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Abstract

Every colon cancer has its own unique characteristics, and therefore may respond differ-
ently to identical treatments. Here, we develop a data driven mathematical model for the
interaction network of key components of immune microenvironment in colon cancer. We
estimate the relative abundance of each immune cell from gene expression profiles of tumors,
and group patients based on their immune patterns. Then we compare the tumor sensitivity
and progression in each of these groups of patients, and observe differences in the patterns
of tumor growth between the groups. For instance, in tumors with a smaller density of naive
macrophages than activated macrophages, a higher activation rate of macrophages leads to
an increase in cancer cell density, demonstrating a negative effect of macrophages. Other
tumors however, exhibit an opposite trend, showing a positive effect of macrophages in con-
trolling tumor size. Although the results indicate that for all patients, the size of the tumor
is sensitive to the parameters related to macrophages such as their activation and death rate,
this research demonstrates that no single biomarker could predict the dynamics of tumors.

Keywords: colon cancer; data driven mathematical model; immune pattern; sensitivity analysis; gene expression
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1 Introduction

Recent studies show that many cancers arise from sites of chronic inflammation [1–4]. Balkwill
et. al. [5] provide a list of inflammatory conditions that predispose an individual to cancer, in
particular to colorectal cancer. Indeed, inflammatory bowel diseases like ulcerative colitis and
colonic Crohn’s disease are strongly associated with colorectal cancer [6]. In one experiment,
chronic ulcerative colitis was induced in mice and, fourteen weeks later, the mice developed
colitis-associated cancer (CAC) [7].

Most common cancer treatments are designed to kill tumor cells. However, the way in
which cells die is very important, because dying cells may release molecules that initiate an
immune response. We shall refer to cells that go through the process of necrotic cell death as
necrotic cells. Necrotic cells are known to release damage-associated molecular pattern (DAMP)
molecules such as high mobility group box 1 (HMGB1), which triggers immune responses [8,9].
In particular, HMGB1 activates dendritic cells [10]. There is an evidence that the expressions
of HMGB1 and RAGE, its receptor, are significantly higher in ulcerative colitis than in control
cases [11]. HMGB1 has been observed in other cancers, as a result of treatments by radiotherapy
and chemotherapy [10,12–14].

In colon cancer, activated CD8+ T cells enhance production of necrotic cells by express-
ing high levels of cytokines like IFN-γ and FasL [15]. Necrotic cells and macrophages release
HMGB1 to activate dendritic cells [10], which leads to activation of T-cells [16]. In addition,
intestinal epithelial cells, which are in close contact with DCs, activate dendritic cells by re-
leasing molecules like thymic stromal lymphopoietin (TSLP) [17,18]. Once activated, dendritic
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cells release cytokines STAT4, STAT6, and IL-4,which induce differentiation of naive T-cells into
effector T cells (Th1, Th17, and Th2) [19]. CD4+ T-cells can also become activated by TNF-α,
which is released by M1 macrophages [20]. Activated CD4+ T-cells release IL-2, 4, 5, 13 and
17 to activate killer cells like CD8+ T-cells [16, 21, 22]. CD4+ T-cells also release IFN-γ, which
activates M1 macrophages [23, 24]. Activated macrophages and CD4+ effector T-cells release
tumor-promoting cytokines interleukin 6 (IL-6) [25]. IL-6 promotes tumor growth by activating
STAT3 in intestinal epithelial cells [26].

All these observations indicate the importance of the relative abundance of various immune
cells, as well as their interaction networks, in the colonic tumors’ initiation and progression. In
the present paper, we develop a data driven mathematical model of colon cancer with emphasis
on the role of immune cells. We use cancer patients’ data to estimate the percentage of each
immune cell types in their primary tumors. The developed mathematical model is based on the
network shown in Figure 1, and it is represented by a system of ordinary differential equations
(ODEs) within the tumor.

2 Materials and Methods

2.1 Mathematical model

We develop a mathematical model for colon cancer based on the interaction network among key
players in colon cancer shown in Figure 1, and the list of variables is given in Table 1. The model
is represented by a system of differential equations for concentrations and changing in time in unit
of day. For clarity, we develop a simplified model in terms of ordinary differential equations. For
biochemical processes A+B → C, we use the mass action law dC

dt = λAB, where λ is production
rate of C [27, 28]. Throughout the paper, we use the symbol λ for production, activation or
proliferation rates, and the symbol δ for decay, natural death (apoptosis) or premature death
(necrosis) rates.

Table 1: Model’s Variables. Names and descriptions of variables used in the model.
Variable Name Description

TN Naive T-cells

Th Helper T-cells

TC Cytotoxic cells includes CD8+ T-cells and, possibly, NK cells

Tr Regulatory T-cells

Dn Naive dendritic cells

D Activated dendritic cells antigen presenting cells

M Macrophages

C Cancer cells

N Nectrotic cells

H HMGB1

µ1 Carcinogenic cytokines includes effects of IL-6, IL-17, IL-21 and IL-22

µ2 Immunosuppresive agents includes effects of IL-10 and CCL20

Iγ IFN-γ

Gβ TGF-β

2.1.1 Cytokine approximation

In order to reduce the complexity of the system, we treat some of cytokines as independent
variables and approximate the value of other cytokines through already existing variables. Ad-
ditionally, we combine the cytokines that have a similar function in the interaction network
(Figure 1). So, we combine IL-6, IL-17, IL-21 and IL-22 and denote their sum by the variable
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4 The Role of Inflammation in Colitis-associated Cancer
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Figure 1: Network of cells and cytokines. Sharp arrows indicate activation or proliferation, and the
blucked arrow indicates killing

[µ1]can be written as

d [µ1]

dt
= λµ1Th [Th] + λµ1M [M ] + λµ1D [D]− δµ1 [µ1] .

IL-10 is produced by macrophages [2,18], dendritic cells [24,28] and Treg cells [10,32,58,64]. CCL20

is produced by macrophages [14]. Thus, the equation for [µ2] is

d [µ2]

dt
= λµ2M [M ] + λµ2D [D] + λµ2Tr [Tr]− δµ2 [µ2] .

IFN-γ is secreted by sub-population of macrophages [2,13,47,52,70], helper T-cells [8,46] and cytotoxic

Figure 1: Network of cells and cytokines. Sharp arrows indicate activation or proliferation,
and the blucked arrow indicates inhibitions.

µ1. We also combine IL-10 and CCL20 and denote their sum by the variable µ2. The cytokines
treated as model variables are HMGB1, IFN-γ, TGF-β, IL-6, and IL-10. We then model the
dynamics of cytokines in the following way.

HMGB1 is passively released from necrotic cells [29], or actively secreted from activated
T-cells cells and macrophages [30, 31]. Thus we can model the dynamics of HMGB1 by the
equation:

d [H]

dt
= λHN [N ] + λHM [M ] + λHTh [Th] + λHTC [TC ] + λHTr [Tr]− δH [H] . (1)

IL-6 is secreted by TAMs [25,32–34], helper T-cells [25,34–36] and sub-population of dendritic
cells [37, 38]. IL-17, IL-21 and IL-22 are produced by helper T-cells [39]. So the resulting
dynamics for [µ1] can be written as

d [µ1]

dt
= λµ1Th [Th] + λµ1M [M ] + λµ1D [D]− δµ1 [µ1] . (2)

IL-10 is produced by macrophages [40,41], dendritic cells [37,42] and T-reg cells [35,39,43,44].
CCL20 is produced by macrophages [45]. Thus, the equation for [µ2] is

d [µ2]

dt
= λµ2M [M ] + λµ2D [D] + λµ2Tr [Tr]− δµ2 [µ2] . (3)

IFN-γ is secreted by a sub-population of macrophages [40,46–49], helper T-cells [23,24] and
cytotoxic cells [15], which results in the following equation:

d [Iγ ]

dt
= λIγTh [Th] + λIγTC [TC ] + λIγM [M ]− δIγ [Iγ ] . (4)
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TGF-β is produced by macrophages [40, 41] and T-reg cells [35, 39, 43, 50] leading to the
equaiton:

d [Gβ]

dt
= λGβM [M ] + λGβTr [Tr]− δGβ [Gβ] . (5)

Other cytokines, like IL-2, IL-4, IL-5, and IL-13, we consider to be in a quasi-equilibrium
state, i.e. proportional to the concentration of cells that secrete/produce them. In particular,
IL-2, IL-5, and IL-13 are produced by CD4+ T-cells [16, 22,51], so we consider

[IL-2] ≈Const× [Th] ,

[IL-5] ≈Const× [Th] ,

[IL-13] ≈Const× [Th] .

IL-4 is also produced both by CD4+ T-cells [16, 22,51] and dendritic cells [19], so we take

[IL-4] ≈ Const× [Th] + Const× [D] .

IL-12 secreted by macrophages [40, 41] and dendritic cells [32, 33, 37, 39, 52, 53], thus can be
approximated as

[IL-12] ≈ Const [M ] + Const [D] ,

while IL-23 and TNF-α are secreted solely by macrophages [32, 33], hence their approximation
is

[IL-23] ≈ Const [M ] , [TNF -α] ≈ Const [M ] .

2.1.2 T-cells

In this model we differentiate four subgroups of T-cells: naive, helper, cytotoxic, and regulatory.

Naive T-cells, TN , are not necessarily part of tumor micro-environment, as they usually
are activated within lymph nodes. However, making activation rates for other types of T-cells
proportional to the density of naive cells creates a better controlled system and avoids unlimited
exponential growth. Thus, we summarize the equation for the dynamics of the naive T-cells
after detailing the equations of other types of T-cells.

Helper T-cells can be activated with antigen presentation by dendritic cells [16]. CD4+
T-cells can be additionally activated by IL-12, while Th17 are activated by IL-6, TNF-α, and
IL-23 [39]. Regulatory T-cells inhibit protective immune response (helper and cytotoxic T-cells)
in several ways including production of immunosuppresive cytokines such as IL-10 and CCL20
as well as through contact-dependent mechanisms [39]. Additionally, we introduce the apoptosis
rate for helper cells δTh . The resulting equation is

d [Th]

dt
= (λThD [D] + λThM [M ] + λThµ1 [µ1]) [TN ]− (δThµ2 [µ2] + δThTr [Tr] + δTh) [Th] . (6)

The variable corresponding to cytotoxic cells accounts for the effects of cytotoxic T-lympho-
cytes (mainly CD8+ T-cells) and possibly natural killer cells. CD8+ T-cells are activated by
IL-2, IL-4, IL-5, and IL-13 [16,22,51]. Cumulative effect of these cytokines can be written as

[IL-2, 4, 5, 13] ≈ Const× [Th] + Const× [D] .

