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Human-in-the-Loop Weight Compensation in Upper Limb Wearable
Robots Towards Total Muscles’ Effort Minimization

Rezvan Nasiri+∗12, Hamidreza Aftabi+, and Majid Nili Ahmadabadi#

Abstract— In this paper: (1) We present a novel human-
in-the-loop adaptation method for whole arm muscles’ effort
minimization by means of weight compensation in the face of
an object with an unknown mass. (2) This adaptation rule
can also be used as a cognitive model for the identification
of mass value using EMG sensors. (3) This adaptation rule
utilizes the activation (myoelectric) signal of only four muscles
in the upper limb to minimize the whole muscles’ effort. We
analytically discuss the stability, optimality, and convergence
of the proposed method. The effectiveness of this method
for whole muscles’ effort reduction is studied by simulations
(OpenSim software) on a generic and realistic model of the
human arm, a model with 7-DOF and 50 Hill-type-muscles. The
simulation results show the presented method’s performance
and applicability for weight compensation and mass estimation
in upper limb assistive robots. In addition, the simulations
in OpenSim completely support that the suggested set of
mono-articular muscles are sufficient for whole muscles’ effort
reduction.

Index Terms— Human-in-the-Loop, Weight Compensation,
Mass Estimation, Model-basesd Analysis, Upper Limb Wear-
able Robots

I. INTRODUCTION

Despite of many efforts in design and control of upper
limb wearable robots [1], [2], still, design of an effective
control approach for upper limb assistance is a challenge;
see [3-6]. A proper control approach should consider the
human as a part of the control strategy. Consequently, several
considerations should be met; the controller should: (1)
minimize muscles’ effort/force, (2) not impose a trajectory
to the human, (3) utilize biofeedback, and (4) be adaptive.

An effective approach for upper limb assistance without
imposing a reference trajectory is weight compensation,
which is a task-independent (trajectory free) method; i.e.,
it is applicable for both cyclic and noncyclic tasks. Since the
upper limb exoskeletons are mostly designed for picking,
carrying, and placing heavy objects with slow dynamics, the
gravitational torque is a high portion of required torque at
each joint; i.e., weight compensation can reduce the muscle
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effort/force drastically. There are two different methods for
weight compensation active and passive. The former gen-
erates the gravitational torque by actuators [7-10] and the
later compensates the gravity effects with passive elements;
e.g., spring or counterbalance [11-13]. However, most of the
weight compensation exoskeletons are designed to generate
a predefined torque profile; they are not useful for unknown
object weight compensation. Besides, human biomechanics
has a time-varying nature even in repetitive tasks (e.g.,
walking) [14-16], which makes having an adaptive strategy
to be a must [17].

There are many adaptive control approaches that update
the exoskeleton torque based on the instantaneous feedback
of the human body; see [6], [18], [19]. Among all possible
biofeedback options, the myoelectric signal is one of the
best choices for torque adaptation due to its fast dynamics
and monotonic relation with muscle force [20], [21]. At
first glance, the myoelectric signal seems to be a noisy
signal; however, by using an appropriate signal processing it
provides us with more biomechanical information compared
to force and motion sensors; it can be used to estimate
muscle force [22], fatigue [23], metabolic rate [24], and even
discharged timing of motor-neurons [25]. In addition, thanks
to recent technology developments, myoelectric signals (e.g.,
EMG) are considered as accurate, cost-efficient, and small-
sized sensors [26] such that the recent commercialized pros-
thetic hands are benefiting them for real-time motion control
[27].

There are many works benefit the EMG sensors for upper
limb exoskeleton torque adaptation; e.g., see [4-6], [28-31].
Nevertheless, the proposed methods require the EMG signal
of all contributing muscles which make them impractical,
very complex, expensive, and time-costly; e.g., [28], [29]
utilizes 16 EMG sensors. There are also some other works
that utilized a smaller number of EMG sensors; see [4], [6],
[30], [31]. However, these works are restricted to a single
joint (mostly elbow), and they are basically designed for
a specific task or device. In another perspective, they did
not suggest a general and optimal adaptation rule with a
minimum number of sensors to achieve "total muscles’ effort
reduction."

