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Running title: 

match-between-runs with false discovery rate control 

 

Abbreviations: 

LC-MS: liquid chromatography-mass spectrometry 

DDA: data-dependent acquisition 

DIA: data-independent acquisition 

MBR: match-between-runs 

FDR: false discovery rate 

LDA: linear discriminant analysis 

EM: expectation-maximization 

LFQ: of label-free quantification 

CV: coefficient of variation 
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Abstract 

Missing values weaken the power of label-free quantitative proteomic experiments to uncover 

true quantitative differences between biological samples or experimental conditions. Match-

between-runs (MBR) has become a common approach to mitigate the missing value problem, 

where peptides identified by tandem mass spectra in one run are transferred to another by 

inference based on m/z, charge state, retention time, and ion mobility when applicable. Though 

tolerances are used to ensure such transferred identifications are reasonably located and meet 

certain quality thresholds, little work has been done to evaluate the statistical confidence of 

MBR. Here, we present a mixture model-based approach to estimate the false discovery rate 

(FDR) of peptide and protein identification transfer, which we implement in the label-free 

quantification tool IonQuant. Using several benchmarking datasets generated on both Orbitrap 

and timsTOF mass spectrometers, we demonstrate that IonQuant with FDR-controlled MBR 

results in superior performance compared to MaxQuant. We further illustrate the need for FDR-

controlled MBR in sparse datasets such as those from single-cell proteomics experiments.  
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Introduction 

Due to its sensitive and high-throughput nature, liquid chromatography-mass spectrometry (LC-

MS) is a commonly used technology to identify and quantify peptides and proteins from complex 

samples. Various approaches to LC-MS data acquisition (1-3) have been developed, among 

which data-dependent acquisition (DDA) remains the most commonly used strategy (4). In the 

course of a DDA run, eluted peptides are introduced into a mass spectrometer, where peptide 

ions are sampled for fragmentation and identified from the resulting tandem mass (MS/MS) 

spectra. Precursor peptide ion intensities are assumed to be correlated with the actual peptide 

amount, yielding relative peptide and, after an additional peptide to protein roll-up step, protein 

quantification. Peptide ions successfully targeted and identified by MS/MS are used to calculate 

peptide and then protein abundances. However, due to the stochastic nature of intensity-based 

sampling of peptide ions for MS/MS analysis, not all peptides are consistently identified in all 

runs. This in turn gives rise to missing quantification values, weakening essential comparisons 

between different biological samples or experimental conditions. The prevalence of missing 

values in DDA proteomics is generally higher than that in genomics or transcriptomics. The 

issue of missing data can be alleviated to some degree using the data-independent acquisition 

(DIA) strategy (5-8). However, as label-free quantification using DDA data remains popular, 

there is a critical need to improve computational solutions for this method. 

 

To address the missing value problem in DDA-based proteomics, a number of “identification 

transfer” approaches have been devised (9-12), exemplified by the match-between-runs (MBR) 

option of MaxQuant (13, 14) that allows “transfer” of identified precursor peptide peaks from one 

run (referred to below as donor run) to another (acceptor). Given a peak identified by MS/MS in 

the donor run, attributes such as m/z, charge state, and retention time, are used to locate a 

corresponding peak in the acceptor run that is most likely the same peptide. The intensity of the 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 4, 2020. ; https://doi.org/10.1101/2020.11.02.365437doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.02.365437
http://creativecommons.org/licenses/by-nd/4.0/


donor peak is then assigned to the acceptor peak, thus filling in the missing value. With more 

quantified features in common between runs, a greater number of peptides and proteins can be 

compared among different runs and experiments, increasing the depth of experimental findings 

(15-17). 

 

While the goal of MBR is to mitigate the missing value problem, it has the potential to introduce 

false positives, as transferred peaks have not been rigorously identified using MS/MS spectra in 

the acceptor run. Lim et al. (18) evaluated the false transfer rate of MBR using a two-organism 

dataset. They concluded that there was a considerable proportion of false positives from MBR 

when using MaxQuant, yet most were removed with additional filtering as part of the LFQ 

calculations. However, in practical settings, even with the additional filtering, FDR of MBR may 

still be unacceptably high. Thus, this subject deserves a more rigorous treatment that can be 

generalized across different samples and experimental designs. Here, we propose a supervised 

semi-parametric approach to control the FDR of MBR, extending our earlier work on FDR for 

protein identification (3, 19) and DIA quantification (20). We implement FDR-controlled MBR in 

IonQuant (21), which has been extended to support LC-MS data both with and without ion 

mobility. We also implement a new protein abundance calculation module in IonQuant, based 

on the MaxLFQ strategy (13), improving upon our previously described top-N approach. Using 

the dataset from Lim et al. (18), we reproduce the authors findings and demonstrate that 

IonQuant with FDR-controlled MBR has a lower false positive rate and higher sensitivity 

compared to MaxQuant. With two additional datasets from timsTOF Pro mass spectrometers, 

we demonstrate that FDR-controlled MBR results in higher quantification precision (lower CV), 

accuracy, and sensitivity. At last, we demonstrate that IonQuant  displays high sensitivity and 

precision in single cell data, but that FDR control for MBR is crucial in such datasets. Overall, 

we propose an efficient approach to perform MBR with FDR control while maintaining high 
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accuracy and precision. We implement the new methods as a default option in IonQuant, readily 

available as a standalone tool or within our integrated computational platform FragPipe 

(https://fragpipe.nesvilab.org/).  