Activation of natural killer cells requires IL-2 [54], which is already included. We also include
inhibitory effects mediated by T-reg cells. The dynamics of TC cell group is modeled by the
following equation:

d [TC ]

dt
= (λTCTh [Th] + λTCD [D]) [TN ]− (δTCµ2 [µ2] + δTCTr [Tr] + δTC ) [TC ] . (7)
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Regulatory T-cells can be activated by IL-2 [39,55,56], CCL20 [45] and TGF-β [39,50]. IL-6
suppresses T-reg differentiation and shifts it towards T-helper type [57]. The resulting dynamics
can be described as follow:

d [Tr]

dt
=
(
λTrTh [Th] + λTrµ2 [µ2] + λTrGβ [Gβ]

)
[TN ]− (δTrµ1 [µ1] + δTr) [Tr] . (8)

Combining all activation and introducing independent naive T-cell production ATN , we get
the following equation for naive T-cells:

d [TN ]

dt
=ATN − (λThD [D] + λThM [M ] + λThµ1 [µ1]) [TN ]

− (λTCTh [Th] + λTCD [D]) [TN ]

−
(
λTrTh [Th] + λTrµ2 [µ2] + λTrGβ [Gβ]

)
[TN ]

− δTN [TN ] . (9)

2.1.3 Dendritic cells

Dendritic cells become activated by HMGB1 [10] and TSLP, which is released by epithelial
cells [17, 18]. We take TSLP in quasi-equilibrium state as

[TSLP ] ≈ Const× [C] .

On the other hand multiple factors induced by cancer cells may promote apoptosis of dendritic
cells [58–62]. Additionally, there’s evidence that HMGB1 can reduce the maturation rate of
dendritic cells [44, 62]. Introducing the independent production rate of naive dendritic cells
ADN , we get the following system for dynamics of naive (DN ) and activated (D) dendritic cells:

d [DN ]

dt
=ADN − (λDH [H] + λDC [C]) [DN ]− (δDH [H] + δD) [DN ] , (10)

d [D]

dt
= (λDH [H] + λDC [C]) [DN ]− (δDH [H] + δDC [C] + δD) [D] . (11)

2.1.4 Macrophages

There are two main sub-types of macrophages: M1 and M2. M1 phenotype can be activated by
IFN-γ, while M2 can be activated IL-4 and IL-13, which are secreted by helper T-cells [40, 41].
Additionally there’s a possibility of tumor associated macrophage (TAM) activation by IL-
10 [40,63,64]. Introducing naive (MN ) and activated (M) TAMs, as well as production rate for
naive macrophages AM , we can write the following system:

d [MN ]

dt
=AM −

(
λMµ2 [µ2] + λMIγ [Iγ ] + λMTh [Th]

)
[MN ]− δM [MN ] ,

d [M ]

dt
=
(
λMµ2 [µ2] + λMIγ [Iγ ] + λMTh [Th]

)
[MN ]− δM [M ] .

Next, to simplify the system we introduce the total amount of macrophagesM0 = [MN ]+[M ].
Adding the above equations we get dM0

dt = AM − δMM0. If we assume initial conditions for M0

to be at the equilibrium M0 = AM/δM , then M0 will remain constant at all times. Then
we can express naive macrophages as [MN ] = M0 − [M ] and write the resulting equation for
macrophages as follows:

d [M ]

dt
= (λMµ2 [µ2] + λMIγ [Iγ ] +λMTh [Th]) (M0 − [M ])− δM [M ] . (12)
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2.1.5 Cancer cells

Cancer cells are epithelial cells with abnormally high growth and abnormally small death rate
(apoptosis). Additional loss of apoptosis in cancer cells is induced by IL-6 [58, 60, 65, 66]. In
addition to innate abnormally high proliferation rate λC , proliferation in cancer can be stim-
ulated by expression of STAT3 in cancer cells, where STAT3 is activated by cytokines such as
IL-6, IL-17, IL-21, and IL-22 [39, 67]. On the other hand, cancer development is suppressed by
TGF-β [39, 68–70], IL-12 and IFN-γ [39]; the suppressive properties of IL-12 are mediated by
IFN-γ [71] (so it is not directly included in the equation). Cytotoxic T-cells also directly target
cancer cells for destruction [39]. In cancer modeling, proliferation is traditionally taken to be
proportional to [C] (1− [C] /C0), where C0 is the total capacity [72, 73]. Thus the resulting
equation is

d [C]

dt
= (λC + λCµ1 [µ1]) [C]

(
1− [C]

C0

)
−
(
δCGβ [Gβ] +δCIγ [Iγ ] + δCTC [TC ] + δC

)
[C] . (13)

2.1.6 Necrotic cells

We designate cells which go through the process of necrotic cell death as necrotic cells. Since
there is a limited amount of resources in the tumor microenvironment, and cells are under
pressure, there are always some necrotic cells produced by the tumor. In addition, when activated
cytotoxic T-cells kill colorectal cancer cells by expressing high levels of cytokines like IFN-γ and
FasL [15], a fraction of the cancer cells may go through the stage of first becoming necrotic cells.
Therefore, the rate of “production” of the necrotic cells is given by the fraction of dying cancer
cells, and the resulting dynamics can be written as follows:

d [N ]

dt
= αNC

(
δCGβ [Gβ] + δCIγ [Iγ ] + δCTC [TC ] + δC

)
[C]− δN [N ] . (14)

2.2 Non-dimensionalization and sensitivity analysis

For additional numerical stability and to eliminate scale dependence, we perform non-dimen-
sionalization of the system. For variable X converging to a steady state X∞, we consider
non-dimensional variable X̄ = X/X∞. Then, X̄ satisfies the equation

dX̄

dt
= F

(
X̄, θ, t

)
.

The (first order) solution sensitivity S with respect to the model parameter θ = {θi}i=1, N is
defined as a vector

Si =
dX̄

dθi
, i = 1, N.

In general, the sensitivity vector is time dependent and varies for different solutions and param-
eter sets [74–76]. However, here we consider sensitivity at the steady state of the equation. The
sensitivity of each parameter in the neighborhood of a chosen parameter set Ω(θ) is defined as

Si =

∫
Ω
Si(θ) dθ,

where the integration is evaluated numerically with sparse grid points [77,78].

We choose three quantities of interest for the sensitivity analysis: amount of cancer cells C,
total amount of cells, and a measure of how fast the system is converging to the steady state.
Consider general steady state system as follows

F (X?, θ) = 0,
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whereX? is the equilibrium. We then consider a small perturbation toX? as X̄(t) = X?+εX1(t).
The linearized system becomes

dX1(t)

dt
= ∇F (X?, θ)X1(t) +O(ε),

where ∇F (X, θ) is the Jacobian matrix of F (X, θ) with respect to X. Thus we have X1(t) ≈
e∇F (X?, θ)t and the minimal eigenvalue minλ (∇F (X?, θ)) determines how fast it reaches the
steady state.

2.3 Cancer patients’ data

In recent years, several tumor deconvolution methods have been developed to estimate the
relative abundance of various cell types in a tumor from its gene expression profile. A review
of these methods [79] and an application of CIBERSORTx on renal cancer [80] show a great
performance of CIBERSORTx model. To identify the immune profiles of colonic tumors, we
applied CIBERSORTx [81] on RNA-seq gene expression profiles of primary tumors of patients
with colon cancer from the TCGA project of COAD downloaded from UCSC Xena web portal.
There are a total of 329 patients with RSEM normalized RNA-seq data in log2 scale. Before
applying CIBERSORTx on this dataset, we transformed the gene expression values to the linear
space.

2.4 Numerical methods

In order to solve the time dependent system, we employ the SciPy odeint function [82] using
initial conditions based on patients with the smallest tumor area within each cluster. The
sensitivity analysis of the system based on the cancer and total cell density at steady state is
obtained analytically by differentiating the steady state equation with respect to the parameters,
namely,

∇F (X?, θ)
dX∗

dθ
+
∂F (X?, θ)

∂θ
= 0.

Then to obtain the sensitivity, dX∗

dθ , one just needs to numerically invert the matrix ∇F . On
the other hand, it is hard to analytically obtain the sensitivity of the eigenvalue, so instead a
finite-difference approach is used as follows:

dminλ (∇F (X?, θ))

dθ
≈ minλ

(
∇F

(
X?, θ + 1

2∆θ
))
−minλ

(
∇F

(
X?, θ − 1

2∆θ
))

∆θ
,

where ∆θ is a small discretization parameter.

3 Results

We derived an ODE system describing complex dynamics in the colon cancer microenvironment.
Assuming non-negative values of all parameters and non-negative initial conditions, the solution
of the system remains non-negative and globally bounded (see Appendix A).

3.1 Patient data analysis

We downloaded TCGA clinical data, which includes tumor dimension, stage, age at diagnosis,
and gene expression profiles of primary tumors for patients with colon cancer from GDC portal.
We applied CIBERSORTx B-mode on gene expression profiles to estimate the fraction of each
immune cell type in each tumor. Elbow method applied on estimated cell fractions (Figure 2-A)
showed the existence of five distinct immune patterns. We hence performed K-means clustering
with K = 5, to group patients based on the immune pattern of their primary tumors. Figure 2-B
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shows average cell fractions for patients divided into five clusters based on their immune profiles.
To investigate the effect of these immune patterns on the dynamics of tumors, we model each
cluster separately, and based on the steady state assumptions (see Appendix B), we generate a
parameter set for each cluster, with steady state values derived from patient data as described
further.