Recently in [32], we presented the hypothesis that "feed-
back from mono-articular muscles is sufficient for exoskele-
ton torque adaptation and whole muscles’ effort reduction."
Benefiting from this hypothesis, we present a novel, simple,
and effective weight compensation approach using a mini-
mum number of EMG sensors, a total of 4 EMG sensors
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Fig. 1. The human-in-the-loop control block diagram: Human arm in
interaction with an object with unknown mass (m∗) and weight compen-
sation exoskeleton system; Gu is the gravitational effects of object. The
adaptation rule utilizes the EMG signal of chosen muscles along with the
joint positions to estimate mono-articular muscles’ torque (τmm) and adapt
m. The torque calculator block uses the adapted value of m to update the
exoskeleton torque.

for the whole arm. This generic adaptation method does not
limit the users’ voluntary motions, is task-independent (can
be used for both cyclic and noncyclic tasks), and can be
applied to different types of upper limb assistive devices
for weight compensation. In addition, this adaptation rule
provides us with a cognitive model to identify the object’s
mass value, which can be used as a model to describe human
understanding about the environment by sensory information
of muscles’ force and joint positions. In recent years, the
development of reliable and realistic simulation toolboxes
as OpenSim [33] draws much attention to the model-based
analysis of human biomechanics. Hence, in this paper, the
developed method is analyzed using a generic model in
OpenSim with 7-DOF and 50 Hill-type-muscles.

II. PROBLEM STATEMENT

Consider the dynamical equations of the human-arm aug-
mented by an upper-limb-exoskeleton (see Fig.1) as1:

M̄(~q)~̈q + ~C(~q, ~̇q) + ~G(~q) + ~S(~q, ~̇q) = ~τm + ~τexo (1)

where ~q ∈ Rn is the vector of the joints’ positions, n is
number of joints and m is the number of all contributing
muscles. ~̇q ∈ Rn and ~̈q ∈ Rn are first and second ordered
time derivative of ~q. In addition, M̄(.) : Rn → Rn×n is
the mass matrix and ~C(.) : Rn×n → Rn is the vector
of Coriolis and Centrifugal force. ~G(.) : Rn → Rn is the
vector of gravity force. And, ~τm ∈ Rn is the muscles’ net
torque which is a summation of muscles’ force; i.e., for
jth joint we have τ jm =

∑mj

i=1 fidi(qj , q
′
j) where fi ∈ R+

and di ∈ R are ith muscles’ force and lever arm, and mj

is the number of contributor muscles’ at jth joint. Since
muscles are either mono- or bi-articular di is a function of
both targeted joint (qj) and its adjacent joint q′j positions.
~S(.) : Rn×n → Rn is added to model dynamical effects

1In our formulation x̄ ∈ Rn×n and ~x ∈ Rn are matrix and vector,
respectively while xj and xj are both jth element of ~x.

of other biological elements; e.g., ligaments and tendons.
Finally, ~τexo ∈ Rn is the torque applied by exoskeleton2.

Assuming that the human picks, carries, or places an object
with unknown mass (m∗ ∈ R+) and the exoskeleton is trying
to compensate the effects of unknown mass by applying an
external torque (~τexo), the dynamical equations in Eq.1 are
rewritten as:

M̄∗(~q)~̈q + ~C∗(~q, ~̇q) + ~S∗(~q, ~̇q)︸ ︷︷ ︸
~MCS

∗
(~q,~̇q,~̈q)

+~G∗(~q) = ~τm + ~τexo (2)

where M̄∗, ~C∗, ~S∗, ~G∗ are parameters which are defined in
Eq. 1 and affected by m∗ > 0; if m∗ = 0 → M̄∗ ≡ M̄ ,
~C∗ ≡ ~C, ~G∗ ≡ ~G, and ~S∗ ≡ ~S. In this equation, ~G∗ can
be divided in two terms as ~G∗ = ~G + ~Gu where ~G is the
gravity vector for m∗ = 0 and ~Gu is the gravitational effects
of m∗. ~Gu can be written as a function of position ( ~H(~q))
multiplied by m∗g as ~Gu(q) = m∗g ~H(~q) , ~H(.) : Rn → Rn
where g = 9.81m/s2 is the gravity acceleration and ~H(~q) is
a position dependent vector. Hence, Eq.2 is presented as:

~MCS
∗
(~q, ~̇q, ~̈q) + ~G(~q) +m∗g ~H(~q) = ~τm + ~τexo. (3)

To compensate the gravity effect of an object, simply
we can cancel out its dynamical effect by setting ~τexo =
mg ~H(~q)+G̃(~q), where the first term is an adaptive term and,
m ∈ R is left to adaptation, and G̃(~q) is the estimation of
~G(~q). In addition, ~H(~q) is defined based on the exoskeleton
kinematics; it is a predetermined function of position.