 

Experimental Procedures 

Experimental Design and Statistical Rationale 

We used four datasets in this work. In all datasets, we estimated the identification false-

discovery rate using the target-decoy approach (3). For MSFragger, PSMs, peptides, and 

proteins were filtered at 1% PSM and 1% protein identification FDR. For MaxQuant, PSMs and 

peptides were filtered at 1% PSM FDR, and proteins were filtered at 1% protein FDR, which is 

MaxQuant’s default setting. A two-organism dataset (H. sapiens and S. cerevisiae) with 40 LC-

MS runs from Lim et al. (18) was generated on an Orbitrap Fusion Lumos mass spectrometer 

(Thermo Fisher Scientific). In this dataset, 20 runs include only H. sapiens proteins, while the 

remaining 20 runs contain a mixture of H. sapiens and S. cerevisiae proteomes. S. cerevisiae 

peptides transferred to the 20 H. sapiens-only runs by MBR are false positives and were used to 

evaluate the false positive rate. We also employed two datasets from timsTOF Pro (Bruker), as 

in our previous work (21). A HeLa dataset with 4 replicate injections from Meier et al. (22) was 

used to evaluate the sensitivity (i.e., quantified protein count) and precision (i.e., coefficient of 

variation (CV)) of quantification across replicate runs. A three-organism timsTOF dataset (H. 

sapiens, S. cerevisiae, and E. coli) with 6 runs from Prianichnikov et al. (23) was used to 

evaluate quantification accuracy, and contains two experimental conditions with ground truth 

protein ratios: 1:1 (H. sapiens), 2:1 (S. cerevisiae), and 1:4 (E. coli). The final dataset used in 

this study contains 26 runs from the single-cell proteomics experiment published by Williams et 

al. (24) generated on an Orbitrap Fusion Lumos mass spectrometer (Thermo Fisher Scientific). 
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This dataset contains 3 replicate runs with 0 cell (blank runs), 11 replicates with 1 cell, 4 

replicates with 3 cells, 4 replicates with 10 cells, and 4 replicates with 50 cells. Numbers of 

quantified peptides and proteins were used to evaluate sensitivity, and quantification CV was 

used to evaluate precision.  

 

Indexing-based MBR 

We developed a fast MBR algorithm based on indexing. In IonQuant (21), an index of each run 

is built and written to the disk for fast feature extraction, which supports data with and without 

ion mobility information. Given a run with possible missing values that will accept ions (acceptor 

run) and a separate run that will be used to fill these missing values (donor run), correlations 

between the two runs are calculated using overlapped ions’ retention times, intensities, and ion 

mobilities if applicable: �� � �� � � � ���/ 2  or �� � �� � � � �� � � � ���/ 3 , where �  is the 

overlapping ratio (25); ��, �� , and ��  are Spearman’s rank correlation coefficients of retention 

time, intensity, and ion mobility, respectively. Up to n (user-specified ‘MBR top runs’ parameter, 

3 by default) donor runs with the highest correlations (which must be greater than user-specified 

‘MBR min correlation’ parameter, 0 by default) are selected. 

 

For each ion in every selected donor run, we locate the target region within the acceptor run 

using an approach similar to FlashLFQ (26). First, pairs of retention times from the overlapping 

ions are collected and sorted according to the value from the donor run. Using ��  and ��  to 

denote the retention times of 
-th pair of ions from the donor and acceptor runs, respectively, we 

have pairs from ��� , ��� to ��� , ��� sorted by �� , where � is the number of overlapped ions. 

Given a donor ion with retention time �, we find its position in the sorted pairs satisfying �� � � �
���� . Then, we collect all pairs satisfying �� � τ � ��  �  �� � τ , where τ  is a predefined 
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tolerance (‘MBR RT window’ parameter, 1 minute by default) . With those pairs, we generate a 

list whose elements are �� � ��, and calculate the median (�) and median absolute deviation (σ) 

of that list. The possible target range in the retention time dimension is then: 

��� � � � 2�, �� � � � 2σ�#�1�  

If ion mobility data are used, we take the same approach to locate the target range in the ion 

mobility dimension (controlled by the ‘MBR IM window’ parameter, 0.05 by default). The 

transferred ion’s m/z equals the donor ion’s m/z adjusted by mass calibration error (mass 

calibration is performed by MSFragger (27)). After locating the target region in m/z, retention 

time, and ion mobility if applicable, we trace all peaks within the region using our recently 

described algorithm (21). Four isotope peaks (-2, -1, +1, and +2) are also traced to check the 

charge state and the isotope distribution. Peak boundaries are allowed to extend beyond the 

target region’s retention time and ion mobility bounds. Peak tracing is performed rapidly using 

the index, after which the donor ion’s peptide information is assigned to the traced monoisotopic 

peak.  

 

MBR false discovery rate estimation 

To estimate the rate at which false transfers occur, we adopted a supervised semi-parametric 

mixture model that we previously applied in a number of related applications (19, 20). For each 

successfully transferred donor ion (i.e., target ion), we try to transfer a decoy ion, created to 

have the same retention time and ion mobility (if applicable) but with a large m/z shift (28, 29). 

To generate a decoy, we first shift the m/z by +11×1.0005 Th. If there is no traceable peak in 

that region, we keep decreasing the m/z shift by 1.0005 Th until we successfully trace a peak or 

until the m/z shift reaches +4 Th. 
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For all transferred target and decoy ions, we calculate nine (without ion mobility) or ten (with ion 

mobility) scores (Table 1). For three of these scores (using the 0/+1/+2, -1/0/+1, and -2/-1/0 

peaks), Kullback-Leibler divergence is used to compare the quality of the traced isotopic 

distribution to a theoretical one given m/z and charge state, where the Poisson distribution is 

used as theoretical (30).  

 

We classify all transferred ions (identified with sequence, charge, and modification information) 

into four types: a target ion that has not been identified by MS/MS in the acceptor run (type 1); a 

decoy ion that is from a m/z-shifted type 1 ion (type -1); a target ion that has already been 

identified by MS/MS (type 2); or a decoy ion that is from a m/z-shifted type 2 ion (type -2). 

