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1 Abstract

Diversification rates vary across species as a response to various factors, including environmental con-
ditions and species-specific features. Phylogenetic models that allow accounting for and quantifying this
heterogeneity in diversification rates have proven particularly useful for understanding clades diversification.
Recently, we introduced the cladogenetic diversification rate shift model (ClaDS), which allows inferring
subtle rate variations across lineages. Here we present a new inference technique for this model that con-
siderably reduces computation time through the use of data augmentation and provide an implementation
of this method in Julia. In addition to drastically reducing computation time, this new inference approach
provides a posterior distribution of the augmented data, that is the tree with extinct and unsampled lineages
as well as associated diversification rates. In particular, this allows extracting the distribution through time
of both the mean rate and the number of lineages. We assess the statistical performances of our approach
using simulations and illustrate its application on the entire bird radiation.

2 Introduction

Diversification rates vary widely across species, according to a variety of factors including species-
specific features (e.g. life-history, phenotypic, or behavioral traits) or characteristics of the environ-
ment experienced by the species (e.g. resource availability, habitat heterogeneity). Understanding
how and why these rates vary is central to understanding what makes species richness vary across
species groups and geographic regions. Diversification rate heterogeneity is manifest in empiri-
cal phylogenies, which imbalance is typically much higher than expected under a homogeneous
birth-death model (Aldous, 2001; Blum and Frangois, 2006). Over the years, several phylogenetic
approaches have been developed to estimate diversification rates from dated phylogenies of extant
species and to relate these diversification rates to biotic and abiotic factors (Stadler, 2013; Pennell
and Harmon, 2013; Morlon, 2014).

Recently, important efforts have been made to develop phylogenetic models of diversification
that account for diversification rate heterogeneity (Alfaro et al., 2009; Rabosky, 2014; Barido-
Sottani et al., 2018; Hohna et al., 2019; Maliet et al., 2019; Laudanno et al., 2020). Such models are
required to avoid spurious inference of diversification histories linked to model misspecification (i.e.
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assuming homogeneous rates when this hypothesis is clearly violated, Rabosky, 2010; Morlon et al.,
2011). They have also been developed to directly test the effect of various traits on diversification
rates (see all the models of the SSE family, e.g. Maddison et al., 2007; FitzJohn, 2012), to identify
major shifts in the tempo of clade diversification (Alfaro et al., 2009; Rabosky, 2014; Barido-Sottani
et al., 2018), or to infer more subtle rate variations (Maliet et al., 2019).

In parallel to these developments, there has been an increasing interest in estimating species-
specific diversification rates. Jetz et al. (2012) demonstrated the utility of such measures for un-
derstanding present-day geographic variation in species richness. In the later paper the authors
introduced the DR measure, which can be computed for each extant species. DR has since been
widely used to understand how diversification rates vary across gradients, such as elevational (Quin-
tero and Jetz, 2018) and latitudinal gradients (Rabosky et al., 2018). It has also been used in tip-rate
correlation tests, in order to assess the influence of traits on diversification rates, thereby providing
an alternative to SSE models that can suffer from high false discovery rates (Rabosky and Goldberg,
2015; Harvey and Rabosky, 2017). Lineage-specific diversification rates have also been computed
with BAMM (Bayesian Analysis of Macroevolutionary Mixtures, Rabosky, 2014), or similar models
that have subsequently been developed to account for potential shifts in diversification rates in
now-extinct lineages (Barido-Sottani et al., 2018; Hohna et al., 2019; Laudanno et al., 2020).