�� �� �� �� ��

�� �� �� �� ��

A

B

Figure 2: Immune cell fractions. Sub-figure A shows the fraction of immune cells in each
colonic tumor. Sub-figure B indicates the frequencies of immune cell types in each cluster of
patients. Clusters were formed based on variations of 22 immune cell types, some of which were
later combined and others were not included in the model. Cell frequencies on this figure are
average within the cluster and vertical bars show the standard deviations

The deconvolution data, described in section 2.3, only provides the ratios of immune cells in
the tumor microenvironment. For each patient P , we define their size of tumor (size(P )) to be
the product of the longest and the shortest dimensions of the tumor, and we assume total cell
density is proportional to the size of the tumor:

Total Cell DensityP = αdim
size(P )

1
K

∑
allP size(P )

.

Then, we take each immune cell value from deconvolution multiplied by 0.4αdim
∑

(Immune cell
ratios) and

C =
2

3
(Total Cell Density − Total Immune Density) , N = 0.5C.

For each cluster, we consider the mean of variables of patients with tumor size above the average
of their cluster as the steady state values of the variables for the corresponding cluster. The
resulting data is given in Table 2.

While macrophage capacity M0 is derived from the data, we assume cancer capacity to be
C0 = 2 ∗ C for both mean-based and extreme-based data. We choose αdim = 1.125e+05 to
approximately match the average density of cancer cells across all patients to 4.5e+04 cells/cm3

reported in [83]. However, it is important to note that this is no more than scaling and has no
effect on the dynamics of the dimensionless system.
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Table 2: Steady state cell densities. Mean cell densities in cells/cm3 for each cluster are
used to derive parameter sets for sensitivity analysis and dynamics computations. Calculated
based only on patients with tumor size above average for each cluster.

Cluster T∞N T∞h T∞C T∞r D∞N D∞ M∞ M0

1 1.4914e+4 4.6358e+3 2.5845e+3 2.3891e+3 3.0504e+2 6.0214e+2 1.1798e+4 2.1004e+4
2 1.1429e+4 6.0411e+3 5.3853e+3 3.3646e+3 1.0329e+2 5.1299e+2 8.6227e+3 1.6445e+4
3 9.2381e+3 1.3864e+3 1.1139e+3 2.7910e+3 1.8878e-1 1.8635e+2 6.7972e+3 3.2146e+4
4 1.3878e+4 2.4910e+3 3.2172e+3 2.2783e+3 1.4196e+2 6.2154e+2 1.2931e+4 1.5761e+4
5 1.0262e+4 3.7844e+3 1.6853e+3 2.6394e+3 8.0199e+1 1.9084e+2 1.1603e+4 2.8198e+4

C∞ N∞ µ∞1 µ∞2 H∞ I∞γ G∞β

1 9.1531e+4 4.5765e+4 1.6328e+2 1.2987e+3 8.9811e+3 8.5737 1.9037e+4
2 9.7064e+4 4.8532e+4 1.7552e+2 1.3249e+3 8.5279e+3 10.5677 2.2275e+4
3 9.0029e+4 4.5014e+4 1.9866e+2 1.2906e+3 9.5122e+3 0.8287 2.5145e+4
4 9.6956e+4 4.8478e+4 1.1410e+2 3.3689e+2 5.1782e+3 1.2703 8.1734e+3
5 8.0584e+4 4.0292e+4 1.2058e+2 7.1551e+2 7.7848e+3 5.7892 2.6260e+4

For the time-dependent calculations, we choose initial conditions for each cluster based on
patients with the smallest tumor size. The relative values are given in Table 3. The dynamics
with initial conditions based on other patients is presented in Appendix C.

Table 3: Dimensionless initial conditions. Values of initial conditions for the dimensionless
system derived from the patients with the smallest tumor size.

Cluster TN/T
∞
N Th/T

∞
h TC/T

∞
C Tr/T

∞
r DN/D

∞
N D/D∞ M/M∞

1 0.9311 1.2492 2.4626 0.6872 1.6328 0.0003 0.6737
2 1.2302 1.3155 1.5210 0.5107 2.0461 2.7822 1.2920
3 1.1997 0.8555 1.6948e-4 0.6572 1.0000 1.0130e-3 1.4150
4 1.4471 0.1571 0.5823 0.8910 5.6827 4.2945 0.9259
5 0.6794 2.6119 1.6294 1.8819 2.3538e-3 0.4542 0.7749

C/C∞ N/N∞ µ1/µ
∞
1 µ2/µ

∞
2 H/H∞ Iγ/I

∞
γ Gβ/G

∞
β

1 3.1466e-4 0.0 0.4971 0.5124 1.4712 3.8892 0.2549
2 2.9672e-4 0.0 0.7578 0.1790 0.6036 0.9385 0.5566
3 3.1991e-4 0.0 0.1335 0.8419 1.2566 0.0 0.6851
4 2.9706e-4 0.0 0.4137 5.7720 1.4630 0.0 2.5629
5 3.5741e-4 0.0 0.4587 2.2979 1.1835 0.4084 0.3457

3.2 Sensitivity analysis

We perform sensitivity analysis of the non-dimensionalized system with parameters derived from
patient data through steady state assumptions. Table 2 contains the steady state values used
for each cluster, and Appendix B shows the parameter derivation and non-dimensionalization
in detail. We use cancer cells, total cell density and minimal eigenvalue of the Jacobian of the
ODE system as the variables of interest in the sensitivity analysis. Minimal eigenvalue of the
Jacobian serves as a measure of how fast the system converges to the steady state. Figure 3-A
shows the four most sensitive parameters for each cluster. Additionally, to evaluate the effect
of immune microenvironment on cancer, we look at the sensitivity of cancer cells and total cell
density excluding the parameters appearing in the equations for cancer and necrotic cells. The
resulting data denoted as “Immune sensitivity” is given in Figure 3-B.
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Figure 3: Sensitivity analysis. The first, second, and third columns of sub-figure A respec-
tively present the results of non-dimensional sensitivity of cancer cell density, total cell density
and minimal eigenvalue of the Jacobian of the system at the steady state. Minimal eigenvalue
is used as a measure of how fast the system converges to the steady state. Sub-figure B shows
the sensitive parameters related to immune cells. Each row of plots shows the most sensitive
parameters for each cluster of patients.

Across all clusters the most sensitive parameters are cancer proliferation and death rates
directly present in the cancer equation (13). From third column in Figure 3-A, we conclude that
for all clusters increased cancer proliferation coefficients correspond to faster convergence to the
steady state, while increased cancer death rates lead to a slower convergence. When considering
immune sensitivity presented on figure 3-B, in clusters 1, 2, 3, and 5, the most sensitive immune
parameters are those corresponding to the activation and decay rates of macrophages, with only
sensitivity levels being different between clusters and variables. In clusters 1 and 2, which include
tumors with a smaller density of naive macrophages than activated macrophages, an increase in
decay rate of macrophages causes a decrease in the density of cancer cells and total cell density.
On the other hand, an increase in any of the activation rates for macrophages causes an increase
in both quantities of interest. However, for clusters 3 and 5, which include tumors with a higher
density of naive macrophages than activated macrophages, the effects are reversed. Interestingly,
for cluster 3, the increase in macrophage activation rate results in both lower cancer cell density
and total cell density, with latter sensitivity being noticeably smaller by absolute value. On the
other hand, for cluster 5 the increase in macrophage activation rate results in lower cancer cell
density, but higher total cell density. This can be explained by a significant increase in immune
cell density, which for cluster 5 is even higher than the corresponding decrease in cancer cell
density. All these results demonstrate that at the steady state tumor-associated macrophages
could have different effects on different clusters of patients depending on their immune profile.

The outlying cluster 4, which consists of tumors with a significantly small density of naive
macrophages compared to the other clusters, is less sensitive to the activation rates of macrophages.
The most sensitive immune parameters for cancer cell density are those related to the activation
and degradation of regulatory T-cells. The results indicate that increased regulatory response
activation rate corresponds to an increase in the cancer cell density, while an increase in T-reg
cell degradation rate results in a decrease in cancer cell density, demonstrating that for this clus-
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ter of patients regulatory T-cells have mostly negative effect. Importantly, the most sensitive
parameter for the total cell density is still the decay rate of macrophages, and macrophages still
have a negative effect; i.e. the faster decay of macrophases leads to the smaller tumors in the
steady state.

3.3 Dynamic of tumor microenvironment

We investigate the dynamics of each variable, with parameters derived for each cluster based on
steady state assumptions (see Table 2 for steady state values and Tables A1-A3 for parameter
values) and initial conditions of patients with the smallest tumor (see Table 3). Figures 4 and
5 are respectively show the dynamics of cell densities and cytokines expressions.

Figure 4: Cells’ dynamics in colonic tumors. Time evolution of cells’ density (cell/cm3) for
each cell type in the model and total cell density. Different colors represent the models derived
for different clusters of patients and shaded regions represent the 10% variation in the most
sensitive parameters.

Figure 5: Cytokines’ dynamics in colonic tumors. Time evolution of RNA-seq expression
rate of cytokines. Different colors represent the models derived from different clusters of patients
and shaded regions represent the 10% variation in the most sensitive parameters.

For most clusters, cancer cells grow as helper T-cells, cytotoxic cells (cytotoxic T-cells and
NK cells), dendritic cells and macrophages increase in density over time, while naive T-cells,
regulatory T-cells and naive dendritic cells decrease in density. The increase in cytotoxic cells
along with tumor progression is somewhat contradicting to the finding in [84, 85] that colon
primary tumor growth is associated with decreased cytotoxic T-cells density. However, there
is no correlation between tumor size and cytotoxic cells in the TCGA data of colonic primary
tumors. Moreover, it is important to note that in our model cancer cells’ growth is multiple times
faster than the rate of change of any immune cells (Figure 4). Thus, even though cytotoxic cells
density grows over time, the tumor is growing at a much faster rate. Since tumor cells activate
dendritic cells which then activate cytotoxic cells, it is reasonable to see some growth of cytotoxic
cells when tumor cells density increases rapidly.

Cluster 2 and 4 have the highest cancer cell density at steady state and also the highest
growth rate of cancer cells. Cluster 2’s cancer cells start out with lowest growth rate, but at
around 1,800 days grow significantly faster and end up growing the fastest among all clusters.
Cluster 2 has the highest density of helper T-cells and cytotoxic cells, both in the early stages
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of cancer development and at steady state, as well as the highest growth rate of these cells.
However, cluster 2 has rather low density and low growth rate of macrophages.