Following the strategy we previously used for DIA data (20),  we train a linear discriminant 

analysis (LDA) model using scores from type 2 and -2 ions. From the trained LDA, we calculate 

a final score for each type 1 and -1 ion:  

� � � ��

�

 �#�2�  

where � is the final score, �� are the weights from LDA, and  � are the scores detailed in Table 

1. If multiple ions were transferred to one location, the top scoring one is kept. 

Using the final scores from type 1 and -1 ions, we estimate a posterior probability of correct 

identification transfer by fitting a mixture model: 

!��� � π�!���� � π�!����#�3�  

where !�  is the distribution of correctly transferred ions, !�  is the distribution of incorrectly 

transferred ions, π� and π� are the respective priors of false and true transferred ions. We use 

the expectation-maximization (EM) algorithm (20) to estimate the coefficients and distributions 

in Equation (3). 
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After fitting the mixture model, we calculate a posterior probability for each transferred ion using 

#���� � π�!�����π�!����� � π�!����� #�4�  

where �� is the score of the transferred ion. Then, we calculate an ion-level MBR FDR using the 

posterior probability (31) of type 1 ions: 

%&'( ��� � ∑ *1 � #����+	�
�∑ ,�����

#�5�  

where � is a score threshold and ∑ ,�����  is the number of type 1 ions whose score is larger than 

�. We can also calculate peptide- and protein-level FDR for MBR by collapsing ions with the 

same sequence or protein and using the highest probability entry in the FDR calculation. 

 

Calculating protein intensity using MaxLFQ algorithm 

Cox et al. proposed MaxLFQ (13) algorithm to calculate protein intensity with peptide intensities. 

It has a high precision (low CV) according to our previous study (21). We implemented it in 

IonQuant to provide a new (default) option in addition to the top-N approach. 

 

Given a study with N experiments (samples), and a protein with M quantified peptide ions, for 

each peptide ion # . �1, /� we calculate a log-ratio of its intensities between experiments 
 and 0: 
��,��#� � log 4��#�4��#� � log 4��#� � log 4��#� #�6�  
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where 4��#� is the intensity of peptide ion # from 
-th experiment. If the ion is not quantified in 

experiment 
  or 0, we do not calculate the corresponding log ratio. Then, we have a linear 

relationship among the log-transformed protein intensities and their peptide ion log-ratios: 

6� � 6� � ��,�#�7�  

where 6�  is the (unknown) log-transformed protein intensity in 
-th experiment and ��,�  is the 

median of the log-ratios ��,��#� among all peptide ions # from 1 to /. Given the set of 1 to � 

experiments, Equation (7) can be expressed in a matrix form 

89 � :#�8�  

where 

8�,� � <�1                   �
 = 0�
� ,�
, 0����

���

     �
 � 0�> #�9�  

9 � @6�A6�B 

:� �
CD
ED
F � ��,�  �

�����

                    �
 � 1�
� ��,�  �

�����

� � ��,�

�

���

 �
 G 1�> 

In Equation (9), ,�
, 0� equals 1 if there is a peptide ion quantified in both experiment 
 and 0, 
and 0 otherwise. Equation (8) can be efficiently solved with Cholesky decomposition to get the 

log-transformed protein intensity 6� . Then, the protein intensity in experiment 
 equals H��. 

 

Validation of the FDR for MBR approach using two-organism dataset 
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We used 40 runs from Lim et al. (18) (ProteomeXchange (32) identifier PXD014415) to evaluate 

the sensitivity and precision of FDR-controlled MBR. This dataset contains 20 runs with only H. 

sapiens proteins and 20 with a mixture of H. sapiens (90%) and S. cerevisiae (10%) proteins, all 

acquired on an Orbitrap Fusion Lumos mass spectrometer. Further sample preparation and 

data acquisition details can be found in the original publication (18). We used FragPipe (version 

13.0) with MSFragger (33) (version 3.0), Philosopher (34) (version 3.2.7), and IonQuant (21) 

(version 1.4.4) to analyze this dataset. For this analysis pipeline, raw spectral files were first 

converted to mzML using ProteoWizard (version 3.0.20066) with vendor’s peak picking. We 

used MaxQuant (35) (version 1.6.14.0) for comparison, using raw spectral files as MaxQuant is 

optimized for vendor formats. A protein sequence database of reviewed H. sapiens 

(UP000005640) and S. cerevisiae (UP000002311) from UniProt (36) (reviewed sequences only; 

downloaded on Jan. 15, 2020) and common contaminant proteins (26448 proteins total) was 

used. For the MSFragger analysis, precursor and (initial) fragment mass tolerance were set to 

50 ppm and 20 ppm, respectively. Reversed protein sequences were appended to the original 

database as decoys. Mass calibration and parameter optimization were enabled. Isotope error 

was set to 0/1/2, and one missed trypsin cleavage was allowed. Peptide length was set from 7 

to 50, and peptide mass was set to 500 to 5000 Da. Oxidation of methionine and acetylation of 

protein-N termini were set as variable modifications. Carbamidomethylation of cysteine was set 

as a fixed modification. Maximum allowed variable modifications per peptide was set to 3. 

Philosopher (34) with PeptideProphet (37) and ProteinProphet (38) was used to estimate 

identification FDR. The PSMs were filtered at 1% PSM and 1% protein identification FDR. 

Quantification and MBR was performed with IonQuant. Minimum number of ions parameter 

required for quantifying a protein was set to 2 (default). To test the performance of FDR control 

for MBR, the maximum number of runs used for transfer was set to 40, and the minimum 

required correlation between the donor and acceptor run was set to 0. Ion-, peptide-, and 

protein-level MBR FDR thresholds were all set to 1% unless otherwise noted. Protein intensities 
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were computed using the re-implementation of MaxLFQ protein intensity calculation algorithm 

described above. Default values were used for all remaining parameters. For MaxQuant 

comparisons, the parameters were set as close to those described above as possible, with 

maximum modifications per peptide set to 3, maximum missed cleavages set to 1, LFQ enabled 

with default settings, maximum peptide mass set to 5000, built-in contaminant proteins were not 

used, and the second peptide option was not used. Default values were used for all remaining 

MaxQuant parameters. 