We recently developed the cladogenetic diversification rate shift model (ClaDS), which also
provides species-specific estimates of speciation rates (Maliet et al., 2019). In contrast to other
model-based approches (Rabosky, 2014; Barido-Sottani et al., 2018; Hohna et al., 2019; Laudanno
et al., 2020) that capture rare shifts with large effects, ClaDS is specifically designed to capture
more frequent shifts with small effects. A recent study showed that this ‘many small shifts’ model
shows higher marginal likelihoods than the ‘few large shifts’ models when applied to bird clades
(Ronquist et al., 2020). Rather than assuming that speciation rates are taken from a (usually small)
set of rate regimes (Rabosky, 2014; Barido-Sottani et al., 2018; Hohna et al., 2019; Laudanno et al.,
2020), ClaDS assumes that each lineage has its own speciation rate. At each speciation event, the
two daughter lineages are assigned new speciation rates sampled in a distribution parameterized on
the parental rate. This feature of ClaDS makes it particularly relevant in the context of estimat-
ing species-specific rates, as rates are explicitly modeled under an assumption of species-specificity
rather than as coming from a limited set of rate regimes. It is also particularly interesting in the con-
text of tip-rate correlation tests, as the power of such tests is limited by the number of distinct rate
regimes present in a given phylogeny (Rabosky and Huang, 2016). Summary statistics such as DR
also capture fine rate variations, however their exact relationship to diversification rates is unclear.
DR for example is the inverse of the equal-split (ES) statistic initially developed in conservation
biology to account for species evolutionary relatedness, which apportions the total phylogenetic
branch-lengths of a tree among its constituent species (Redding and Mooers, 2006). Although DR
has been widely used as a measure of diversification rates (Jetz et al., 2012; Rabosky et al., 2018;
Title and Rabosky, 2019), the only mathematical link between this statistic and diversification rates
that we are aware of is that DR converges to the speciation rate under a time-constant and homoge-
nous model in the absence of extinction (i.e. the Yule model). Simulations under various models
with heterogeneous rates have shown that ClaDS provides more accurate estimates of speciation
rates than estimates from BAMM or DR (Maliet et al., 2019).

In our previous implementation for fitting ClaDS to empirical phylogenies, we sampled the
parameters of the model and the species-specific diversification rates using a Metropolis Hastings
Monte Carlo Markov Chain (MCMC) Bayesian framework. This requires multiple computations of
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the likelihood associated to a given reconstructed phylogeny (i.e. a phylogeny that includes a sample
of only present-day species). In order to account for all the ‘hidden’ rate shifts happening at speci-
ation events that are unobserved on the reconstructed phylogeny (i.e. all the speciation events that
did not give rise to sampled descendants at present) in the computation of the likelihood, we need
to numerically resolve a set of Ordinary Differential Equations (ODEs), which is computationally
intensive. This computational cost limits the empirical applicability of ClaDS.

Here, we develop a much more efficient approach for fitting ClaDS to empirical phylogenies,
using data augmentation (DA) within a MCMC in a Bayesian framework. DA is a classical statistic
inference method that relies on introducing latent variables that simplify the evaluation of the model
likelihood (Tanner and Wong, 1987). In the field of phylogenetic methods, DA has been used to
map DNA substitution histories on phylogenies (Mateiu and Rannala, 2006; Lartillot and Poujol,
2011), to infer ancestral biogeographical histories (Landis et al., 2013), to assess the effect of a
discrete character on trait evolution (May and Moore, 2020), or to develop biogeographic models
with competition (Quintero and Landis, 2020). It has also been applied to estimate diversification
rates, by augmenting the reconstructed phylogeny with extinct and unsampled lineages in a constant
rate homogeneous birth-death model, in order to account for uniform (Bokma, 2008) and dispersed
(Cusimano et al., 2012) species sampling.

We enhance the tree with extinct and unsampled lineages together with their lineage-specific
speciation rates. This dramatically reduces the computational cost of ClaDS, because simulation is
fast and the likelihood of the enhanced tree can be quickly computed analytically. In addition to
making ClaDS much more computationally efficient, the DA implementation outputs distributions
of the enhanced data; this provides estimates than can otherwise be hard to obtain, such as estimates
of diversity through time (Morlon et al., 2011; Etienne et al., 2012; Manceau et al., 2019; Billaud
et al., 2020), or of speciation rates through time. We test our new implementation of ClaDS using
simulations and illustrate its application by fitting ClaDS to the entire bird radiation.

3 Methods

3.1 Model and notations

We develop our DA inference approach of ClaDS for the model referred to as ClaDS2 in Maliet
et al. (2019), which is a model with constant turnover rate (i.e. extinction rate divided by speciation
rate). We focused on this particular version of ClaDS as it is the one that produces trees with the
most realistic tree shapes (Maliet et al., 2019), and best fit to empirical data (Ronquist et al.,
2020). The model (illustrated in Figure 1 of Maliet et al., 2019) is based on the classical birth-death
model (Nee et al., 1994), but each lineage ¢ has its own speciation rate A;. The process starts with
a single lineage with speciation rate Ag. When lineage 7 speciates to give birth to two daughter
lineages s; 1 and s;2, the rates of the two new lineages are independently drawn in a lognormal
distribution with parameters log(a);) and o, where « is a deterministic trend parameter and o
controls the stochasticity of rate inheritance. We define m = o * e */2 the expected relative change
in speciation rate (this is the mean of the lognormal distribution). With m < 1, speciation rates
tend to decrease at speciation, while with m > 1 they tend to increase. Lineage ¢ can also go extinct
at rate e)\;, where ¢ is the turnover parameter, assumed constant through time and homogeneous
across lineages. Finally, lineages that survive to the present time are sampled independently from
each other with probability f, with 0 < f <= 1.
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3.2 Data dugmentation

