Investigating the sex-specific effects of socialization on voluntary ethanol self-administration in rats using the vapor chamber

Christopher D. Walker¹, Hannah G. Sexton¹,², and Mary-Louise Risher¹,²,³,†

¹Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, USA
²Hershel ‘Woody’ Williams Veteran Affairs Medical Center, Huntington WV, USA
³Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, USA

†Addresses for correspondence:
Mary-Louise Risher, 1700 Third Ave (BBSC 336L), Huntington, WV 25755
Tel: 304 6963894 Fax: 304 6967207 Email: risherm@marshall.edu

Keywords: Adolescent ethanol exposure, ethanol, sex differences, social interaction, vapor, voluntary administration, ethanol preference

ABSTRACT

Introduction: Peer interactions are a crucial part of social and personal development, particularly during adolescence. Adolescence is characterized as a transitional developmental period between childhood and adulthood that is often associated with increased freedom, self-exploration, and novel experiences that are frequently peer-influenced. Due to newfound independence, there is a
higher prevalence of alcohol consumption, which is in part due to the heightened social facilitating and rewarding effects of alcohol. Previous work shows that males and females who consume excessive alcohol during adolescence are at an increased risk of developing an alcohol use disorder (AUD) later in life. However, the contributions of social interaction and sexual dimorphism in alcohol consumption, two driving factors that influence AUD risk, are not fully understood. Many current rat models used to study the characteristics of alcohol use and the emergence of AUD coerce the animals into consuming liquid ethanol by the addition of a sweetener, which has been proven to confound results in adolescent rats. Here we use a novel self-administration ethanol vapor system to investigate the sexual dimorphic nature of socially facilitated ethanol consumption without the addition of sweeteners.

Methods: Adolescent and adult male and female Sprague-Dawley rats underwent a novel voluntary chronic intermittent self-administration ethanol vapor paradigm. Nose poke-initiated self-administration vapor chambers (La Jolla Alcohol Research, Inc.) administered 20mg/L of vaporized ethanol or air (control) into the chamber in response to each individual nose poke. Beginning on postnatal day (PND) 30 or PND70, animals were placed in vapor chambers for 4 hours every other day for a total of 40 sessions. All animals underwent 10 sessions with their cagemate (social access) followed by 10 sessions in isolation (isolated access), a 10 day forced abstinence period, 10 sessions in isolation (isolated access), and 10 sessions with their cagemate (social access).

Results: Female rats consumed more alcohol per body weight than age-matched males, while male rats increased ethanol preference over sessions regardless of age. In addition, all rats regardless of sex or age consumed more ethanol per body weight during the first social access session than during the subsequent isolated access sessions. Interestingly, there was an increase in ethanol
consumption in adult male and females during the second social access session compared to the previous isolated access session that was not observed in either adolescent groups.

**Conclusion:** These data demonstrate that female and male rats, regardless of age, are vulnerable to socially facilitated ethanol consumption. This is consistent with human data showing that increased levels of alcohol consumption among adolescents and young adults is associated with high levels of alcohol use within their social group (Sudhinaraset, Wigglesworth, & Takeuchi, 2016). However, only male rats demonstrate escalation across sessions. This may indicate that male rats are more vulnerable to escalated drinking and the emergence of ethanol dependence compared to females regardless of peer interaction. These data demonstrate that the self-administration ethanol vapor system is an effective alternative to other methods of voluntary ethanol administration for investigating factors that contribute to alcohol use and escalation.