 

We classified a peptide as S. cerevisiae peptide if it only maps to S. cerevisiae proteins. We 

classified a peptide as H. sapiens if it maps to at least one H. sapiens protein. The classification 

was done based on the protein name in the searched protein sequence database: those ending 

with “_HUMAN” were classified as H. sapiens protein and those ending with “_YEAST” were 

classified as S. cerevisiae protein. 

 

Quantification precision 

We used four replicate HeLa cell lysate runs acquired on a timsTOF Pro mass spectrometer (22) 

with 100 ms TIMS accumulation time to evaluate quantification precision when MBR is used. As 

in the previous section, we used FragPipe (version 13.0) with MSFragger (version 3.0), 

Philosopher (version 3.2.7), and IonQuant (version 1.4.4) to analyze this dataset. MaxQuant 

(version 1.6.14.0) was used to perform a benchmark comparison. Raw spectral files (.d 

extension) were used. The sequence database contained reviewed H. sapiens (UP000005640) 

proteins and common contaminants from UniProt (downloaded on Sep. 30, 2019; 20463 

sequences). Minimum number of ions parameter required for quantifying a protein was set to 2 

unless otherwise noted. For MBR in IonQuant, MBR top runs parameter was set to 3 and MBR 
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min correlation was set to 0. Ion-, peptide-, and protein-level MBR FDR threshold were set to 

1%. Remaining parameters were identical to those in the previous section. We used the number 

of quantified proteins (considering proteins quantified in at least two runs) and quantification CV 

across replicates to evaluate the performance. 

 

Quantification accuracy 

We used the three-organisms dataset by Prianichnikov et al. (23) to demonstrate the accuracy 

of IonQuant with MBR. There are six runs from two experimental conditions in which H. sapiens, 

S. cerevisiae, and E. coli proteins are mixed at known ratios. The ratios between conditions are 

1:1 (H. sapiens), 2:1 (S. cerevisiae), and 1:4 (E. coli). These data were acquired on a timsTOF 

Pro mass spectrometer, and details of the sample preparation and data generation can be 

found in the original publication (23). We used FragPipe (version 13.0) with MSFragger (version 

3.0), Philosopher (version 3.2.7), and IonQuant (version 1.4.4) to analyze the data. MaxQuant 

results published by Prianichnikov et al. (23) were used as a benchmark comparison. Using the 

latest MaxQuant (version 1.6.14.0), a reviewed UniProt protein sequence database, and 

parameters closest to those of MSFragger and IonQuant yielded results similar to those in the 

original publication (Supporting Figure S1). A combined database of reviewed H. sapiens 

(UP000005640), S. cerevisiae (UP000002311), and E. coli (UP000000625) sequences from 

UniProt (30788 sequences downloaded Apr. 18, 2020) was used. Ion-, peptide-, and protein-

level MBR FDR thresholds were set to 1%. Minimum number of ions parameter required for 

quantifying a protein was set to 2. Allowed missed cleavages was set to 2, and all other 

parameters were the same as those in the previous section. We used LFQbench (39) to plot the 

protein quantification results. 
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Single-cell dataset 

We used 26 runs published by Williams et al. (24) to demonstrate IonQuant’s performance with 

single-cell data. There are 3 replicates from 0 cell sample served as negative control, 11 

replicates from 1 cell sample, 4 replicates from 3 cells sample, 4 replicates from 10 cells sample, 

and 4 replicates from 50 cells sample. The data was generated on an Orbitrap Fusion Lumos 

mass spectrometer (Thermo Fisher Scientific), with MS/MS spectra acquired in the ion trap, 30 

minute LC gradient. Details of the sample preparation and data acquisition can be found in 

Williams et al. (24). The raw data was converted to mzML format using ProteoWizard (version 

3.0.19302) with vendor’s peak picking. We used FragPipe (version 13.0) with MSFragger 

(version 3.0), Philosopher (version 3.2.7), and IonQuant (version 1.4.4) to analyze the data. We 

also used MaxQuant (version 1.6.14.0) as a benchmark. The database was downloaded along 

with the data (20129 proteins, ProteomeXchange (32) identifier MSV000085230). In MSFragger 

analysis, common contaminants and reversed protein sequences were appended by 

Philosopher. In MaxQuant analysis, the built-in contaminants were used. The precursor mass 

tolerance was set to 20 ppm, and the initial fragment mass tolerance was set to 0.6 Da. Two 

missed cleavages were allowed. IonQuant (version 1.4.4) with and without MBR was used. The 

MBR top runs parameter for MBR transfer was set to 26 and the minimum required correlation 

was kept at 0. MaxLFQ protein intensity calculation algorithm was used. Minimum number of 

ions parameter required for quantifying a protein was set to 1. Various ion-level MBR FDR 

thresholds were applied. The rest of the parameters are the same as those used in the previous 

section. MaxQuant’s parameters were set as close as possible to those used in MSFragger and 

IonQuant. We used the numbers of peptides and proteins to evaluate the sensitivity, and we 

used CV to evaluate the precision of label free quantification with MBR. 

 

Run time comparison 
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We used the two-organism dataset with 40 Orbitrap Fusion Lumos runs and the HeLa dataset 

with 4 timsTOF Pro runs to demonstrate the speed of label-free quantification coupled with 

FDR-controlled MBR in IonQuant (version 1.4.4). MaxQuant (version 1.6.14.0) was used for 

comparison. For the two-organism dataset, we used a combined database of reviewed H. 

sapiens (UP000005640) and S. cerevisiae (UP000002311) sequences from UniProt (36) plus 

common contaminants  (26448 proteins downloaded Jan. 15, 2020). For the HeLa dataset, a 

database of reviewed H. sapiens (UP000005640) proteins from UniProt (20463 proteins 

downloaded on Sep. 30, 2019) and common contaminants was used. Reversed proteins 

sequences were appended to both databases as decoys for MSFragger analysis. All other 

parameters are identical to those used in the previous section. All analyses were run on a 

desktop with 4 CPU cores (Intel Xeon E5-1620 v3, 3.5 GHz, 8 logical cores) and 128 GB 

memory. We isolated quantification-specific run times from MaxQuant log files. 