Cluster 4, having the largest density of activated macrophages and a significantly small
density of naive macrophages (Figure 2-B), first demonstrates average cancer growth rate, but
then increases and has one of the 2 highest cancer cell densities at the steady state (Figure 4).
Similar to cluster 2, cluster 4 has high density of cytotoxic cells (CD8 T-cells and NK cells)
initially and at steady state. Both cluster 2 and 4 have low growth rate of macrophages and
high density of dendritic cells, compared to other clusters. Immune cell dynamics of cluster 2
and 4 demonstrate that high density of cytotoxic cells and dendritic cells, along with low growth
rate of macrophages correlate with high growth rate of cancer cells.

However, unlike cluster 2, cluster 4 has low growth rate of cytotoxic cells and helper T-cells,
and low density of helper T-cells overall. Though both cluster 2 and 4 have low growth rate of
macrophages, cluster 4 has the highest density of macrophages among all clusters, while cluster
2 has the second lowest macrophages density. Regulatory T-cells also behave very differently
between cluster 2 and cluster 4. Cluster 2 has high density and high decline rate of regulatory
T-cells over time, but cluster 4 has both low density and low decline rate of this cell. These
observations suggest that cell densities alone cannot predict cancer progression and there are no
specific biomarkers that are sufficient to model tumor growth. Instead, a time series immune
interaction network with tumor cells can be useful in modeling cancer development.

Cluster 5, with the density of activated macrophages being slightly less than naive macrophages
(Figure 2-B), has the lowest cancer cell density at steady state and the lowest cancer cell growth
of all clusters (Figure 4). This cluster has the lowest growth rate and density at initial condition
and steady state of naive dendritic cells, activated dendritic cells and cytotoxic cells, except for
cytotoxic cells density at steady state (second lowest). It also has the highest growth rate of
macrophages among the five clusters. This observation might imply that slow tumor growth
is associated with low density and growth rate of naive and activated dendritic cells, cytotoxic
cells and high growth rate of macrophages.

Cluster 1, which is characterized by the second largest population of macrophages and helper
T-cells, demonstrates that dendritic cells alone cannot be chosen as a marker of cancer pro-
gression, as it has the second highest dendritic cell population, but only third highest cancer
population at the steady state, being surpassed by cluster 2.

Cluster 3, being a clear outlier in the immune dynamics, has near zero density of naive
dendritic cells. This alone prevents it from creating significant variations in the immune response
during the cancer progression. It is interesting to note, that while almost unchecked by immune
responses, this cluster initially demonstrates noticeably highest cancer growth rate, but results
in the second lowest cancer density at the steady state.

Tumor cytokines’ dynamics (Figure 5) indicate that as tumor grows, HMGB1, IFN-γ and µ1

(IL-6, IL-17, IL-21, IL-22) increase in density, but TGF-β and µ2 (IL-10, CCL20) stay relatively
constant. Cluster 2 and 4, which have the highest cancer cell growth rate among all clusters,
show different cytokines’ behaviors throughout time. At steady state, cluster 4 has significantly
lower densities of all cytokines in our model than cluster 2, despite the fact that they have the
same cancer cell density then. Cluster 4 also has much lower growth rate of µ1, HMGB1 and
IFN-γ compared to cluster 2. Cluster 1 and 5 have more similar growth rate of these cytokines
as cluster 2, even though they have rather different tumor growth rate from cluster 2. Thus, the
density or growth of any specific cytokine is not an adequate predictor of tumor progression,
and we need the full interaction network to effectively model the cancer cell growth.

Additionally within each cluster we look at the dynamics of cancer and total cell density with
different initial conditions, each derived from a different patient in that cluster. See Appendix
C, and specifically figures A1-A5, for more details on different initial conditions and resulting
dynamics. This result indicates that even within the same cluster different initial immune profile
may cause dramatic difference in cancer progression rate. Additionally, while the dynamics of
cancer cell density remains monotone across all patients, we observe oscillatory behavior in the
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total cell density. This can be explained by a temporary surge of immune cell density at the early
stages of cancer, which also appears to correlate with slower cancer progression rate. The only
cluster which does not exhibit this oscillatory behavior is cluster 3. As mentioned before, due to
lack of naive dendritic cells cluster 3 does not show significant immune cell density variations,
which are the source of oscillatory behavior for other clusters.

4 Discussion

There are many mathematical models for cancer [86–106]. The approach of many of these
mathematical models is varying the parameters values and initial conditions to investigate their
effects on the dynamics. However, new advances in tumor deconvolution techniques help us to
utilize cancer patients’ data in order to develop a data driven mathematical model of tumor
growth. Using tumor deconvolution methods, we estimate the relative abundance of various
cell types from gene expression profiles of tumors. The machine learning algorithm of K-means
clustering indicates the existence of five distinct groups of colon cancers based on their immune
patterns. The comparison of tumor behaviours in these groups suggests that the dynamics of
tumors strongly depends on their immune structure.

While it would be ideal to use time course gene expression data of colon cancer patients
in our framework, the availability of these time series data sets is limited. In order to combat
this limitation, clustering was used to group patients with similar immune patterns and treat
each group as time course data based on the size of tumor, which means the data points with
small tumor density are considered data from early stages and the data points with large tumor
density are considered data from late stages. This method of artificially creating time course
data is based on the assumption that immune variation between clusters of patients at any time
point is greater than the immune variation within one cluster during tumor progression.

The mathematical model with these assumptions indicate that high density of cytotoxic T-
cells and dendritic cells and low growth rate of macrophages are associated with high growth rate
of cancer cells, while low density and growth rate of naive and active dendritic cells, cytotoxic
T-cells and high growth rate of macrophages correlate with slow tumor growth. In particular,
our results imply that macrophages’ growth rate is negatively correlated with tumor growth
rate, which is consistent with the observation that high level of macrophages is associated with
favorable outcome of colon cancer patients in [84]. This study [84] also shows that high level
of regulatory T-cells is related to poor prognosis of patients, which supports our results that
regulatory T-cells decrease in density as cancer cells increase in density. Another similar finding
between [84] and our study is that the density of dendritic cells increases along with tumor
progression.

There is a significant body of research analyzing statistical and mathematical relations of
particular components of tumor microenvironment and the disease progression and outcome
for subsequent establishment of prognostic biomarkers [83, 107–115]. Our result demonstrates
that the dynamics of cancer development cannot be captured by one specific biomarker, but
can rather be characterized by complex time-dependent interactions between many components
of the immune system and tumor tissue. It is important to further develop and analyze these
tumor-immune cell interactions and how they affect different possibilities of treatment.

One way forward is the design of patient-specific models [116–119]. These models can utilize
the tumor immune microenvironment deconvolution and clustering methods for available patient
data as detailed in this paper. New prognosis can be built based on established dynamics from
patients with similar immune characteristics. To better match the dynamics of the model to real
patient data, various parameter fitting algorithms can be utilized [120–123]. Another possible
improvement is a transition to a partial differential equations model [124] to analyze spatial
properties of tumor development as well as temporal.
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The following abbreviations are used in this manuscript:

CAC colitis-associated cancer
CCL20 chemokine (C-C motif) ligand 20
COAD colon adenocarcinoma
DAMP damage-associated molecular pattern
DCs dendritic cells
FasL fas ligand
GEP gene expression profiles
HMGB1 high mobility group box 1
IFN interferon
IL interleukin
NF-κB nuclear factor kappa B
NK cells natural killer cells
ODE ordinary differential equation
RAGE receptor for advanced glycation endproducts
RNA-seq ribonucleic acid sequencing
STAT signal transducer and activator of transcription
TAM tumor associated macrophage
TCGA the cancer genome atlas
TGF transforming growth factor
TNF tumor necrosis factor
TSLP thymic stromal lymphopoietin
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gel, “The interaction between HMGB1 and TLR4 dictates the outcome of anticancer
chemotherapy and radiotherapy,” Immunological Reviews, vol. 220, pp. 47–59, dec 2007.

[11] Z. Hu, X. Wang, L. Gong, G. Wu, X. Peng, and X. Tang, “Role of high-mobility group
box 1 protein in inflammatory bowel disease,” Inflammation Research, vol. 64, no. 8,
pp. 557–563, 2015.

[12] E. B. Golden, D. Frances, I. Pellicciotta, S. Demaria, M. Helen Barcellos-Hoff, and S. C.
Formenti, “Radiation fosters dose-dependent and chemotherapy-induced immunogenic cell
death,” OncoImmunology, vol. 3, no. 4, p. e28518, 2014.

[13] P. Schildkopf, B. Frey, F. Mantel, O. J. Ott, E. M. Weiss, R. Sieber, C. Janko, R. Sauer,
R. Fietkau, and U. S. Gaipl, “Application of hyperthermia in addition to ionizing irradia-
tion fosters necrotic cell death and HMGB1 release of colorectal tumor cells,” Biochemical
and Biophysical Research Communications, vol. 391, no. 1, pp. 1014–1020, 2010.

[14] L. Liu, M. Yang, R. Kang, Z. Wang, Y. Zhao, Y. Yu, M. Xie, X. Yin, K. M. Livesey, M. T.
Lotze, D. Tang, and L. Cao, “HMGB1-induced autophagy promotes chemotherapy resis-
tance in leukemia cells.,” Leukemia : official journal of the Leukemia Society of America,
Leukemia Research Fund, U.K, vol. 25, no. 1, pp. 23–31, 2011.

[15] X. Xu, X. Y. Fu, J. Plate, and A. S. Chong, “IFN-gamma induces cell growth inhibition
by Fas-mediated apoptosis: requirement of STAT1 protein for up-regulation of Fas and
FasL expression.,” Cancer research, vol. 58, pp. 2832–7, jul 1998.

[16] G. Kroemer, L. Galluzzi, O. Kepp, and L. Zitvogel, “Immunogenic Cell Death in Cancer
Therapy,” Annual Review of Immunology, vol. 31, pp. 51–72, mar 2013.

[17] Y.-J. Liu, “TSLP,” in Epithelial Cell and Dendritic Cell Cross Talk, vol. 18, ch. 1, pp. 1–25,
2009.