Henceforth, the problem is to present an adaptation
method for m and updating the exoskeleton torque (~τexo)
to minimize the total muscles’ effort. The total muscles’
effort is defined as Jt =

∑m
i=1(fi/f

i
max)2 where f imax

is the ith muscle’s maximum isometric force [34]. Fig. 1
shows schematics for this adaptation method in which the
adaptation rule block uses the EMG signal as biofeedback.

The adaptation of m for minimization of Jt does not
necessarily converge to m∗. To (1) minimize Jt and (2)
identify m∗ at the same time by m adaptation, some certain
conditions should be met. In the following section, we
discuss this point with more details.

III. MATHEMATICAL ANALYSIS

Whole of our mathematical analysis are presented without
any assumption on the shape of the motions (cyclic or
noncyclic) and the exoskeleton dynamics.

1) Optimality: As we proved in [32], the "whole muscles’
effort" (Jt) reduction by exoskeleton torque optimization
(~τexo) is equivalent with the "squared of two antagonistic
mono-articular muscles’ torque" minimization (Jmm). In
other words, the gradient of Jt w.r.t. the exoskeleton torque
is in the same direction of the gradient of Jmm w.r.t. the
exoskeleton torque; i.e., ∇~τexo

Jt ∝ ∇~τexo
Jmm. Hence, to

extract the adaptation, we use Jmm instead of Jt as:

Jmm = 0.5~τTmm~τmm (4)

2Note that in the rest of the paper, for the sake of simplicity and without
loss of generality, we may forbear specifying the argument of the functions,
e.g., ~C(q, q̇) may represent ~C.
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Fig. 2. Closed-loop control of human upper limb model augmented with
exoskeleton in OpenSim software. In the first step, the CMC algorithm,
which includes a PD controller, static optimization block, and forward
dynamics block, finds muscle forces. In the next step, the mass estimation
block uses Eq.6, joints’ position, and the force signal of four suggested
mono-articular muscles to estimate the mass of an unknown object. Finally,
the torque calculation block uses m to calculate the assistive torque.

where ~τmm ∈ Rn is the torque vector of two antagonistic
mono-articular muscles at each joint; for n joints, 2n mono-
articular muscles are required. The muscle net torque can be
rewritten as ~τm = ~τmm + ~τbm + ~τom, where ~τbm ∈ Rn is
the torque vector of bi-articular muscles and ~τom ∈ Rn is
the torque vector of remained mono-articular muscles; i.e.,
~τmm = ~τm − ~τbm − ~τom.

2) Adaptation rule: To extract the adaptation rule, we
substitute ~τm with ~τm = ~τmm + ~τbm + ~τom and ~τexo with
G̃(~q) +mg ~H(~q) in Eq.3, and compute ~τmm as follows.

~τmm = ~MCS
∗
(~q, ~̇q, ~̈q) + ~G(~q)− G̃(~q) (5)

+ (m∗ −m)g ~H(~q)− ~τbm − ~τom
By applying the gradient descent on Jmm as:

ṁ = −ε∂Jmm
∂m

= −0.5ε
∂(~τTmm~τmm)

∂m
= −ε~τTmm

∂~τmm
∂m

and using Eq.5, the adaptation rule is computed as:

ṁ = ε~τTmm ~H(~q) = ε ~H(~q)T~τmm , ε = gλ , ε > 0 (6)

where ε is the adaptation rate which can control the adapta-
tion performance; i.e., speed and accuracy of convergence.
Using Eq.6 leads to instantaneous Jmm minimization, and
based on hypothesis presented in [32], consequently, mini-
mization of Jmm leads to Jt reduction. Nevertheless, ~τmm
cannot be directly computed, and in practice we estimate
~τmm for each joint using myoelectric signal (EMG) of mono-
articular muscles as τ̃ jmm = αjfd

j
f (q)Γjf − αjedje(q)Γje where

α, d(q), and Γ are tunning scale, muscle lever, and RMS
EMG at jth joint, respectively; see [32] and [35]. Besides, f
and e indicates values related to flexor and extensor muscles.
Due to imperfect estimation of ~τmm, we have ~τmm =
τ̃mm + ~τe where ~τe is error torque which is added to model
imperfections of our estimation such that ‖~τmm‖2 � ‖~τe‖2.