**INTRODUCTION**

Adolescence is a transitional developmental period between childhood and adulthood that is often characterized as a time of increased independence and increased opportunity to participate in novel experiences. Social interactions during this time are critical for cognitive development, leading to an increased sense of 'self' or the forging of one's own identity (Burnett & Blakemore, 2009; Sebastian, Burnett, & Blakemore, 2008). Through peer reinforcement, positive and/or negative, adolescents adopt behaviors that reflect those of their social groups. For example, adolescents are more prone to participating in risky behavior, such as consuming alcohol, when interacting with their peers than when alone. Peer reinforcement can be direct, via peer pressure or the offer to supply alcohol, or indirect, in which the adolescent models the behavior they perceive to fit the social norms of their chosen social group (Borsari & Carey, 2003; Jackson, Sher, & Park, 2005).
Parallels are beginning to emerge between human findings and rat models of binge ethanol (EtOH) exposure, making them an appreciable model for conducting alcohol studies (Crews et al., 2019; Spear & Swartzwelder, 2014). Adolescent rats are similar to adolescent humans as they are less sensitive than adults to the motor impairing, aversive, and sedative effects of acute EtOH and more sensitive to the social facilitating and rewarding effects of EtOH (Anderson, Varlinskaya, & Spear, 2010; Ramirez & Spear, 2010; Silveri & Spear, 1998; Varlinskaya & Spear, 2002). Using an adolescent binge drinking rat paradigm, it has been demonstrated that there are behavioral, cognitive, and electrophysiological changes that persist into adulthood (Spear & Swartzwelder, 2014). This model has yielded substantial insight; however, it is limited due to the involuntary nature of EtOH consumption in rats, which has been necessary because rats have an aversion to the taste of EtOH. This requirement is confounding as some studies have suggested that experiment-administrated EtOH may impact the motivation to voluntarily consume EtOH later (Gilpin, Karanikas, & Richardson, 2012; Walker & Ehlers, 2009). In addition, the use of sucrose-sweetened EtOH has been shown to confound the assessment of later EtOH consumption (Broadwater, Varlinskaya, & Spear, 2013). As a consequence, involuntary approaches prevent the field from investigating how patterns of EtOH consumption change across adolescence and into adulthood in a rat model. These limitations also prevent investigation into how socialization influences early onset EtOH consumption and potential escalation later in life.

In an effort to develop a voluntary EtOH delivery system, de Guglielmo, Kallupi, Cole, and George (2017) developed a vapor chamber model that would allow rodents to voluntary self-administer EtOH vapor. The apparatus provides for the voluntary self-administration of EtOH or clean air
after the animal triggers one of two nose pokes. This system results in alcohol dependence without
the use of artificial sweeteners, food reinforcement, water restriction, or forced alcohol
administration that can result in potential experimental confounds.

This novel voluntary self-administration vapor model allows us to observe how social interactions
affect adolescent and adult drinking behaviors in male and female rats. Male and female adolescent
and adult rats underwent 40 sessions of EtOH access with and without their cagemate to determine
the impact of social interaction on EtOH consumption. These data demonstrate that male rats
increase EtOH preference across time regardless of the age at which exposure began. This
escalation was not observed in female rats; however, adolescent and adult females consumed more
EtOH than age-matched males. All rats, regardless of age and sex, consumed more EtOH during
the initial social interaction sessions versus alone. There was an appreciable increase in EtOH
consumption in the female’s final social interaction sessions that was not observed in males.
Together, these data provide insight into the sexually dimorphic nature of voluntary social EtOH
consumption in a rat model without the use of sucrose fading or restriction paradigms.

METHODS

Male and female PND 24 and PND 64 Sprague-Dawley rats (Hilltop, USA) were double-housed
and maintained in a temperature- and humidity-controlled room with \textit{ad libitum} access to food and
water (n=8 per group). Animals were handled daily and allowed to acclimatize for 5 days on a
reverse 12-hr/12-hr light:dark cycle (lights off at 6:00 AM). All procedures were conducted in
accordance with the guidelines of the American Association for the Accreditation of Laboratory
Animal Care and the National Research Council’s Guide for Care and Use of Laboratory Animals and approved by the Marshall University IACUC.