[18] L. W. Peterson and D. Artis, “Intestinal epithelial cells: regulators of barrier function and
immune homeostasis.,” Nature reviews. Immunology, vol. 14, pp. 141–53, mar 2014.

[19] D. C. Baumgart and S. R. Carding, “Inflammatory bowel disease: cause and immunobi-
ology.,” Lancet (London, England), vol. 369, pp. 1627–40, may 2007.

[20] B. K. Popivanova, K. Kitamura, Y. Wu, T. Kondo, T. Kagaya, S. Kaneko, M. Oshima,
C. Fujii, and N. Mukaida, “Blocking TNF-alpha in mice reduces colorectal carcinogenesis
associated with chronic colitis.,” The Journal of clinical investigation, vol. 118, pp. 560–70,
feb 2008.

[21] R. J. Xavier and D. K. Podolsky, “Unravelling the pathogenesis of inflammatory bowel
disease.,” Nature, vol. 448, pp. 427–434, jul 2007.

[22] O. Boyman and J. Sprent, “The role of interleukin-2 during homeostasis and activation of
the immune system,” Nature Reviews Immunology, vol. 12, pp. 180–190, mar 2012.

15

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 4, 2020. ; https://doi.org/10.1101/2020.11.02.365668doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.02.365668
http://creativecommons.org/licenses/by-nc/4.0/


[23] C. F. Nathan, H. W. Murray, M. E. Wiebe, and B. Y. Rubin, “Identification of interferon-
gamma as the lymphokine that activates human macrophage oxidative metabolism and
antimicrobial activity.,” The Journal of experimental medicine, vol. 158, pp. 670–89, sep
1983.
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Appendix A ODE system and analysis

Combining equations (1)-(14) we obtain the following system

d [TN ]

dt
=ATN − (λThD [D] + λThM [M ] + λThµ1 [µ1]) [TN ]− (λTCTh [Th] + λTCD [D]) [TN ]

−
(
λTrTh [Th] + λTrµ2 [µ2] + λTrGβ [Gβ]

)
[TN ]− δTN [TN ] (15)

d [Th]

dt
= (λThD [D] + λThM [M ] + λThµ1 [µ1]) [TN ]− (δThµ2 [µ2] + δThTr [Tr] + δTh) [Th] (16)

d [TC ]

dt
= (λTCTh [Th] + λTCD [D]) [TN ]− (δTCµ2 [µ2] + δTCTr [Tr] + δTC ) [TC ] (17)

d [Tr]

dt
=
(
λTrTh [Th] + λTrµ2 [µ2] + λTrGβ [Gβ]

)
[TN ]− (δTrµ1 [µ1] + δTr) [Tr] (18)

d [DN ]

dt
=ADN − (λDH [H] + λDC [C]) [DN ]− (δDH [H] + δD) [DN ] (19)

d [D]

dt
= (λDH [H] + λDC [C]) [DN ]− (δDH [H] + δDC [C] + δD) [D] (20)

d [M ]

dt
=
(
λMµ2 [µ2] + λMIγ [Iγ ] + λMTh [Th]

)
(M0 − [M ])− δM [M ] (21)

d [C]

dt
= (λC + λCµ1 [µ1]) [C]

(
1− [C]

C0

)
−
(
δCGβ [Gβ] + δCIγ [Iγ ] + δCTC [TC ] + δC

)
[C] (22)

d [N ]

dt
=αNC

(
δCGβ [Gβ] + δCIγ [Iγ ] + δCTC [TC ] + δC

)
[C]− δN [N ] (23)

d [H]

dt
=λHN [N ] + λHM [M ] + λHTh [Th] + λHTC [TC ] + λHTr [Tr]− δH [H] (24)

d [µ1]

dt
=λµ1Th [Th] + λµ1M [M ] + λµ1D [D]− δµ1 [µ1] (25)

d [µ2]

dt
=λµ2M [M ] + λµ2D [D] + λµ2Tr [Tr]− δµ2 [µ2] (26)

d [Iγ ]

dt
=λIγTh [Th] + λIγTC [TC ] + λIγM [M ]− δIγ [Iγ ] (27)

d [Gβ]

dt
=λGβM [M ] + λGβTr [Tr]− δGβ [Gβ] (28)

The system has 14 variables and 59 different parameters. The λ parameters correspond to
proliferation, activation and production rates, δ parameters correspond to degradation and cell
death rates, and four parameters: ATN and ADN respectively are the production rates of naive
T-cells and dendritic cells, M0 and C0 are the total density of macrophages (naive and activated
together) and cancer cells maximum capacity, respectively.

Appendix A.1 Positivity

To prove that the system with positive coefficients and positive initial conditions has positive
solution let us consider the set of integrating factors, one for each variable:

ηTN (t) = exp

t∫
0

((λThD + λTcD) [D] + λThM [M ] + λThµ1 [µ1] +

+ (λTcTh + λTrTh) [Th] + λTrµ2 [µ2] + λTrGβ [Gβ] + δTN
)
ds,

ηTh (t) = exp

t∫
0

(δThµ2 [µ2] + δThTr [Tr] + δTh) ds,
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ηTC (t) = exp

t∫
0

(δTCµ2 [µ2] + δTCTr [Tr] + δTC ) ds,

ηTr (t) = exp

t∫
0

(δTrµ1 [µ1] + δTr) ds,

ηDN (t) = exp

t∫
0

(λDH [H] + λDC [C] + δDH [H] + δD) ds,

ηD (t) = exp

t∫
0

(δDH [H] + δDC [C] + δD) ds,

ηM (t) = exp

t∫
0

(
λMµ2 [µ2] + λMIγ [Iγ ] + λMTh [Th] + δM

)
ds,

ηC (t) = exp

t∫
0

(
δCGβ [Gβ] + δCIγ [Iγ ] + δCTC [TC ] + δC − (λC + λCµ1 [µ1])

(
1− [C]

C0

))
ds,

ηN (t) = exp (δN t) , ηH (t) = exp (δHt) , ηµ1 (t) = exp (δµ1t) ,

ηµ2 (t) = exp (δµ2t) , ηIγ (t) = exp
(
δIγ t

)
, ηGβ (t) = exp

(
δGβ t

)
These integrating factors will not allow us to derive explicit solution as some of them are defined
through the unknown variables. But it is important to note that the factors are strictly positive
and allow us to rewrite the system as

d ([TN ] ηTN )

dt
=ATN ηTN

d ([Th] ηTh)

dt
= (λThD [D] + λThM [M ] + λThµ1 [µ1]) [TN ] ηTh

d ([TC ] ηTC )

dt
= (λTCTh [Th] + λTCD [D]) [TN ] ηTC

d ([Tr] ηTr)

dt
=
(
λTrTh [Th] + λTrµ2 [µ2] + λTrGβ [Gβ]

)
[TN ] ηTr

d ([DN ] ηDN )

dt
=ADN ηDN

d ([D] ηD)

dt
= (λDH [H] + λDC [C]) [DN ] ηD

d ([M ] ηM )

dt
=
(
λMµ2 [µ2] + λMIγ [Iγ ] + λMTh [Th]

)
M0ηM

d ([C] ηC)

dt
=0

d ([N ] ηN )

dt
=αNC

(
δCGβ [Gβ] + δCIγ [Iγ ] + δCTC [TC ] + δC

)
[C] ηN

d ([H] ηH)

dt
= (λHN [N ] + λHM [M ] + λHTh [Th] + λHTC [TC ] + λHTr [Tr]) ηH

d ([µ1] ηµ1)

dt
= (λµ1Th [Th] + λµ1M [M ] + λµ1D [D]) ηµ1

d ([µ2] ηµ2)

dt
= (λµ2M [M ] + λµ2D [D] + λµ2Tr [Tr]) ηµ2

d
(
[Iγ ] ηIγ

)
dt

=
(
λIγTh [Th] + λIγTC [TC ] + λIγM [M ]

)
ηIγ
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d
(
[Gβ] ηGβ

)
dt

=
(
λGβM [M ] + λGβTr [Tr]

)
ηGβ

We see that the right-hand side of each equation in this system is non-negative, which means
that the variable-factor product is non-decreasing, and thus if positive initially remains positive
at all times.

Appendix A.2 Boundedness

Let us show that all positive solutions are bounded for positive time t. We split the equations
into groups by cell types. It is important to note, that we are not trying to derive the sharp
bounds, just show that the bounds exist.

T-cells

Adding equations (15)-(18) we get

d ([TN ] + [Th] + [TC ] + [Tr])

dt
=ATN − δTN [TN ]− (δThµ2 [µ2] + δThTr [Tr] + δTh) [Th]

− (δTCµ2 [µ2] + δTCTr [Tr] + δTC ) [TC ]− (δTrµ1 [µ1] + δTr) [Tr]

≤ATN − ([TN ] + [Th] + [TC ] + [Tr]) min (δTN , δTh , δTC , δTr) .

Integrating this inequality we obtain

([TN ] + [Th] + [TC ] + [Tr]) ≤
ATN

min (δTN , δTh , δTC , δTr)

(
1− e−min(δTN ,δTh ,δTC ,δTr)t

)
+ ([TN ] (0) + [Th] (0) + [TC ] (0) + [Tr] (0)) e−min(δTN ,δTh ,δTC ,δTr)t.

The right-hand side function is bounded, and since we have proven that each cell density is
positive, all T-cells have to remain bounded.

Dendritic cells

Let us add equations (19) and (20) to obtain

d ([DN ] + [D])

dt
= ADN − (δDH [H] + δD) ([DN ] + [D])− δDC [C] [D] ≤ ADN − δD ([DN ] + [D]) .

Integrating we get

([DN ] + [D]) ≤ ADN
δD

(
1− e−δDt

)
+ ([DN ] (0) + [D] (0)) e−δDt.

Since right-hand side is bounded and each variable is positive, this proves that each variable is
bounded.

Macrophages

Let us rewrite equation (21) as

d ([M ]−M0)

dt
−
(
λMµ2 [µ2] + λMIγ [Iγ ] + λMTh [Th]

)
(M0 − [M ]) = −δM [M ] ≤ 0.