3) Stability & convergence: To prove the stability and
convergence of the adaptation rule (Eq. 6), we utilize τ̃mm
instead of ~τmm in the adaptation rule (Eq.6), use Eq.5, and
rewrite the adaptation dynamics as:

ṁ = −εg(m−m∗) ~HT ~H + f(t) , (7)

f(t) = ε ~HT ( ~MCS
∗

+ ~G− G̃− ~τbm − ~τom − ~τe).

Theorem 1 (Stability & Convergence). The adaptation dy-
namics (Eq.7):

1) is stable.
2) is convergent towards m∗ with error of δm, if (C-1) motions

are sufficiently slow (~̇q, ~̈q) u 0.
3) is convergent towards m∗, if (C-1) motions are sufficiently

slow (~̇q, ~̈q) u 0, and (C-2) m∗ � ‖∆G‖∞ + ‖~S∗ − ~τbm −
~τom − ~τe‖∞.

Proof. Stability proof: The dynamical equation in Eq.7 is a
summation of two terms (1) −εg(m−m∗) ~HT ~H which is a
convergent term towards m = m∗ (2) f(t) which is a non-
vanishing perturbation. Based on [36, pp.346], the overall
adaptation dynamics (Eq.6) is ultimately bounded and stable
if and only if the first term is globally asymptotically stable
and the second term is bounded.

To prove ṁ = −εg(m−m∗) ~HT ~H is globally asymptot-
ically stable and convergent towards m = m∗, we choose
V = 0.5(m − m∗)2 as a Lyapanov candidate. The time
derivative of V is V̇ = ṁ(m−m∗) = −εg(m−m∗)2 ~HT ~H
where ~HT ~H ∈ R is a semi-positive definite multiplier,
which makes V̇ semi-negative definite. Hence, based on
LaSalle’s invariance principle presented in [36, pp.128],
ṁ = −εg(m −m∗) ~HT ~H is globally asymptotically stable
dynamics convergent to m = m∗.
f(t) is a summation of sufficiently smooth functions

of arm position, velocity, and acceleration. In addition, in
human motions, ~q, ~̇q, and ~̈q are also sufficiently smooth and
bounded functions of time; thus, f(t) is a bounded distur-
bance for Eq.7. Therefore, the overall system is stable. Note
that the stability of Eq.7 is proved without any assumption
on the dynamics.

Convergence proof: If we assume that (~̇q, ~̈q) u 0 (C-1),
consequently it is concluded that M̄∗~̈q+ ~C∗ u 0. In this case,
the adaptation dynamics is ṁ = −εg(m −m∗) ~HT ~H + εβ
where β = ~HT (~S∗+∆G−~τbm−~τom−~τe) is almost a fixed
function of time and ∆G = ~G − G̃ is the gravity compen-
sation error. Hence, the adaptation dynamics is rewritten as
ṁ = −εg(m−m∗−δm) ~HT ~H where δm = g−1β( ~HT ~H)−1

is mass convergence error.
If the dynamical effects of unknown mass is dominant to

gravity compensation error (∆G) and the dynamical effects
of the biological elements (~S∗ − ~τbm − ~τom − ~τe) as m∗ �
‖δm‖∞ or m∗ � ‖∆G‖∞+‖~S∗−~τbm−~τom−~τe‖∞ (C-2)
the adaptation dynamics is ṁ u −εg(m−m∗) ~HT ~H which
is convergent to m∗. If the conditions are not satisfied m
converges to m# = m∗ + δm.

The adaptation rule is extracted to minimize Jmm; it
is a gradient descent over Jmm. Hence, the equilibrium
point of adaptation dynamics (m#) minimizes the Jmm and

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 6, 2021. ; https://doi.org/10.1101/2020.11.02.366070doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.02.366070
http://creativecommons.org/licenses/by-nc-nd/4.0/


4

R=12 cm

Musculoskeletal Model

Trajectory of the Task

Bucket 
Mass = 5kg

(a) (b) (c)

(d) (e) (f)