**Vapor Chamber Apparatus.** The apparatus consists of a 36.83 cm x 25.4 cm x 22.86 cm airtight chamber equipped with two nose pokes and two cue lights located immediately above each nose poke (de Guglielmo et al., 2017). One nose poke is active and one is inactive. The active nose poke when initiated releases ethanol vapor (20 mg/L for 2 mins) into the chamber. The inactive nose poke results in no response. The chamber is ventilated with 15 L/min of air at all times. Nose poke activity was monitored using infrared beam breaks.

**Chronic intermittent ethanol vapor self-administration.** Beginning on PND30 and PND70, animals were habituated to the procedure room for 30 minutes, weighed, and placed in the vapor chamber for 4 hours every other day. The active nose poke that initiated EtOH vapor release into the chamber was initially randomized but remained the same throughout the remainder of the sessions. All animals received 10 sessions with their cagemate (voluntary social access, SA) followed by 10 sessions in isolation (voluntary isolated access, IA). All animals then underwent 10 days forced abstinence in which they remained in their homecage. Following forced abstinence, animals underwent another 10 sessions of isolated access (IA) followed by another 10 sessions of cagemate access (SA), i.e., a reversal of the earlier access paradigm (Figure 1).

**Elevated Plus Maze.** To determine changes in anxiety, 24 hr after session 20, animals were tested in the elevated plus maze as previously described in (Wilson, Vazdarjanova, & Terry, 2013). The apparatus consisted of a plus shaped maze made of opaque Plexiglass, two open arms and two
closed arms of the same size (50 cm x 10 cm) but with side walls (40 cm). The apparatus was elevated 50.8 cm above the floor. Lighting was set at 35-40 lux, lumen/m². The rats were habituated to the room for 30 minutes and then placed one at a time in the central area of the maze facing an open arm. Rats were allowed to explore the apparatus for 10 min and then returned to their homecage. Between animals the apparatus was cleaned with 5% vinegar solution. Activity was recorded using an overhead camera. Total number of entries into open versus closed arms and time spent in open versus closed arms was quantified using Anymaze software (Stoelting, IL, USA).

**Withdrawal Score.** EtOH behavioral withdrawal signs were assessed 24-hr after the 10th, 20th, 30th, and 40th session (Macey, Schulteis, Heinrichs, & Koob, 1996). Abnormal gait, tail rigidity, ventromedial limb retraction, irritability to touch (vocalization), and body tremors were assigned a score of 0-2 based on severity. 0 = no sign, 1 = moderate sign, 2 = severe sign. Signs were summed and used as a quantitative measure of severity of withdrawal.

**Statistical Analysis**

Comparisons between session, age, and sex were made using repeated measures Analysis of Variance (ANOVA). Post hoc analysis was conducted using Tukey’s multiple comparison test. All analyses were conducted using GraphPad Prism 8 (GraphPad Software, San Diego, California, USA). Statistical significance was assessed using an alpha level of 0.05. All data are presented in figures as the mean +/- S.E.M.
RESULTS

% EtOH Preference (Figure 2): Using a non-escalating paradigm to mimic intermittent social drinking, these data revealed a significant effect of sex ($F_{3, 28} = 5.5, p=0.0042$) and session ($F_{39, 1092} = 5.128, p<0.0001$) across all 40 sessions. When analyzed based on session block (first SA, first IA, second IA block, and second SA), there was a significant effect of session block ($F_{3, 84} = 20.84, p<0.0001$) and sex ($F_{3, 28} = 5.5, p=0.0042$). Post hoc analysis revealed that, in males exposed to EtOH beginning PND30, there was a significant increase in EtOH preference (as indicated by an increase in active vs. inactive nose pokes) from the first SA block to the second IA block ($p=0.0025$) and the second SA block ($p<0.0001$). There was also a significant increase from the first IA block to the second SA block ($p=0.0039$). There was no significant effect of session block in the female rats exposed to EtOH beginning PND30. In males exposed to EtOH beginning PND70, there was a significant increase in EtOH preference from the first SA block to the second IA block ($p=0.0002$) and second SA block ($p=0.0003$). There was no significant effect of session block in the female rats exposed to EtOH beginning PND70. These data indicate that there is an increased preference for EtOH across the 40 sessions in male rats regardless of when exposure to EtOH begins that is not observed in females.