Integrating (with implicit dependence on variables [µ2], [Iγ ], and [Th]) results in

[M ] ≤M0 − (M0 − [M ] (0)) exp

(
−
∫ t

0

(
λMµ2 [µ2] (s) + λMIγ [Iγ ] (s) + λMTh [Th] (s)

)
ds

)
.

The right-hand side function is bounded for positive [µ2], [Iγ ], and [Th], and thus proves the
bound on [M ].
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Cancer cells

Rewriting the equation (22) as

d ([C]− C0)

dt
−(λC + λCµ1 [µ1]) [C]

C0
(C0 − [C]) =

(
δCGβ [Gβ] + δCIγ [Iγ ] + δCTC [TC ] + δC

)
[C] ≤ 0

we integrate with implicit dependence on both [C] and [µ1] to obtain

[C] ≤ C0 − (C0 − [C] (0)) exp

(
−
∫ t

0

(λC + λCµ1 [µ1] (s)) [C] (s)

C0
ds

)
.

Since [C] and [µ1] are proven to remain positive, the right-hand side is bounded, hence [C] is
bounded.

Interferon-γ and TGF-β

Here we show the bound on [Iγ ] and [Gβ] as we need them to prove the bound on [N ].

Remark. Alternatively we could show a bound on [µ1] and subsequent bound on [N ] + [C].

Observe that in the right-hand sides of equations (27) and (28) the positive terms are already
proven to be bounded:

λIγTh [Th] + λIγTC [TC ] + λIγM [M ] ≤ λmaxIγ ,

λGβM [M ] + λGβTr [Tr] ≤ λmaxGβ
.

Then combining these with equations (27) and (28) we get the following differential inequalities:

d [Iγ ]

dt
≤ λmaxIγ − δIγ [Iγ ] ,

d [Gβ]

dt
≤ λmaxGβ

− δGβ [Gβ] .

Integrating we get

[Iγ ] ≤
λmaxIγ

δIγ

(
1− e−δIγ t

)
+ [Iγ ] (0) e−δIγ t,

[Gβ] ≤
λmaxGβ

δGβ

(
1− e−δGβ t

)
+ [Gβ] (0) e

−δGβ t,

which proves the bound.

Necrotic cells

Now we notice that for equation (23) all the components of the positive term are already proven
to remain bounded

αNC
(
δCGβ [Gβ] + δCIγ [Iγ ] + δCTC [TC ] + δC

)
[C] ≤ λmaxN ,

which results in the differential inequality

d [N ]

dt
≤ λmaxN − δN [N ] ,

subsequently resulting after integration in the following bound:

[N ] ≤ λmaxN

δN

(
1− e−δN t

)
+ [N ] (0) e−δN t.
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Remaining cytokines

With the bound on necrotic cells we have proven boundedness for all the positive components
of the right-hand sides of the equations (24)-(26):

λHN [N ] + λHM [M ] + λHTh [Th] + λHTC [TC ] + λHTr [Tr] ≤ λmaxH ,

λµ1Th [Th] + λµ1M [M ] + λµ1D [D] ≤ λmaxµ1 ,

λµ2M [M ] + λµ2D [D] + λµ2Tr [Tr] ≤ λmaxµ2 .

Thus the following differential inequalities are valid:

d [H]

dt
≤λmaxH − δH [H] ,

d [µ1]

dt
≤λmaxµ1 − δµ1 [µ1] ,

d [µ2]

dt
≤λmaxµ2 − δµ2 [µ2] .

Integrating we obtain

[H] ≤λ
max
H

δH

(
1− e−δH t

)
+ [H] (0) e−δH t,

[µ1] ≤
λmaxµ1

δµ1

(
1− e−δµ1 t

)
+ [µ1] (0) e−δµ1 t,

[µ2] ≤
λmaxµ2

δµ2

(
1− e−δµ2 t

)
+ [µ2] (0) e−δµ2 t.

Thus [H], [µ1], and [µ2] are bounded for positive t.

Appendix B Derivation of the sample parameter set

Appendix B.1 Steady state and additional assumptions

We derive the sample parameter set under the assumption of specific values of steady state for
each variable:

T∞N , T∞h , T∞C , T∞r , D∞N , D
∞, M∞, C∞, N∞, H∞, µ∞1 , µ

∞
2 , I

∞
γ , G

∞
β .

Then equations (15)-(28) provide us with 14 restrictions on parameters. There is a total of 59
parameters, so additional restrictions are required. We assume given cancer cell and macrophage
capacities C0 and M0, as well as necrosis coefficient αNC = 3/4. Additionally, from the available
research [107, 125–134] we adopt the natural decay/death/degradation rates. For some of the
specimen, considering a specimen X we will estimate death rate δX using published measure-
ments of half-life tX1/2 using the following formula δX = ln 2/tX1/2. Other death rate estimates are
provided directly in the referenced research. Here are the death rates used in our computations:

δTn =9.4951 · 10−4, δTh =0.231, δTc =0.406, δTr =0.231, (29)

δD =0.277, δM =0.02, δH =58.7, δIγ =33.27, (30)

δGβ =499, δµ1 =1.07, δµ2 =4.62. (31)

And as a last step, we impose heuristic assumptions on activation, inhibition and production
rates. Let us look at these in detail.

First we consider the results in [135] suggesting that range of colon cancer doubling time is
between 92.4 and 1032.2 days. Let us consider the doubling rate to be the difference between
proliferation rate and death rate. Faster doubling rate includes both innate cancer proliferation
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and proliferation caused by µ1 family of cytokines, while death rate being only innate. This
results in

ln 2

92.4
≈ 7.5 · 10−3 = (λC + λCµ1µ

mean
1 )− δC . (32)

On the other hand for the slower doubling rate we only consider innate cancer proliferation,
while death rate includes effects of all anti-cancer agents, i.e.

ln 2

1032.2
≈ 6.7152 · 10−4 = λC −

(
δCGβG

mean
β + δCIγI

mean
γ + δCTCT

mean
C + δC

)
. (33)

Here we consider µmean
1 , Tmean

C , Imean
γ , and Gmean

β to be average values of the corresponding
variable across all patients.

Further assumptions are based on maximal observable quantities for all the variable across
all patients:

Tmax
N , Tmax

h , Tmax
C , Tmax

r , Dmax
N , Dmax, Mmax, Cmax, Nmax, Hmax, µmax

1 , µmax
2 , Imax

γ , Gmax
β .

See Appendix C for more details on patient data and specific values.

We assume that most of T-helper cells are activated by antigen-presenting dendritic cells, so
we take

λThDD
max = 200λThMM

max = 200λThµ1µ
max
1 . (34)

We also assume that inhibition of T-helper cells by µ2 family of cytokines and by Treg cells are
each 20 times more effective than the natural degradation:

δThµ2µ
max
2 = δThTrT

max
r = 20δTh . (35)

For cytotoxic T-cells we assume that activation by T-helper cells is twice as effective as activation
by Dendritic cells

λTCThT
max
h = 2λTCDD

max, (36)

and same as for T-helper cells inhibition of cytotoxic T-cells by µ2 family of cytokines and by
Treg cells are each 20 times more effective than the natural degradation:

δTCµ2µ
max
2 = δTCTrT

max
r = 20δTC . (37)

Next assumption is that activation of Treg cells by T-helper cells is four times larger than
activation by µ2 family of cytokines and by TGF-β:

λTrThT
max
h = 4λTrGβG

max
β , λTrµ2µ

max
2 = λTrGβG

max
β , (38)

while inhibition of Treg cells by µ1 family of cytokines is 20 times larger than their natural
degradation rate:

δTrµ1µ
max
1 = 20δTr . (39)

We impose that activation of dendritic cells by HMGB1 is twice more effective than activation
by cancer cells, inhibition of dendritic cells by HMGB1 is twice less effective than inhibiiton by
cancer cells, and cumulative inhibition of dendritic cells by HMGB1 and cancer cells is equivalent
to the natural degradation rate of dendritic cells:

λDHH
max = 2λDCC

max, δDHH
max =

1

2
δDCC

max, δDHH
max + δDCC

max = δD. (40)

For macrophages we assume that most macrophages are activated by T-helper cells, thus

λMThT
max
h = 10λMµ2µ

max
2 = 10λMIγI

max
γ . (41)
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Next we look at the cancer death rates. We assume TGF-β and IFN-γ equally effective in killing
cancer cells, but cytotoxic T-cells to be twice more effective, so

δCGβG
max
β = δCIγI

max
γ =

1

2
δCTCT

max
C . (42)

We also assume that at it’s extreme value TGF-β kills cancer cells 10 times faster than innate
death rate of cancer cells:

δCGβG
max
β = 10δC . (43)

Next let us list assumptions on production rates of cytokines per cell:

λµ1M =4λµ1Th = 8λµ1D, λµ2D =λµ2M = λµ2Tr , λHN =10λHM = 20λHTh ,

λHTh =λHTC = λHTr , λIγTc =4λIγTh = 20λIγM , λGβM =λGβTr . (44)

Altogether these assumptions are sufficient to derive a sample parameter set.