 

Results and Discussion 

FDR-controlled MBR 

We developed an MBR module in IonQuant enabling accurate and fast label-free quantification 

with match-between-runs peptide ion transfer with the help of the indexing functionality in 

IonQuant (see Figure 1 for an overview). For each experiment (acceptor run) in the analysis, 

ion-level Spearman’s rank correlation coefficients with all other experiments are calculated, 

where ion is defined as the combination of peptide sequence, modification pattern, and charge 

state. The percentage of ions overlapping between two runs is used as a weight in the 

calculation (25). For each acceptor run, IonQuant picks the top N runs with correlation larger 

than a certain threshold as donor runs. Both parameters (‘MBR top runs’ and “MBR min 

correlation’ can be adjusted by the user). Given an ion from a donor run, IonQuant locates a 
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region in the acceptor run where the transferred ion is likely to be using m/z, retention time, and 

ion mobility (if applicable) distributions from both runs (see Figure 1 and Experimental 

Procedures). For simplicity, we use retention time to describe the region-finding process. Given 

an ion from a donor run, all ions within a predefined retention time tolerance are collected. 

Retention time differences from pairs of ions overlapping between the runs are calculated, and 

the median and median absolute deviation of these differences are found. Then the region for 

transfer is determined using Equation (1). We use the same approach to locate the ion mobility 

region. After getting a 1-D (without ion mobility) or 2-D (with ion mobility) region, IonQuant 

traces peaks using the donor ion’s m/z, taking any mass calibration correction into account. In 

addition to the monoisotopic peak, four additional isotope peaks (-2, -1, +1, and +2) are also 

included in peak tracing so that the isotopic distribution and charge state can be used in 

evaluation. Finally, IonQuant assigns the donor ion’s peptide to each traced peak and calculates 

nine (without ion mobility) or ten (with ion mobility) scores (Table 1) measuring the quality of the 

peptide ion transfer. 

 

In conventional MBR, most notably in MaxQuant, ions matching tolerance criteria are 

transferred without statistically assessing the confidence in the transfer. Here, we propose a 

supervised semi-parametric approach to estimate the FDR of transferred ions (see 

Experimental Procedures). Briefly, decoy ion transfers are generated by transferring ions with 

a significant m/z shift. All transferred ions are classified into four types: the ion has not been 

identified by MS/MS and is not a decoy (type 1); the ion is a decoy type 1 (type -1); the ion has 

been identified by MS/MS and is not a decoy (type 2); and the ion is a decoy type 2 ion (type -2). 

IonQuant trains a linear discriminant analysis (LDA) model with type 2 and -2 ions to separate 

the target and decoy ions. Using the trained model, a final score is calculated for each of the 

type 1 and -1 ions (Equation (2)). A mixture model (Equation (3)) is built using type 1 and -1 ions, 
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and the expectation-maximization (EM) algorithm is used to fit the model and subsequently 

calculate the posterior probability. Finally, global ion-level FDR (Equation (5)) is calculated using 

the local FDR, equal to one minus the posterior probability (Equation (4)). IonQuant also 

calculates peptide and protein level FDR by collapsing ions with the same peptide and protein, 

respectively. 

 

In the remainder of the manuscript, we demonstrate the accuracy of FDR-controlled MBR using 

a two-organism dataset, and the precision and accuracy of subsequent label-free quantification 

by comparing  HeLa replicate runs and using a three-organism dataset, respectively.  

 

Evaluation of FDR-controlled MBR method 

We used the dataset published by Lim et al. (18) to evaluate the false positive rate of FDR-

controlled MBR (see Experimental Procedures). The dataset is comprised of 20 LC-MS files 

from H. sapiens-only proteins (“H”) and 20 from a mixture of H. sapiens (90%) and S. cerevisiae 

(10%) proteins (“HY”). With MBR, S. cerevisiae peptides transferred from HY to H runs are 

known to be false positives, and can be used to evaluate the false positive rate, equal to false 

positives (S. cerevisiae peptides in H runs) divided by negatives (S. cerevisiae peptides in total). 

To ensure all S. cerevisiae peptides in the HY runs have the chance to be transferred, the 

number of top runs used in transferring was set to 40 and minimum required correlation was set 

to 0. In evaluation, a peptide was assigned to S. cerevisiae if all proteins it maps to are from S. 

cerevisiae, or to H. sapiens if at least one of its proteins is from H. sapiens.  
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Overall, IonQuant coupled with MSFragger identified 45875 unique H. sapiens peptides and 

4610 unique S. cerevisiae peptides, ~19% and ~31% more H. sapiens and S. cerevisiae 

peptides compared to MaxQuant, respectively (Table 2, Supporting Table S1, Supporting 

Data S1). More peptides were also identified or transferred in individual runs with MSFragger 

and IonQuant. In transferring ions between the runs, IonQuant had a lower false positive rate 

than MaxQuant, 1.76% compared to 2.78%. The numbers listed in Table 2 differ slightly from 

Figure S1 in Lim et al. (18) because of small differences in data analysis settings and version of 

the tools used. Figure 2(a) shows average peptide coverage, average peptide false positive 

rate, average protein coverage, and average protein false positive rate with respect to different 

MBR FDR thresholds. We used the same threshold for ion-, peptide-, and protein-level MBR 

FDR. The actual MBR FDR corresponding to no FDR filtering are 8% (ion-level), 7% (peptide-

level), and 4% (protein-level). The peptide/protein coverage values shown are H. sapiens 

peptides/proteins in each H run divided by total H. sapiens peptides/proteins identified in the 

dataset. Peptide coverage increases from ~57% to ~81% with the inclusion of MBR, and protein 

coverage increases from ~87% to ~96%. As the MBR FDR threshold is increased, neither 

peptide nor protein coverage increase significantly, indicating most H. sapiens peptides have 

been successfully transferred by IonQuant already at 1% MBR FDR. On the other hand, the 

false positive rate continues to rise when the MBR FDR threshold is increased, demonstrating 

the need for FDR-controlled MBR.  