Minutes of EtOH Vapor per Body Weight (Figure 3): 3 way ANOVA (sex x age x session) revealed a significant effect of sex ($F_{1, 1120} = 698.9, p<0.0001$), session ($F_{39, 1120} = 45.88, p<0.0001$), and age ($F_{1, 1120} = 151.9, p<0.0001$) across all 40 sessions. There was a significant interaction between session x age ($F_{39, 1120} = 16.88, p<0.0001$), session x sex ($F_{39, 1120} = 1.713, p=0.0045$), as well as age x sex ($F_{1, 1120} = 4.929, p=0.0266$). To further assess the impact of SA versus IA sessions,
we conducted within group 3 way ANOVA (sex x age x session block). There was an overall effect of sex ($F_{1,112} = 143.9, p<0.0001$), session block ($F_{3,112} = 84.99, p<0.0001$), and age ($F_{1,112} = 31.28, p<0.0001$). While there was not a significant interaction between sex and age ($F_{1,112} = 1.015, p=0.3159$), there was a significant interaction between session block x age ($F_{3,112} = 26.90, p<0.0001$) with a trend towards a session block x sex interaction ($F_{3,112} = 3.189, p=0.0713$). Post hoc analysis revealed that female PND30 rats consumed more EtOH per body weight in their first SA session block when compared to subsequent IA session blocks (first IA block, $p<0.0001$, second IA block, $p<0.0001$) as well as the second SA block ($p<0.0001$), demonstrating a significant decrease in EtOH consumption when female PND30 rats transitioned to the first and second IA session blocks. There was no significant difference between the first and second IA session blocks ($p=0.8015$) despite the intermediate forced abstinence period.

Female PND70 rats consumed more EtOH in their first SA session block when compared to the first IA session block ($p<0.0054$). There was a significant increase in EtOH consumption when female rats transitioned back to the second SA session when compared to the second IA sessions ($p=0.0456$). There was no significant difference between the first and second IA session blocks ($p=0.07620$) despite the intermediate forced abstinence period. There was no significant change EtOH consumption when comparing the first SA session and the second SA session ($p=0.6384$). This demonstrates that adult females are more likely to consume EtOH during social interactions than their male counterparts.

Male rats beginning consumption at PND30 demonstrated a session block effect. Male rats consumed more EtOH per body weight in their first SA session block when compared to
subsequent session blocks (p<0.0001 (first IA block), p<0.0001 (second IA block), p<0.001 (second SA block)). There was no significant difference between the first and second IA session blocks (p=0.9777) despite the forced abstinence period.

Males beginning consumption at PND70 demonstrated a session block effect. Post hoc analysis within group comparison revealed that the male rats consumed more EtOH in their first SA session block when compared to subsequent session blocks (p=0.0003 (first IA block), p<0.0001 (second IA block), p=0.0006 (second SA block)). There was a significant increase in EtOH consumption when transitioning back to the second SA block when compared to the second IA block (p=0.0027). There was no significant difference between the first and second IA session blocks (p=0.8131) despite the forced abstinence period.