We use data augmentation (DA) to improve the computational efficiency of the estimation of
ClaDS parameters from dated reconstructed phylogenies, while integrating over all the possible rate
changes along phylogenetic branches. DA allows sampling from the posterior distribution p(©|X)
of the model’s parameters © knowing the observed data X, by introducing latent variables Z (also
called the augmented data). Recursively simulating the latent variables Z knowing © (from the
distribution p(Z|©, X)), then sampling the model’s parameters © knowing Z (from the distribution
p(©]Z, X)) builds a Monte Carlo Markov Chain (MCMC) with stationary distribution p(©]X)
(when marginalizing for ©). By marginalizing the chain for the augmented data Z, we also have
access to the distribution of the augmented data knowing the observed data, p(Z|X).

In our case, the observed data are any given reconstructed phylogeny; the model parameters are
the four hyperparameters (Ao, o, o and €) and the speciation rates at the beginning of each branch;
the augmented data are the unobserved speciation events and associated new speciation rates, as
well as the extinction events. Augmenting the tree enables an efficient sampling of the parameters
knowing the complete tree, because we can easily compute the likelihood of a complete tree under
ClaDS analytically (see Appendix).

For the augmentation step, we simulate extinct and unsampled lineages for one branch from
the reconstructed phylogeny at a time. This is accurate because lineages diversify independently
from each other under the ClaDS model. Branches are updated using a Metropolis Hasting (MH)
algorithm. In the MH algorithm, a new state x is proposed in replacement for the former state z* by

sampling from a proposal density p(xz|x*). The new state is accepted with probability LL((;C*)) z g'ﬁ;,
p(zlz™)

P& 2] is called the Hastings ratio, and corrects for an eventual
asymmetry in the proposal density p(x|z*) # p(x*|x).

At each augmentation step and for each branch, we replace the branch by a phylogeny with
associated branch-specific rates (Fig 1), which is obtained by simulating a phylogeny under our
model with the parameters from the MCMC at the step. This phylogeny might have only one edge
if no event occurs during the simulation before the present (in the case of augmenting a terminal
branch), or before the following branching event observed in the reconstructed tree (in the case of
augmenting an internal branch). For a terminal branch of length ¢; with initial rate \;, we simulate
a phylogeny with initial rate \; for a time ¢;. If the process goes extinct, the proposal is rejected.

nif(1—fyri=? )
n;f—p)"
where n is the number of species that survived to the present in the augmented tree at the previous
step for this branch (see Appendix). If the newly proposed augmented branch is rejected, we keep
the previous one until the next augmentation step. Similarly, for an internal branch starting at time
t; with speciation rate A\; and branching at time s;, we first simulate the process with a speciation
rate \; for a time t; — s;. If it goes extinct, the proposal is rejected. Otherwise, we select at
random one of the lineages alive (that has speciation rate A) to be the lineage that branches at
time s;, and continue the process to the present for all the other alive lineages, which results in
n >= 0 lineages alive at present time. The new augmented branch is accepted with probability
min (1, vAi)rAki2)1=/)" *> where n} is the number of species that survived to the present for

v X, 1)v (A% N 2) (1= f)™

this branch in the previous augmented tree, and \* is the speciation rate for branch ¢ at time s; in
the previous augmented tree (see Appendix).

where L(.) is the posterior density.