Appendix B.2 Non-dimensionalization

For more stable numerical simulations and to avoid scale dependence in the sensitivity analysis,
we introduce non-dimensional variables. For each variable [X] with steady state X∞ we intro-
duce non-dimensional

[
X
]

= [X] /X∞. Then for all the non-dimensional variables steady state
will be equal to 1. Because of the dramatic difference between timescales in different equations
(related to natural decay rate) we make a choice to not scale time. Then we can rewrite the
system as

d
[
TN
]

dt
=ATN − αTNTh

(
λThD

[
D
]

+ λThM
[
M
]

+ λThµ1 [µ1]
) [
TN
]

− αTNTC
(
λTCTh

[
T h
]

+ λTCD
[
D
]) [

TN
]

− αTNTr
(
λTrTh

[
T h
]

+ λTrµ2 [µ2] + λTrGβ
[
Gβ
]) [

TN
]
− δTN

[
TN
]

(45)

d
[
T h
]

dt
=
(
λThD

[
D
]

+ λThM
[
M
]

+ λThµ1 [µ1]
) [
TN
]
−
(
δThµ2 [µ2] + δThTr

[
T r
]

+ δTh
) [
T h
]
(46)

d
[
TC
]

dt
=
(
λTCTh

[
T h
]

+ λTCD
[
D
]) [

TN
]
−
(
δTCµ2 [µ2] + δTCTr

[
T r
]

+ δTC
) [
TC
]

(47)

d
[
T r
]

dt
=
(
λTrTh

[
T h
]

+ λTrµ2 [µ2] + λTrGβ
[
Gβ
]) [

TN
]
−
(
δTrµ1 [µ1] + δTr

) [
T r
]

(48)

d
[
DN

]
dt

=ADN − αDND
(
λDH

[
H
]

+ λDC
[
C
]) [

DN

]
−
(
δDH

[
H
]

+ δD
) [
DN

]
(49)

d
[
D
]

dt
=
(
λDH

[
H
]

+ λDC
[
C
]) [

DN

]
−
(
δDH

[
H
]

+ δDC
[
C
]

+ δD
) [
D
]

(50)

d
[
M
]

dt
=
(
λMµ2 [µ2] + λMIγ

[
Iγ
]

+ λMTh

[
T h
]) (

M0 −
[
M
])
− δM

[
M
]

(51)

d
[
C
]

dt
=
(
λC + λCµ1 [µ1]

) [
C
](

1−
[
C
]

C0

)
−
(
δCGβ

[
Gβ
]

+ δCIγ
[
Iγ
]

+ δCTC
[
TC
]

+ δC
) [
C
]

(52)

d
[
N
]

dt
=αNC

(
δCGβ

[
Gβ
]

+ δCIγ
[
Iγ
]

+ δCTC
[
TC
]

+ δC
) [
C
]
− δN

[
N
]

(53)

d
[
H
]

dt
=λHN

[
N
]

+ λHM
[
M
]

+ λHTh
[
T h
]

+ λHTC
[
TC
]

+ λHTr
[
T r
]
− δH

[
H
]

(54)

d [µ1]

dt
=λµ1Th

[
T h
]

+ λµ1M
[
M
]

+ λµ1D
[
D
]
− δµ1 [µ1] (55)
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d [µ2]

dt
=λµ2M

[
M
]

+ λµ2D
[
D
]

+ λµ2Tr
[
T r
]
− δµ2 [µ2] (56)

d
[
Iγ
]

dt
=λIγTh

[
T h
]

+ λIγTC
[
TC
]

+ λIγM
[
M
]
− δIγ

[
Iγ
]

(57)

d
[
Gβ
]

dt
=λGβM

[
M
]

+ λGβTr
[
T r
]
− δGβ

[
Gβ
]

(58)

where the nondimensional parameters can be expressed as follows:

ATN =
ATN
T∞N

, αTNTh =
T∞h
T∞N

, αTNTC =
T∞C
T∞N

, αTNTr =
T∞r
T∞N

,

ADN =
ADN
D∞N

, αDND =
D∞

D∞N
, M0 =

M0

M∞
, C0 =

C0

C∞
,

αNC =αNC
C∞

N∞
, λThD =

λThDD
∞T∞N

T∞h
, λThM =

λThMM
∞T∞N

T∞h
, λThµ1 =

λThµ1µ
∞
1 T
∞
N

T∞h
,

λTCTh =
λTCThT

∞
h T∞N

T∞C
, λTCD =

λTCDD
∞T∞N

T∞C
, λTrTh =

λTrThT
∞
h T∞N

T∞r
, λTrµ2 =

λTrµ2µ
∞
2 T
∞
N

T∞r
,

λTrGβ =
λTrGβG

∞
β T
∞
N

T∞r
, λDH =

λDHH
∞D∞N

D∞
, λDC =

λDHC
∞D∞N

D∞
, λMµ2 =λMµ2µ

∞
2 ,

λMIγ =λMIγI
∞
γ , λMTh =λMThT

∞
h , λCµ1 =λCµ1µ

∞
1 , λHN =

λHNN
∞

H∞
,

λHM =
λHMM

∞

H∞
, λHTh =

λHThT
∞
h

H∞
, λHTC =

λHTCT
∞
C

H∞
, λHTr =

λHTrT
∞
r

H∞
,

λµ1Th =
λµ1ThT

∞
h

µ∞1
, λµ1M =

λµ1MM
∞

µ∞1
, λµ1D =

λµ1DD
∞

µ∞1
, λµ2M =

λµ2MM
∞

µ∞2
,

λµ2D =
λµ2DD

∞

µ∞2
, λµ2Tr =

λµ2TrT
∞
r

µ∞2
, λIγTh =

λIγThT
∞
h

I∞γ
, λIγTC =

λIγTCT
∞
C

I∞γ
,

λIγM =
λIγMM

∞

I∞γ
, λGβM =

λGβMM
∞

G∞β
, λGβTr =

λGβTrT
∞
r

G∞β
, δThµ2 =δThµ2µ

∞
2 ,

δThTr =δThTrT
∞
r , δTCµ2 =δTCµ2µ

∞
2 , δTCTr =δTCTrT

∞
r , δTrµ1 =δTrµ1µ

∞
1 ,

δDH =δDHH
∞, δDC =δDCC

∞, δCGβ =δCGβG
∞
β , δCIγ =δCIγI

∞
γ ,

δCTC =δCTCT
∞
C .

Cancer proliferation rate λC and all the innate degradation/death rates remain unscaled.
Then the equations for doubling rate (32)-(33) become(

λC + λThµ1
µmean

1

µ∞1

)
− δC = 7.5 · 10−3,

λC −
(
δCGβ

Gmean
β

G∞β
+ δCIγ

Imean
γ

I∞γ
+ δCTC

Tmean
C

T∞C
+ δC

)
= 6.7152 · 10−4,

and the system of restrictions (34)-(44) in dimensionless form can be rewritten as

λThD
Dmax

D∞
=200λThM

Mmax

M∞
= 200λThµ1

µmax
1

µ∞1
, δThµ2

µmax
2

µ∞2
=δThTr

Tmax
r

T∞r
= 20δTh ,

λTCTh
Tmax
h

T∞h
=2λTCD

Dmax

D∞
, δTCµ2

µmax
2

µ∞2
=δTCTr

Tmax
r

T∞r
= 20δTC ,

λTrTh
Tmax
h

T∞h
=4λTrGβ

Gmax
β

G∞β
, λTrµ2

µmax
2

µ∞2
=λTrGβ

Gmax
β

G∞β
,

δTrµ1
µmax

1

µ∞1
=20δTr , λDH

Hmax

H∞
=2λDC

Cmax

C∞
,

31

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 4, 2020. ; https://doi.org/10.1101/2020.11.02.365668doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.02.365668
http://creativecommons.org/licenses/by-nc/4.0/


δDH
Hmax

H∞
=

1

2
δDC

Cmax

C∞
=

1

3
δD, λMTh

Tmax
h

T∞h
=10λMµ2

µmax
2

µ∞2
= 10λMIγ

Imax
γ

I∞γ
,

δCGβ
Gmax
β

G∞β
=10δC δCGβ

Gmax
β

G∞β
=δCIγ

Imax
γ

I∞γ
=

1

2
δCTC

Tmax
C

T∞C
,

λµ1M
M∞

=4
λµ1Th
T∞h

= 8
λµ1D
D∞

,
λµ2D
D∞

=
λµ2M
M∞

=
λµ2Tr
T∞r

,

λHN
N∞

=10
λHM
M∞

= 20
λHTh
T∞h

,
λHTh
T∞h

=
λHTC
T∞C

=
λHTr
T∞r

,

λIγTC
T∞C

=4
λIγTh
T∞h

= 20
λIγM

M∞
,

λGβM

M∞
=
λGβTr
T∞r

.

These 29 restriction, together with 14 equations from requiring steady state of (45)-(58), and
11 given decay rates (29)-(31), scaling coefficients

αTNTh =
T∞h
T∞N

, αTNTC =
T∞C
T∞N

, αTNTr =
T∞r
T∞N

, αDND =
D∞

D∞N
, αNC =αNC

C∞

N∞
,

and given αNC , C0 and M0 are enough to derive all 63 non-dimensional coefficients of (45)-(58)
from

T∞N , T∞h , T∞C , T∞r , D∞N , D
∞, M∞, C∞, N∞, H∞, µ∞1 , µ

∞
2 , I

∞
γ , G

∞
β .

Appendix B.3 Parameter values

Here we detail all the parameter values derived and used in this paper. We divide them into
three groups: innate degradation rates derived or adopted from prior research (see Table A1),
scaling-independent parameters (those not affected by non-dimensionalization, see Table A2),
and scaling-dependent parameters (see Table A3).

Table A1: Prescribed parameters and their references. Innate degradation and death
rates (in day−1) derived or adopted from given references.

Parameter δTN δTh δTC δTr δD δM δµ1 δµ2 δH δIγ δGβ

Value 9.4951e-4 0.231 0.406 0.231 0.277 0.02 1.07 4.62 58.7 33.27 499.0

Reference [131] [126] [126] [126] [125] [127, 136] [130] [132] [129] [134] [133]

Table A2: Scaling-independent parameters. Values of scaling-independent parameters (in
day−1) for each cluster derived from the steady state assumptions and patient data.

parameter Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

λC 5.3323e-3 3.7596e-3 7.8327e-3 5.3535e-3 5.5150e-3
δC 7.8626e-4 5.2094e-4 1.2081e-3 7.8983e-4 8.1708e-4
δN 6.7332e-3 7.0593e-3 6.8602e-3 5.9142e-3 6.0514e-3

The scaling-independent parameters parameters include innate cancer proliferation rate λC ,
innate cancer death rate (including apoptosis and necrosis) δC , and necrotic cell degradation
rate δN . Because these parameters were not affected by non-dimensionalization procedure, as
they are determined they remain independent of the scaling constant αdim, and depend solely
on the derivation assumptions and patient data (thus different between clusters).

The scaling dependent parameters in their dimensional form in addition to derivation as-
sumptions and patient data would also depend on the scaling constant αdim. Thus we prefer
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Table A3: Scaling-dependent parameters. Non-dimensional values of scaling-dependent
parameters (in day−1, because the time was not scaled) for each cluster derived from the steady
state assumptions and patient data.