Timeout Nose Pokes (Figure 4): To ensure that all animals learned the tasks equally well and to determine whether impulsive nose poking contributes to differences in EtOH consumption, we assessed total timeout nose pokes, theorizing that the number of timeout nose pokes should decline as the animals learned the task. 3 way ANOVA (sex x age x session) revealed a significant sex (F1, 29 = 26.27, p<0.0001), age (F39, 1092 = 23.78, p<0.001), and session effect (F1,28 = 11.21, p=0.0023). Post hoc analysis revealed that these effects were mainly driven by differences in timeout nose pokes during early sessions when animals were learning the task. Secondary analysis revealed that female PND30 rats nose poked during timeout significantly more than male and female PND70 rats during sessions 1-4 (Session 1 p<0.0001, p<0.0001, session 2 p<0.0001, p<0.0001, session 3 p=0.0001, p<0.0001, and session 4 p<0.0001, p<0.0001, respectively). By session 5 there was no significant difference between groups based on age or sex when compared across identical sessions.
(p>0.05). As with female PND30 rats, male PND30 rats nose poked significantly more than PND70 male and female rats during session 1 (p<0.0001, p<0.0001) and session 2 (p<0.0001, p<0.0001). By session 3 there was no significant difference between groups based on age or sex when compared across identical sessions (p>0.05) suggesting that impulsive nose poking is not an underlying factor influencing long-term differences in EtOH consumption.

Elevated Plus Maze (Figure 5): To determine whether differences in anxiety may be an underlying factor influencing EtOH consumption we conducted the EPM 24 hours after session 20. Statistical analysis revealed no significant differences in time spent in open (F3, 28=2.878, p=0.0537) and closed arms (F3, 28=1.981, p=0.1397) or in distance moved in closed (F3,28=1.268, p=0.3043) and open (F3,28=2.032, p=0.1321) arms.

Weight (Figure 6): There was a significant effect of sex (F1,39=5251, p<0.0001), age (F1,39=16098, p<0.0001), and session (F39,39=215.4, p<0.0001) and a significant interaction between session x sex (F39,39=43.16, p<0.0001), session x age (F39,39=28.07, p<0.0001), sex x age (F1,39=204.8, p<0.0001), and session x sex x age (F39,39=6.907, p<0.0001). Female and male PND30 rats began sessions weighing the same (p>0.9999) but less than female and male PND70 rats (p<0.001). PND30 male rats continued to grow at a quicker rate than PND70 male rats reaching equivalent weights by session 40 (p=0.8556), whereas female PND30 rat weights remained lower than the female PND70 counterparts (p<0.0001).

Somatic Symptoms of Withdrawal (Figure 7): 24 hours after the 10th, 20th, 30th, and 40th session rats were scored for withdrawal. All rats showed minimal to moderate signs of withdrawal,
however there was no significant effect of sex, age, session, or interaction on overall withdrawal score (p>0.05). When broken down based on separate withdrawal measures, there was an overall effect of sex on ventromedial limb retraction (VLR) (F₁,₃=7.658, p=0.0066); however, post hoc analysis revealed no individual differences (p>0.05). There was a significant main effect of age on vocalization (VOC) (F₁,₃=47.91, p<0.0001) and tail rigidity (TR) (F₁,₃=12.1, p=0.0007) and a main effect of session (F₁,₃=5.317, p=0.0018) and age (F₁,₃=4.131, p=0.0445) when body tremors (BT) were assessed, but post hoc analysis revealed no individual differences (p>0.05).