Otherwise if n; lineages survive to the present, it is accepted with probability min | 1,
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Figure 1: Illustration of the augmentation of a branch of the reconstructed phylogeny
with extinct and unsampled lineages. Left: A terminal branch i starting at time ¢; with
speciation rate \; is augmented by simulating a phylogeny 7; from the ClaDS model. If T; goes
extinct before the present it is rejected; otherwise it is accepted with a probability proportional to
the probability that exactly one lineage from T; is sampled at present, n;f(1 — f)™. One tip of the
accepted tree is sampled at random (pink arrow) to compute the tip rate of branch i. Right: An
internal branch ¢ starting at time ¢; with speciation rate A; and branching at time s; with daughter
rates ;1 and Ao is augmented by first simulating a phylogeny from the ClaDS model with initial
speciation rate A; for a time t; — s;. If the process goes extinct before time s;, the proposal is
rejected. Otherwise we sample at random one of the tips at s; (pink arrow, this tip has speciation
rate A), that will be the one branching in the reconstructed tree. For the other lineages alive at s;,
we continue the simulation for a time s;. The resulting phylogeny T; is accepted with a probability
proportional to the probability density of the two new rates times the probability that no lineage
from T; will be sampled at present, Av(\, Aj1)v(A, Aig)(1 — f)™.

The probability density of each of the model parameters knowing the complete tree and all the
other parameters can be readily obtained from the likelihood of the complete tree by fixing all the
other parameters to their current value (see Appendix), so we use Gibbs sampling to update them.
We sample each parameter from its density conditioned on the other parameter values using slice
sampling (Neal, 2003).

3.3 Implementation

We implemented our functions in the PANDA package (https://github.com/hmorlon/PANDA.
j1) in Julia (Bezanson et al., 2017). Our new implementation allows to specify different sampling
probabilities for subclades in the phylogeny. In practice a user attributes a sampling probability
to each tip (the sampling fraction of the subclade this species belongs to); our code attributes a
sampling probability to each internal branch of the tree, taken to be the weighted mean of the
subclades it subtends. More specifically, a branch with daughter clades that have n; and n, tips
and sampling probabilities f. and f; is attributed the sampling probability #j;"n’l/ﬂ

To monitor the convergence of the MCMC, we run 3 chains simultaneously. Every n;;., iterations,

we compute the Gelman statistic (Gelman et al., 2014) for the 4 hyperparameters and the lineage-
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specific rates for each branch in the reconstructed phylogeny. We stop the algorithm when the
Gelman statistics are below 1.05 for all the parameters.

As prior distributions, we use an inverse gamma prior with parameters (0.05,0.5) for o2 (we
used an inverse gamma prior for o in Maliet et al. (2019), but using it on ¢? is more natural, as the
inverse gamma is the conjugate prior of the normal distribution with variance ¢2). For In(a) we
use a normal distribution with parameters (—0.05,0.1), for € a flat prior distribution on all positive
values, and for the various speciation rates, including Ag, a flat prior distribution on the log scale.

In addition to the model parameters (hyperparameters and branch-specific rates for each branch
from the reconstructed tree), we keep track of a number of summary statistics computed from the
enhanced tree. We don’t record the enhanced trees at each MCMC step, which would be too heavy
in terms of memory, but the function can output a sample from the complete tree distribution.
We slice the time between the root of the phylogeny and the present into nmesiice €qual intervals
(which can be specified by the user and which we set at 50 as the default and for this study), and
record, for each of the corresponding time points, the number of lineages and mean speciation rate
over all the lineages in the enhanced tree. We also record the speciation rate at present for each tip
in the reconstructed phylogeny. When sampling is incomplete (f < 1), there can be several tips in
the augmented tree corresponding to a given extant species; in this case we pick one at random and
record its rate.

The MCMC gives a sample from the posterior density of the model parameters, that can be
summarized using a variety of metrics, including credibility intervals, means, and medians. We use
the Maximum A Posteriori (MAP) for each of the parameters as point estimates. To do so we apply
the function density from the R-package stats (R Core Team, 2013) to our MCMC chain, and
record the parameter values for which the maximum density is reached. For the all the rates (Ao
and all the branch-specific rates), this is done after taking the logarithm of the chains, which we
found to perform better. For the sake of memory use, only the initial rate of the branch is recorded
at each MCMC iteration (for the terminal branch we also record the rate at present), so the inferred
rates correspond to the rates at the beginning of the branch. If there is an interest in studying the
rate variation along a given branch, this information can be retrieved from the sample of complete
phylogenies outputted by the function. Point estimate for the number of lineage through time is
obtained by taking the mean of the chain for each time point, as we found this estimate to perform
better than the MAP for this quantity.