 

Improved protein quantification with FDR-controlled MBR  

We used four HeLa cell lysate replicates acquired on a timsTOF Pro published by Meier et al. 

(22) to demonstrate the sensitivity and precision of label-free quantification coupled to FDR-

controlled MBR (see Experimental Procedures). We previously (21) performed a similar 

analysis of the same dataset, but without MBR and with protein abundances calculated from 
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peptide ion intensities using top-N peptide approach. In this work we use a new protein 

abundance calculation module in IonQuant implemented according to the MaxLFQ (13) 

algorithm (see Experimental Procedures). 

 

Table 3 lists the numbers of quantified proteins and the CV from each method. A protein is used 

for CV analysis and counted as quantified if it has non-zero LFQ intensity in at least two runs. 

The results from IonQuant and MaxQuant (both with MaxLFQ method, indicated as ‘native’ 

quantification method in Table 3) are shown, which were run under similar settings of requiring 

either a minimum of 1 or 2 peptide ions (IonQuant) or peptides (MaxQuant) in pair-wise ratio 

calculation in MaxLFQ method. Enabling MBR (MBR+) improved the number of quantified 

proteins without a significant increase in protein quantification CV. For example, with min 2 ion 

setting, IonQuant MBR+ quantified ~12% more proteins (5674 vs 5044) while maintained a 

similar CV (3.8% vs 3.6%) than IonQuant MBR-. Compared to MaxQuant, IonQuant quantified 

more proteins and with greater precision (lower CVs) in all pair-wise comparisons between the 

tools under matched settings. For example, IonQuant with MBR+ and min 1 ion quantified 6449 

proteins with CV of 4.2%, compared to 5950 proteins with CV of 5.3% for MaxQuant with MBR+ 

and min 1 peptide. We also compared IonQuant’s native (MaxLFQ-based) protein abundance 

with that from IonQuant with MSstats (40) for peptide to protein intensity roll-up. Note that 

MSstats does not have a simple way to set a minimum peptide ion count requirement. Table 3 

shows that IonQuant’s maxLFQ-based protein abundance calculation method results in slightly 

lower CVs compared to using MSstats, whereas our initial (top-N peptide based) strategy for 

protein abundance calculation in IonQuant was inferior to that of MSstats (21).  
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We also used the three-organism mixture dataset published by Prianichnikov et al. (23) to 

demonstrate the accuracy of label-free quantification when FDR-controlled MBR is employed 

(see Experimental Procedures). There are three replicates each of two experimental 

conditions, where the ratios between the two conditions are 1:1 (H. sapiens), 2:1 (S. cerevisiae), 

and 1:4 (E. coli). Since these proteomes were mixed at known ratios, we can evaluate the 

accuracy of the label-free quantification algorithm by comparing the estimated ratio against the 

ground truth. MaxQuant results published by Prianichnikov et al. (23) were used as a 

benchmark. We also performed the analysis with the latest MaxQuant (version 1.6.14.0), a 

newer reviewed protein database, and parameters as close as possible to those used in 

MSFragger and IonQuant, and got similar results (Supporting Figure S1). We used LFQbench 

(39) to summarize the analyses and visualize the results (Figure 3). As expected, both 

MaxQuant and IonQuant quantified more proteins with MBR than without MBR. IonQuant 

quantified ~21% and ~9% more proteins compared to MaxQuant with and without MBR, 

respectively (Figure 3, Supporting Table S3, Supporting Data S3). IonQuant also had fewer 

outliers than MaxQuant.  

 

FDR-controlled MBR in single-cell data 

We used 26 runs from a single-cell proteomics dataset (24) to demonstrate the performance of 

FDR-controlled MBR in sparse datasets (i.e. datasets with low overlap between different 

samples, resulting in a large number of missing values). There are 5 biological replicates with 0, 

1, 3, 10, and 50 cells. The 0-cell (blank runs) sample is used as negative control in MBR. 

MaxQuant with and without MBR were used as benchmark. 
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We first evaluated the number of proteins quantified in at least two runs (Figure 4(a)). Without 

MBR (MBR-), MSFragger with IonQuant identified and quantified a higher number of proteins 

per sample on average than MaxQuant across all groups of samples. MaxQuant with MBR 

(MBR+) got on average 68 proteins from a replicate of the 0-cell sample, which is much more 

than MaxQuant MBR- (14 proteins) and IonQuant MBR- (19 proteins) (Supporting Table S4, 

Supporting Data S4). This by itself indicates a noticeable false transfer rate of MaxQuant’s 

MBR in these data. IonQuant MBR+ did not transfer any proteins to the 0-cell sample due to its 

stringent quality control (which effectively disabled MBR transfer to 0-cell sample, even with 

MBR option turned on). As expected, as the number of cells per sample increases, the average 

number of proteins quantified per sample, with or without MBR, increases for both MaxQuant 

and IonQuant. Comparing the numbers from MaxQuant MBR+ and IonQuant MBR+ with FDR 

set to 100% (i.e. no FDR control) shows that IonQuant has a higher number of transferred 

proteins than MaxQuant under equivalent setting of no FDR control applied in both tools. 

However, the actual FDR, as estimated using IonQuant, is high, up to 26% for MBR transfers to 

the single cell samples. Applying increasingly stringent MBR FDR filtering in IonQuant gradually 

reduces the number of quantified proteins per sample.  

 

Our results above suggest that application of the conventional MBR strategy (i.e. with no FDR 

control) to sparse datasets such as single-cell data may result in a high rate of false transfers. 