Fig. 3. (a) is the utilized biomechanical model in OpenSim for analyzing the behavior of adaptation in different conditions. The model consists of 7-DOF
(shoulder 3-DOF, elbow 1-DOF, and wrist 3-DOF) and 50 Hill-type muscles. The task is to move the object with an unknown mass of m∗ = 5Kg over
a circular trajectory with a radius of 12cm and three different frequencies ω = 1rad/s, 2rad/s, 4rad/s. The exoskeleton consists of two 1-DOF ideal
actuators that apply torque at shoulder and elbow joints in the sagittal plane. The goal is to compensate for the gravity effect of unknown mass at elbow
and shoulder joints using force feedback (EMG signal) from four mono-articular muscles at elbow and shoulder joints. (b-f) are OpenSim simulation results
for simultaneous mass identification and assistive torque adaptation. (b) shows the adaptation performance for mass identification when the initial mass is
set on m0 = 1Kg and m0 = 9Kg, respectively. As it is clear, regardless of the initial point, the converged mass value is identical for each frequency.
And, by increasing the frequency of motion, the converged mass value decreases from m∗. (c) shows the whole muscles’ effort cost function (Jt) before
and after adaptation. Clearly, the adaptation is successful for the whole muscles’ effort reduction. (d-f) compare the forces of six major muscles before
and after adaptation in three different frequencies, respectively; Deltoid (DEL), Pectoralis major (PEC), Latissimus dorsi (LAT), Biceps (BI), Brachialis
(BRA), and Triceps (TRI). Based on these figures, the forces of the two muscles are increased. Note that reducing the main cost function (the average
efforts of all muscles) does not necessarily mean each individual’s effort reduction.

consequently based on [32] minimizes the total muscles’
effort (Jt). However, m# does not necessarily identify m∗;
in general m# = m∗ + δm. Nevertheless, if C-1 and C-2
are satisfied, we can identify m∗ along with Jt minimization;
i.e., δm u 0→ m∗ u m#. C-2 indicates that ∆G u 0; i.e.,
the exoskeleton weight should be known properly which is
not a challenge. In the following simulations, we study the
performance of adaptation rule (Eq.6) on Jt reduction and
the deviations of m# from m∗ in cases that C-1 is violated.

IV. SIMULATION

In this section, using the OpenSim software [37] with
MATLAB API [38], we study our adaptation rule’s perfor-
mance in three different tasks; in these tasks, we violate
C-1. The musculoskeletal model utilized in this simulation
is presented by Holzbaur et al. [39], which is a modified
version of the previously released one [40]. This upper
extremity model contains 7 degrees of freedom (shoulder
3-DOF, elbow 1-DOF, and wrist 3-DOF) and 50 Hill-type
muscles introduced by Zajac et al. [41]. We scaled the
generic model using the dataset presented in [39] to reach a
model consistent with human anthropometry.

The block diagram of our approach for running MATLAB-
OpenSim simulation is presented in Fig.2 where the adaption

rule is realized in MATLAB and arm biomechanics is mod-
eled by OpenSim. The simulation is chopped for 168 time
steps in 37s; each time interval is equal to 220ms. At each
interval, the joint position and muscle forces are computed
using OpenSim and feed to MATLAB, where MATLAB
updates the exoskeleton torques using the adaptation rule.
OpenSim calculates the muscles’ forces using the Computed
Muscle Control (CMC) algorithm [42]. The CMC algorithm
includes three parts; PD controller, static optimization block,
and forward dynamics block. In the first step, the CMC
algorithm utilizes a PD controller to track reference kine-
matics (the designed task for the arm) by computing the
desired accelerations. In the next step (static optimization in
Fig. 2), CMC finds muscle forces by solving the following
optimization problem [42]:

(~a∗, ~r∗) = arg min
~a,~r

J(~a,~r) (8)

J(~a,~r) =

nm∑
i=1

ai
2 +

nr∑
j=1

wrj (rj)
2 , s.t.

~̈q(t) ≡ ~̈qdes(t)
M̄(~q)~̈q + ~C(~q, ~̇q) + ~G(~q) + ~S(~q, ~̇q) = ~τm + ~τexo

~τm = ĀL~Γ , ~Γ = ~Υ(~a,~l, ~v)
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where a is muscle activation, nm is the number of muscles, r
is the reserve actuator’s torque, nr is the number of reserve
actuators, and ~̈qdes is the desired acceleration (the output
of PD controller in Fig. 2). ĀL ∈ Rn×nm is the lever
arm matrix, and ~Γ is the vector of muscle forces which is
computed using Hill-model function ~Υ; in Hill-type muscles,
the muscle force (fi) is a function of muscle’s activation
(ai), muscle’s length (li), and muscle’s velocity (vi) [41]. It
is important to note that reserve actuators are added to each
coordinate to make up for strength deficiencies in muscles
and enable the simulation to run. However, their weights
(wr) are chosen big enough; thus, using reserve actuators
is highly penalized in the optimization, and the generated
forces by reserve actuators are all within the best possible
boundaries.