**DISCUSSION**

Our first goal was to determine if sex and age differences in EtOH preference were consistent with other models of voluntary EtOH self-administration. Overall, we found no age-dependent differences in EtOH preference across sessions. Contrary to this finding, (Doremus, Brunell, Rajendran, & Spear, 2005) and (Vetter, Doremus-Fitzwater, & Spear, 2007) previously showed that male adolescent rats consume more EtOH than adults in the continuous access 2-bottle choice procedure, though they did not assess female self-administration. These differences may be due to age-dependent differences in EtOH taste aversion. Schramm-Sapyta et al. (2010) have demonstrated that adolescents display less EtOH taste aversion than adults, thus contributing to increased EtOH self-administration. It is possible that we have no age-dependent differences in consumption because we are able to bypass this taste aversion when using the EtOH vapor self-administration paradigm, and that the age-dependent sensitivity to the rewarding effects of EtOH alone are insufficient to drive an age-effect.
We observed an increase in EtOH preference across sessions in males regardless of the age at which EtOH exposure began. This same escalation in EtOH preference was not observed in either female age group. However, female rats at PND30 and PND70 consumed more EtOH than age-matched males across all session blocks. This is consistent with previous studies demonstrating that females consume more EtOH than males in continuous and intermittent EtOH exposure paradigms using the 2-bottle choice (Li et al., 2019; Priddy et al., 2017). Despite observing a sex effect in consumption, we did not see an age-dependent difference in overall EtOH consumed. However, when taking into account EtOH consumption relative to body weight, we found that adolescent males and females consumed more EtOH per body weight than their adult counterparts. This is consistent with other studies that have demonstrated that adolescent rats consume more EtOH than adults when adjusted for body weight (Doremus et al., 2005; Hargreaves, Wang, Lawrence, & McGregor, 2011; Schramm-Sapyta et al., 2014; Vetter-O'Hagen, Varlinskaya, & Spear, 2009). This finding may be due to the fact that adult rats, much like humans, are more sensitive to the motor impairing and sedative effects and less sensitive the social and rewarding effects of alcohol (Anderson et al., 2010; Ramirez & Spear, 2010; Silveri & Spear, 1998; Varlinskaya & Spear, 2002).

Next, we wanted to determine if social interaction would facilitate changes in alcohol consumption. Our model allowed us to observe how social interaction (SA) and isolation (IA) contribute to differences in EtOH consumption. All rats, regardless of age and sex, consumed more EtOH per body weight during the first social session block than subsequent isolated session blocks. While not reaching the same level of consumption that was observed in the first social block, there was a significant increase during the second social block when compared to isolated blocks in both
the adult male and female groups. These results are somewhat consistent with Varlinskaya, Truxell, and Spear (2015) who demonstrated a positive correlation between social interaction and consumption of 10% ethanol in “supersac” solution when assessed every other day over six 30-min drinking sessions (3 sessions of social drinking alternating with 3 sessions of drinking alone). During this short access paradigm, male and female adolescent rats and adult male rats all consumed more sweetened EtOH in the social setting versus in isolation. Females displayed a more anxious phenotype; however, anxiety levels only correlated with EtOH intake in adolescent females. Unlike our testing paradigm, Varlinskaya assessed the correlation between anxiety and social EtOH consumption by placing their rats in an unfamiliar apparatus with unfamiliar partners, potentially introducing anxiety as a confound (Varlinskaya & Spear, 2002; Varlinskaya et al., 2015). Higher anxiety levels may be driving consumption in our female rats; however, we saw no significant age or sex differences in this measure. It is possible that we are inadvertently reducing anxiety by testing social drinking with current cagemates, thus eliminating any anxiety that may be associated with being introduced to a stranger rat. Further work is necessary to understand the intersection of anxiety and EtOH intake and the impact of familiar versus stranger rat on consumption dynamics.

Rats are highly social animals, suggesting that sociability may be an important factor associated with higher EtOH intake. This is consistent with human data that demonstrates that a preference for social activity/interaction is associated with higher ethanol intake (Ham & Hope, 2003; Kuntsche, Knibbe, Gmel, & Engels, 2006). The combination of increased EtOH consumption in peer environments and escalation over time in male rats could suggest that sociability serves as a major contributor to the escalation of drinking in both adolescent and adult males across species.
Further work is needed to determine whether initiation of heavy social drinking in adolescent male rats can lead to accelerated dependence, as is seen in humans.

CONCLUSION

This novel voluntary self-administration vapor model allows us to observe how social interactions affect adolescent and adult drinking behaviors in male and female rats. Female rats consumed more EtOH than age-matched males; however, male rats, regardless of age, escalated EtOH consumption over time. Adolescent and adult rats, regardless of sex or age, consumed more EtOH during peer interactions; this was particularly apparent in females. Together, these data provide insight into the sexually dimorphic nature of voluntary EtOH consumption and the impact of social interaction during EtOH access in a rat model without the use of sucrose fading or restriction paradigms. This self-administration EtOH vapor model allows for the investigation into how EtOH consumption changes across adolescence and into adulthood and provides a novel method by which to understand the implications of stress and socialization on the development of subsequent alcohol use disorder.