IonQuant, with its ability to estimate and control FDR, provides the users a way to minimize 

false transfers by applying an FDR threshold of their choice. These results also warrant 

discussion regarding a reasonable FDR threshold to apply in such scenarios. Figure 4(b) 

shows the number of quantified peptides and proteins, and protein quantification CV from 

analyzing 11 replicates of 1-cell sample with MaxQuant and IonQuant, respectively. Without 

MBR, IonQuant measured more peptides (1407 vs 1208) and more proteins (409 vs 371), while 
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maintaining a similar CV (29.2% vs 27.0%) compared MaxQuant. With MBR but without FDR 

control, IonQuant also measured more peptides (4686 vs 3937) and more proteins (1087 vs 918) 

with a similar CV (27.8% vs 26.0%) compared to MaxQuant. As previously discussed, FDR 

control reduces the IonQuant numbers. Raising the FDR threshold increases the number of 

proteins until roughly 10% FDR, when saturation becomes apparent. Notably, saturation is 

reached at a much smaller FDR threshold in the whole cell lysate data (around 1% FDR, Figure 

2(a)). This is reflective of the fact that single-cell data is naturally more sparse, with more 

peptides and proteins that can be transferred from other runs (especially when transferring 

identifications from “boosting” samples, i.e. samples with much higher number of cells). This 

also suggests that setting a higher FDR threshold (e.g. 5% FDR) in single-cell or other kinds of 

similarly sparse data may be justifiable. At the same time, it is likely sufficient to restrict FDR 

MBR to 1% in more typical datasets, where loosening the FDR threshold serves to reduce 

overall quantification accuracy with no noticeable improvement in the number of quantified 

proteins.      

 

Speed of indexing-based MBR in IonQuant 

Finally, we compared the computational time required by IonQuant (version 1.4.4) and 

MaxQuant (version 1.6.14.0), both with MBR enabled. The HeLa dataset (timsTOF Pro) and the 

two-organism dataset from (Orbitrap Fusion Lumos) were used, comprised of 4 and 40 LC-MS 

files, respectively. (Experimental Procedures). For MaxQuant, only jobs related to 

quantification and MBR were counted (Supporting Table S5). Figure 2(b) displays the run time 

of these tools in minutes. IonQuant is ~40x faster and ~17x faster than MaxQuant in analyzing 

the data without and with ion mobility, respectively. The reason for IonQuant exhibits a smaller 

gain in speed compared to MaxQuant in analyzing the timsTOF Pro data is that most of the 

IonQuant runtime is spent loading the raw data via the vendor-provided library (21). 
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Conclusions 

Match-between-runs (MBR) is a commonly used approach to quantify additional features by 

transferring information across different samples. It largely mitigates the missing value problem 

of DDA-based label-free quantification, increasing data completeness for improved differential 

analyses. To our knowledge, there was previously no method to control the rate of false 

transfers in DDA-based MBR in practical settings. To address this issue, we described a 

method to estimate and control the FDR for MBR with the help of mixture modeling and the 

target-decoy concept. We implemented MBR with FDR control in our quantification tool, 

IonQuant. Our experiments and comparisons with a frequently used tool MaxQuant showed that 

IonQuant allowed fewer false positive transfers while maintaining high sensitivity. We also 

highlight the importance of FDR control when MBR is applied to sparse datasets such as those 

from single-cell proteomics experiments. Furthermore, by way of advanced indexing technology, 

IonQuant performs MBR with unmatched speed, making it well-suited even for analysis of large-

scale datasets composed of thousands of LC-MS runs. 
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Table 1. List of scores used in linear discriminant analysis (LDA). 

Score Explanation 

Log10(intensity) 
Log-transformed intensity of a traced peak. 
The intensity can be from an area (without ion 
mobility) or a volume (with ion mobility). 

Log10(KL) 

Log-transformed Kullback-Leibler divergence 
of an experimental isotope distribution and the 
theoretical isotope distribution. 0, +1, and +2 
isotope peaks are used. 

Log10(KL_negative_1) Same as Log10(KL) but -1, 0, and +1 isotope 
peaks are used. 

Log10(KL_negative_2) Same as Log10(KL) but -2, -1, and 0 isotope 
peaks are used. 

Abs(ppm) Absolute value of the mass error (in ppm) 
from a traced peak. 

IM diff Ion mobility difference between an acceptor 
ion and its donor ion. 

RT diff Retention time difference between an 
acceptor ion and its donor ion. 

Log10(intensity) diff 

Log-transferred intensity difference between 
an acceptor ion and its donor ion. The 
intensities are normalized by their runs’ 
median intensity. 

Correlation between runs 
Weighted Spearman’s rank correlation 
coefficient between an acceptor ion and the 
donor run where the ion contributes. 

Matched run percentage 
The number of donor runs contributing the ion 
divided by the number of qualified donor runs. 
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Table 2. Peptides identified by MaxQuant and IonQuant in analyzing the two-organism dataset 
with MBR. “Sample H” indicates H. sapiens-only samples and “Sample HY” indicates samples 
with a mixture of H. sapiens and S. cerevisiae proteins. There are 20 runs in each sample type. 
“MBR-” and “MBR+” indicate that the analysis was performed without and with match-between-
runs (MBR), respectively. For each analysis, unique peptide counts are listed along with per run 
identification rates (% of all observed peptides found in each run). 