To consider the unknown mass, a bucket with a mass of
5kg is attached to the model hand; see Fig.3a. The augmented
exoskeleton in the upper limb model is designed as two 1-
DOF ideal actuators at the elbow and shoulder joints, which
apply assistive torque at the sagittal plane (~τexo). The task in
our simulation is to move the bucket on a circular trajectory
in the sagittal plane with the radius of 12cm and three
different frequencies; ω = 1rad/s, 2rad/s, and 4rad/s.
The main purpose of this task definition is to study the
whole muscles’ effort reduction and the equilibrium point of
adaptation dynamics for C-1 violation; 4rad/s is an extreme
violation.
m is estimated using Eq.6, joints’ position and the force

signal of four suggested mono-articular muscles near to the
skin; Biceps and Triceps as antagonistic mono-articular mus-
cles in the elbow joint and Pectoralis major and Latissimus
dorsi as antagonistic mono-articular muscles in the shoulder
joint. The estimated m is used to calculate the assistive
torque ~τexo = mg ~H(~q)+G̃ where G̃ is the estimated gravity
vector of the musculoskeletal model.

To study the convergence behavior of the adaptation for
each frequency, the simulation is run from two different
initial masses; m0 = 1Kg and m0 = 9Kg. The results of
this simulation are presented in Fig.3. Fig.3b shows the esti-
mated mass value in the course of adaptation. Interestingly,
the equilibrium point (m#) for each frequency is identical
regardless of the initial point. Clearly, by moving from
ω = 1rad/s to ω = 4rad/s, the deviations of equilibrium
point (m#) from m∗ = 5Kg increases with a linear pattern
such that ∀ω ∈ [0 4]→ m∗ u m# + 0.38ω with estimation
confidence of 95%.

Fig.3c-f describes the effect of m adaptation on total
muscles’ effort (Jt) and the force of six major muscles in
the arm. Based on Fig.3c, regardless of the deviations of m#

from m∗, the adaptation of exoskeleton torque profile leads
to total muscles’ effort reduction, which provides strong
support for our claim that adaptation of m based on feedback
from four muscles leads to whole contributor muscles’ effort
minimization. In addition, it proves that the suggested sets
of mono-articular muscles are sufficient for upper limb
exoskeleton torque adaptation. According to Fig.3d-e, four
muscles have force reduction while two of them, which are

extensor muscles, have force increment. This observation
seems evident since flexor muscles are the main contributors
to compensate the effect of gravity, and the adaptation rule
is trying to minimize the total muscles’ effort cost function,
which does not necessarily lead to each individual muscles’
force reduction.

V. CONCLUSION AND DISCUSSIONS

In this paper, we presented a novel, simple, and effec-
tive human-in-the-loop approach for weight compensation
in upper-limb assistive devices. This adaptation rule adapts
the exoskeleton torque profile using biofeedback from four
mono-articular muscles in order to compensate for the grav-
itational effects of an unknown object. Our method leads
to the whole muscles’ effort reduction, is task-independent,
and does not enforce a certain trajectory to the human joints.
Hence, the human can have active voluntary behaviors while
a portion of the required torque at each joint is compensating
by the exoskeleton. The presented method is also analyzed
analytically in terms of optimality, stability, and convergence.

Our simulation results support the performance of the
proposed method in terms of optimality, stability, and con-
vergence in a generic and realistic model of the human arm
in OpenSim, a model with 7-DOF and 50 Hill-type muscles.
It is also observed that increasing the frequency/speed of
the motions leads to deviations from the unknown mass
value; i.e., deviations of equilibrium point from the unknown
mass have a linear relation with frequency. However, in all
cases, the proposed adaptation rule leads to whole muscles’
effort reduction by feedback from four muscles; a partial
observation leads to global optimization. As future work, the
goal is to apply this method on a real upper limb exoskeleton
device with myoelectric sensors (e.g., EMG) and validate the
proposed claim; minimize the whole muscles’ effort using
partial observation of four mono-articular muscles.

The proposed adaptation rule for gravity compensation
can also be considered a model for mass estimation. This
model has the potential to be used as a cognitive model for
justifying how humans are interacting with the environment
and how the brain and neuromuscular system are combining
the sensory muscle information in order to have a quantitative
or a qualitative understanding of the environments and object
properties. This adaptation rule can also be considered as a
deep sensing method for individuals with hand amputations
who still have sensory neurons.
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