ACKNOWLEDGMENTS

We acknowledge the following funding sources: National Institutes of Health (2U54GM104942-03) to MLR and Department of Veteran Affairs Career Development Award (1IK2BX002505) to MLR, Marshall Health, and National Institutes of Health (P20GM103434).
REFERENCES


Figure 1. Experimental timeline for voluntary self-administration EtOH vapor chambers.

Voluntary social access (SA); voluntary isolated access (IA).
Figure 2. EtOH Preference. %EtOH preference over 40 sessions of voluntary self-administration of EtOH vapor (A) PND30 female and male rats, (B) summary of EtOH preference per session block in PND30 female and male rats. ** p < 0.01 when comparing PND30 male session block 1-10 to session blocks 21-30 and 31-40. ## p < 0.01 when comparing PND30 male session blocks 11-20 and 31-40. %EtOH preference over 40 sessions of voluntary self-administration of EtOH vapor (C) PND70 female and male rats, (D) summary of EtOH preference per session blocks in PND70 female and male rats. ** p < 0.01 when comparing PND70 male session blocks 1-10, 21-30, and 31-40. ## p < 0.01 when comparing PND70 male session blocks 1-10 to 31-40. There was a significant overall effect of sex (p = 0.0042) and session (p < 0.0001) across all 40 sessions that is not indicated in figure.
Figure 3. Minutes of EtOH Vapor per Body Weight. Minutes of EtOH adjusted for body weight over 40 sessions of voluntary self-administration (A) PND30 female and male rats, (B) minutes of EtOH vapor per body weight summarized across session blocks in PND30 female and male rats. ** p < 0.01 when comparing PND30 female session block 1-10 to the subsequent session blocks 11-20, 21-30, and 31-40. ## p < 0.01 when comparing PND30 male session blocks 1-10, 11-20, 21-30, and 31-40. Minutes of EtOH adjusted for body weight over 40 sessions of voluntary self-administration (C) PND70 female and male rats, (D) minutes of EtOH vapor per body weight summarized across session blocks in PND70 female and male rats. ** p < 0.01 when comparing PND70 female session block 1-10 to subsequent session blocks 11-20 and 21-30. @ @ p = 0.0456 when comparing PND70 female session blocks 21-30 and 31-40. ## p < 0.01 when comparing PND70 male session blocks 1-10, 11-20, 21-30, and 31-40. There was a significant overall effect
of sex ($p < 0.0001$), session ($p < 0.0001$), and age ($p < 0.0001$) across all 40 sessions that is not indicated in figure.
Figure 4. Timeout Nose Pokes. Total time out nose pokes across all 40 sessions (A) PND30 and PND70 female and male rats. (B) Summary of total nose pokes per session block in PND30 and PND70 female and male rats.
Figure 5. Elevated Plus Maze (EPM). Distance and time spent in open and closed arms of the elevated plus maze. (A) Distance traveled in open and closed arms by PND30 female and male rats. (B) Distance traveled in open and closed arms by PND70 female and male rats. (C) Time spent in open and closed arms by PND30 female and male rats. (D) Time spent in open and closed arms by PND70 female and male rats.
**Figure 6. Animal Weights.** Summary of PND30 and PND70 female and male rat weights across session blocks.
Figure 7. Withdrawal Signs. (A) Total Withdrawal Score, (B) Abnormal Gait (AG), (C) Tail Rigidity (TR), (D) Ventromedial Limb Retraction (VLR), (E) Vocalization (VOC), and (F) Body Tremors (BT) assessment of PND30 and PND70 female and male rats 24 hours after the 10th, 20th, 30th, and 40th voluntary self-administration EtOH vapor sessions.