Parameter Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

λThD 2.1399 2.7619 2.3163 1.7613 2.0179

λThM 3.9171e-2 4.3371e-2 7.8933e-2 3.4235e-2 1.1462e-1

λThµ1 1.1871e-2 1.9332e-2 5.0516e-2 6.6146e-3 2.6083e-2

λTCTh 3.2503 4.4295 3.6087 2.3377 3.5400

λTCD 6.0053e-1 5.3505e-1 6.8998e-1 8.2970e-1 2.5392e-1

λTrTh 8.2898e-1 8.9260e-1 7.1048e-1 6.6821e-1 6.4634e-1

λTrµ2 5.1120e-2 4.3090e-2 1.4558e-1 1.9891e-2 2.6898e-2

λTrGβ 6.4120e-2 6.1990e-2 2.4271e-1 4.1296e-2 8.4474e-2

λDH 2.6134e-1 2.5410e-1 2.6749e-1 2.0531e-1 2.5253e-1

λDC 1.0129e-1 1.0998e-1 9.6275e-2 1.4619e-1 9.9406e-2

λMµ2 6.0389e-4 4.0918e-4 4.0357e-4 1.0688e-3 2.2488e-4

λMIγ 5.4536e-4 4.4647e-4 3.5449e-5 5.5129e-4 2.4891e-4

λMTh 2.4482e-2 2.1190e-2 4.9239e-3 8.9758e-2 1.3509e-2

λCµ1 3.6453e-3 5.6528e-3 1.3143e-3 2.5321e-3 2.5536e-3
αNC 1.5 1.5 1.5 1.5 1.5

λµ1Th 9.5154e-2 1.5848e-1 5.1746e-2 4.8884e-2 8.0520e-2

λµ1M 9.6867e-1 9.0479e-1 1.0148 1.0150 9.8745e-1

λµ1D 6.1798e-3 6.7287e-3 3.4777e-3 6.0984e-3 2.0302e-3

λµ2M 3.6856 3.1869 3.2127 3.7737 3.7140

λµ2D 1.8810e-1 1.8960e-1 8.8081e-2 1.8139e-1 6.1088e-2

λµ2Tr 7.4634e-1 1.2435 1.3192 6.6490e-1 8.4487e-1

λHN 5.6645e+1 5.6824e+1 5.7494e+1 5.6720e+1 5.6504e+1

λHM 1.4603 1.0096 8.6817e-1 1.5130 1.6271

λHTh 2.8689e-1 3.5366e-1 8.8539e-2 1.4573e-1 2.6536e-1

λHTC 1.5995e-1 3.1527e-1 7.1133e-2 1.8821e-1 1.1817e-1

λHTr 1.4786e-1 1.9697e-1 1.7824e-1 1.3328e-1 1.8507e-1

λIγTh 8.8980 6.8580 6.4053 4.6181 9.8011

λIγTC 1.9843e+1 2.4454e+1 2.0584e+1 2.3857e+1 1.7459e+1

λIγM 4.5290 1.9577 6.2806 4.7945 6.0098

λGβM 4.1497e+2 3.5894e+2 3.5375e+2 4.2425e+2 4.0652e+2

λGβTr 8.4033e+1 1.4006e+2 1.4525e+2 7.4749e+1 9.2476e+1

δThµ2 4.2911e-1 4.3775e-1 4.2642e-1 1.1131e-1 2.3641e-1

δThTr 1.5309 2.1559 1.7884 1.4599 1.6912

δTCµ2 7.5419e-1 7.6938e-1 7.4947e-1 1.9563e-1 4.1550e-1

δTCTr 2.6906 3.7891 3.1432 2.5658 2.9724

δTrµ1 7.1322e-1 7.6668e-1 8.6777e-1 4.9839e-1 5.2671e-1

δDH 3.3577e-2 3.1883e-2 3.5563e-2 1.9360e-2 2.9105e-2

δDC 5.2053e-2 5.5200e-2 5.1199e-2 5.5139e-2 4.5828e-2

δCGβ 9.1600e-4 7.1011e-4 1.8590e-3 3.9506e-4 1.3131e-3

δCIγ 6.5951e-4 5.3859e-4 9.7944e-5 9.8156e-5 4.6278e-4

δCTC 2.1270e-3 2.9365e-3 1.4085e-3 2.6597e-3 1.4414e-3

ATN 1.5006 4.1268 1.2183 1.1785 1.6150

ADn 1.0264 2.1172 3.5941e+2 1.8353 1.1435

M0 1.7803 1.9072 4.7293 1.2189 2.4303

C0 2.0 2.0 2.0 2.0 2.0
αTNTh 3.1084e-1 5.2856e-1 1.5008e-1 1.7950e-1 3.6879e-1
αTNTC 1.7330e-1 4.7118e-1 1.2057e-1 2.3182e-1 1.6423e-1
αTNTr 1.6020e-1 2.9438e-1 3.0212e-1 1.6417e-1 2.5720e-1
αDND 1.9739 4.9667 9.8717e+2 4.3783 2.3796
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to list their more objective non-dimensional values. Because non-dimensionalization was done
without time scaling, the dimension of most of these parameters is day−1. Exceptions are αNC ,
M0, C0, αTNTh , αTNTC , αTNTr , αDND, these are fully non-dimensional.

Appendix C Patient data and initial conditions

Here we describe the processing of the data to be used for parameter estimation and initial
conditions. The clustered deconvolution data, described in section 2.3, and original TCGA data
is used to calculate the immune variables as described in table A4.

Table A4: Patient data correspondence with variables. Correspondence between the
system variables and the source data from TCGA and deconvolution results.

Variable Data used

TN T cells CD4 naive, T cells CD4 memory resting, NK cells resting
Th T cells CD4 memory activated, T cells follicular helper
TC T cells CD8, NK cells activated
Tr T cells regulatory (Tregs)
DN Dendritic cells resting
D Dendritic cells activated
M Macrophages M1, Macrophages M2
M0 Monocytes, Macrophages M0, Macrophages M1, Macrophages

M2
µ1 IL6, IL17A, IL17B, IL17C, IL17D, IL17F, IL21, IL22
µ2 CCL20, IL10
H HMGB1
Iγ IFNG
Gβ TGFB1, TGFB1I1, TGFB2, TGFB3, TGFBI
size(P ) multiply dimensions
Total Immune Density TN , Th, TC , Tr, DN , D, M0

For variables related to immune cells we substitute zero values with 10% of the smallest
positive cell density for numerical stability.

We estimate the relative amount of cancer cells and necrotic cells as follows: we start by
assuming that on average across all patients the ratio of immune cells:cancer cells:necrotic cells
will be approximately 0.4:0.4:0.2 with variability between clusters based on tumor size. For
patient P we consider tumor size (size(P )) to be the product of the longest dimension and the
shortest dimension. We assume total cell density at the steady state to be proportional to this
product as

Total Cell DensityP = αdim
size(P )

1
K

∑
allP size(P )

.

Tumor deconvolution data only provides us with ratios of immune cells relative to each other.
Thus, to properly adjust the scaling, we take each immune cell value from deconvolution multi-
plied by 0.4αdim, and consider 0.4αdim

∑
(Immune cell ratios) as total immune density and

C =
2

3
(Total Cell Density − Total Immune Density) , N = 0.5C. (59)

Next, for each cluster we divide patients into three groups according to their their tumor size:
above average, below average and no data. Resulting patient numbers of each group are given
in table A5. We use the means from the group “above average” as steady state assumptions
given in table 2.

34

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 4, 2020. ; https://doi.org/10.1101/2020.11.02.365668doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.02.365668
http://creativecommons.org/licenses/by-nc/4.0/


Table A5: Distribution of patients according to their tumor size. Evaluated relative to
the average tumor size within each cluster.

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

Total patients 114 47 29 40 98
Above average 36 15 7 17 36
Below average 48 20 12 23 44
No data 30 12 10 0 18

The data in the “below average” group as evaluated by (59) may contain negative values for
cancer and necrotic cells. The data in “no data” group has no values for cancer and necrotic
cells. Thus we substitute all non-positive and absent cancer values with 10% of the smallest
positive cancer density value. We substitute all non-positive and absent necrotic cell values with
zero. These changes violate the 0.4:0.4:0.2 ratio of immune cells:cancer cells:necrotic cells, and
the updated ratio is 0.4475:0.3684:0.1841.

The steady state assumptions (see Appendix Appendix B) are partially based on maximum
values of each variable in the ODE system (15)-(28) across all patients, as well as mean value
of variables TC , µ1, Iγ , and Gβ across all patients. The corresponding values are given in table
A6.

Table A6: Maximum and mean variable values for parameter estimation. Maximum
and mean cell densities in cells/cm3 and cytokine expression levels across all patients used in
appendix Appendix B to derive parameter sets for time-dependent solutions.

Tmax
N Tmax

h Tmax
C Tmax

r Dmax
N Dmax

2.6731e+4 1.2311e+4 1.9107e+4 7.2102e+3 3.4173e+3 4.3275e+3

Mmax Cmax Nmax µmax
1 µmax

2 Hmax

2.3160e+4 3.2472e+5 1.6236e+5 1.0577e+3 1.3983e+4 2.4697e+4

Imax
γ Gmax

β TC
mean µmean

1 Imean
γ Gmean

β

1.0221e+2 1.6341e+5 2.9203e+3 1.3232e+2 6.6035 2.0018e+4

In each cluster a patient with the smallest know tumor size is used as initial condition (given
in table 3) for the dynamics computations presented in figures 4 and 5. However, any patient
in the “below average” and “no data” group can be reasonable used as initial condition. The
resulting dynamics is given by cluster on figures A1-A5.

Figure A1: Different initial conditions for cluster 1. Based on patients in the “below
average” and “no data” categories.
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Figure A2: Different initial conditions for cluster 2. Based on patients in the “below
average” and “no data” categories.

Figure A3: Different initial conditions for cluster 3. Based on patients in the “below
average” and “no data” categories.

Figure A4: Different initial conditions for cluster 4. Based on patients in the “below
average” and “no data” categories.
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Figure A5: Different initial conditions for cluster 5. Based on patients in the “below
average” and “no data” categories.
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