MaxQuant 
 

IonQuant 

Total unique H. 
sapiens peptides 

38405 Total unique H. 
sapiens peptides 

45875 

Sample H, MBR - 19360±648 50.41% Sample H, MBR - 26032±499 56.75% 
Sample HY, MBR - 18945±522 49.33% Sample HY, MBR - 25683±716 55.98% 
Sample H, MBR + 31129±637 81.05% Sample H, MBR + 37075±314 80.82% 
Sample HY, MBR + 29747±730 77.46% Sample HY, MBR + 36134±666 78.77% 

Total unique S. 
cerevisiae peptides 

3527 Total unique S. 
cerevisiae peptides 

4610 

Sample H, MBR - 20±5 0.57% Sample H, MBR - 26±6 0.56% 
Sample HY, MBR - 1848±93 52.40% Sample HY, MBR - 2597±82 56.33% 
Sample H, MBR + 98±10 2.78% Sample H, MBR + 81±13 1.76% 
Sample HY, MBR + 2858±63 81.03% Sample HY, MBR + 3756±75 81.48% 
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Table 3. Quantified protein counts and coefficients of variation (CV) from four HeLa cell lysate 
replicates. “MBR-” and “MBR+” indicate that the analysis was performed without and with 
match-between-runs (MBR), respectively. Both MSstats and the tools’ native modules were 
used to calculate protein intensities from ion intensities. MSstats had errors in processing the 
file from MaxQuant with MBR. 

Tool 
Native 
protein 

quantified 

Native CV 
(%) 

 Msstats 
proteins 

quantified 

MSStats 
CV (%) 

MaxQuant 
MBR- 

min 1 peptide 5406 5.3 
5334 5.6 

min 2 peptides 4186 4.3 

MBR+ 
min 1 peptide 5950 5.3 

(no result) 
min 2 peptides 5073 4.7 

IonQuant 
MBR- 

min 1 ion 5952 4.1 
5952 4.8 

min 2 ions 5044 3.6 

MBR+ 
min 1 ion 6449 4.2 

6451 4.7 
min 2 ions 5674 3.8 
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Figure 1. (a) (a) Overview of match-between-runs in IonQuant. For each acceptor run (central 
point in teal) ion-level correlations with all other runs (blue and orange points) are calculated, 
where distance from the central point represents correlation. The top N runs (blue points) within 
the correlation threshold (gray area) are selected as eligible donor runs. For every ion in each 
eligible donor run, target and decoy (m/z-shifted) transfer regions are located using retention 
time (and ion mobility if applicable). Peak tracing in the acceptor run is used to determine the 
isotopic distribution and the charge state. All matches are evaluated, and the top scoring donor 
for each acceptor peak is selected for transfer. (b) All matches/transferred ions are classified 
into one of the four categories shown. Type 2 and -2 matches are used to train a linear 
discriminant analysis (LDA) model. The trained LDA is used to calculate the final score for type 
1 and -1 matches. A posterior probability of correct transfer is estimated by fitting a mixture 
model, allowing ion, peptide, and protein-level false discovery rate (FDR) for match-between-
runs estimation. 

 

 

Figure 2. (a) Per-run proteome coverage and observed false positive rate as a function of the 
model-estimated false discovery rate (FDR) threshold. Coverage is equal to the number of H. 
sapiens peptides/proteins from one run divided by the total number of H. sapiens 
peptide/protein identifications in the entire experiment. The false positive rate is equal to the 
number of S. cerevisiae peptides/proteins from one run divided by the total number of S. 
cerevisiae peptides/proteins. (b) Run time comparison of quantification-related tasks using the 
HeLa dataset (4 timsTOF Pro runs) and the two-organism dataset (40 Orbitrap Fusion Lumos 
runs). 

 

 

Figure 3. Ground-truth protein quantification results from MaxQuant and IonQuant from a 
mixture of three different proteomes. “MBR-” and “MBR+” indicate that the analysis was 
performed without and with match-between-runs (MBR), respectively. S. cerevisiae proteins are 
shown in orange, H. sapiens in green, and E. coli in purple. The known ratios of three 
organisms are 2:1 (S. cerevisiae), 1:1 (H. sapiens), and (1:4) E. coli. Box plots of the intensities 
are shown to the right of each scatter plot panel. 

 

 

Figure 4. Quantified peptides and proteins from MaxQuant and IonQuant analysis of the single 
cell dataset. “MBR-” and “MBR+” indicate that the analysis was performed without and with 
match-between-runs, respectively. (a) Numbers of quantified proteins from samples with 0 cells 
(blank runs), 1 cell, 3 cells, and 10 cells, respectively. Two ion-level MBR false discovery rate 
(FDR) thresholds (1% and 5%) plus “no FDR” setting (corresponding to IonQuant-estimated 
FDR of 26%) were applied. (b) Peptide/protein numbers and protein quantification coefficient of 
variation (CV) from 11 replicates of 1 cell samples, as a function of FDR threshold. “MQ” 
indicates MaxQuant and “IQ” indicates IonQuant. 
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Supporting Table S1. Proteins from two-organism dataset analyzed by MSFragger and 
IonQuant. 

 

Supporting Table S2. Proteins from HeLa dataset analyzed by MSFragger and IonQuant 
without match-between-runs. 

 

Supporting Table S3. Proteins from HeLa dataset analyzed by MSFragger and IonQuant with 
match-between-runs and 1% FDR. 

 

Supporting Table S4. Proteins from three-organism dataset analyzed by MSFragger and 
IonQuant without match-between-runs. 

 

Supporting Table S5. Proteins from three-organism dataset analyzed by MSFragger and 
IonQuant with match-between-runs and 1% FDR. 

 

Supporting Table S6. Proteins from single-cell dataset analyzed by MSFragger and IonQuant 
without match-between-runs. 

 

Supporting Table S7. Proteins from single-cell dataset analyzed by MSFragger and IonQuant 
with match-between-runs and 1% FDR. 

 

Supporting Table S8. Run time from MaxQuant analyzing two-organism dataset. 

 

Supporting Table S9. Run time from MaxQuant analyzing HeLa dataset. 

 

Supporting Data S1. Ions from two-organism dataset analyzed by MSFragger and IonQuant. 

 

Supporting Data S2. Ions from HeLa dataset analyzed by MSFragger and IonQuant.  

 

Supporting Data S3. Ions from three-organism dataset analyzed by MSFragger and IonQuant. 
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Supporting Data S4. Ions from single-cell dataset analyzed by MSFragger and IonQuant.  
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