compared) 4.51 0.56 3.43 5.65 2319 1.00
Mean composite distance of foreign populations 0.27 0.09 0.09 0.47 2292 1.00
Study-taxon SD 0.61 0.14 0.34 0.90 572 1.00

B. Probability that a population performs best in its home site relative to other sites
Intercept -1.30 0.28 -1.88 -0.79 2290 1.00
Absolute temperature anomaly in home site -0.50 0.15 -0.78 -0.21 2320 1.00
1/(Number of sites tested) 4.86 0.66 3.59 6.23 2451 1.00
Mean composite distance of away sites 0.40 0.12 0.19 0.64 2126 1.00
Study-taxon SD 0.68 0.15 0.41 0.98 607 1.00
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