3.4 Test on simulated trees

We test the performance of our new inference method using simulations. We implement a new
simulation algorithm of ClaDS conditioned on the number of tips; this new implementation avoids
the bias linked to stopping the simulation as soon as the desired number of tips is reached (Hartmann
et al., 2010) (see Appendix). In all simulations, we fix Ag to 0.1; varying this parameter is equivalent
to rescaling the branches of the trees but does not have an impact on tree shape. We draw the
hyperparameters (o, «) from their prior distributions, with the condition that the mean of the new
rates m = ae® /2 < 1.3 to insure reasonable rate values and tree sizes. The prior distribution of &
is improper (i.e. it does not integrate to a finite value), so we draw & from a uniform distribution
on [0,1]. We test the model performances for sampling probabilities f in {1,0.9,0.5} and tree size
n in {50, 100, 200, 500}. For a given tree size n and sampling probability f, we start by simulating
a complete tree conditioned on having |n/f| tips, where |.] is the floor function. We then keep
each tip with equal probability f, conditional on the fact that at least one species from each of
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the two subtrees starting at the crown is sampled. To avoid numerical issues, we reject any tree
with branches shorter than le — 10 or trees for which branch lengths span more than 6 orders of
magnitude. These are very unrealistic trees and are unlikely to be encountered in empirical data.
We simulate 500 trees for each combination of n and f, leading to a total number of 6000 simulated
trees.

We run the inferences for our 6000 simulated trees, thinning every 30 iteration. We compute
the Gelman statistics every 200 recorded iterations, after discarding the first quarter of the iter-
ations. We stop the run as soon as the Gelman statistics are below 1.05 for all parameters (the
hyperparameters and the branch-specific rates). In rare occasions one of the chain gets stuck in
parameter space and the Gelman statistics does not go down; in this case we stop the run after
500.000 iterations even if the Gelman statistic is above the threshold value. This occurred in only
16 of our 6000 simulations, that we discarded from our analysis.

To assess the quality of the estimation of the hyperparameters, we compute MAP estimates and
compare these estimates to the simulated values. To assess the quality of the estimation of the
branch-specific speciation rates, we compute for each tree three different statistics: the correlation
between simulated and estimated rates, the regression slope of the estimated versus simulated
rates, and the mean relative error (exp(mean(log(Ain fered/Asimulation)))). We compute these three
statistics for the internal branches and for the tips.

Finally, we investigate the quality of inferred temporal dynamics of mean speciation rates and
species richness by recording for each tree the number of time points (within the 50 time slices)
for which the true values (directly computed from the simulations) fell outside the 95% credibility
intervals of the inferred values. The mean rates at a given time are computed across all lineages
alive at this time, including those that do not leave any sampled species.

3.5 Empirical application

We illustrate the utility of our new implementation by applying it to the bird phylogeny com-
puted with molecular data from (Jetz et al., 2012) with the Hackett backbone, containing 6670
species. We use TreeAnnotator from the software Beast with the Common Ancestor option for
node height (Bouckaert et al., 2019) to obtain a Maximum Clade Credibility (MCC) tree computed
from a sample of 1000 trees from the posterior distribution. We fix the sampling fractions for each
of the subtrees of the tree from Jetz et al. (2012) as the ratio between the number of species in the
molecular phylogeny over that in the phylogeny including all bird species.

4 Results

4.1 Performance of ClaDS with a DA implementation

The new fitting procedure of ClaDS with data augmentation runs much faster than our previous
approach (Maliet et al., 2019), a few hours instead of a few months for phylogenies with about 200
tips. This allowed us to test the performance of ClaDS under a much wider range of parameters, in
particular with incomplete sampling and in the presence of extinction.

The hyperparameters are overall well inferred (Fig 2). The stochasticity parameter o is slightly
overestimated for low values and underestimated for high values but gets closer to the simulated
value as the size of the phylogeny increases (Fig 2A, D). The trend parameter « is slightly biased
toward 1 but also gets closer to the true value with increasing tree size (Fig 2B). The estimates of
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the turnover rate € are highly variable but unbiased (Fig 2C). The hyperparameters are equally well
inferred for all studied sampling probabilities (Fig S1). The coverage probabilities (the percentage
of 95% credible interval that contains the parameter value used in the simulations) are slightly below
95% but approach this value for @ and e (Fig2D). For o it is about 85%), and the simulated o value
is above the coverage interval approximately 15% of the cases. This might come from the fact that
our simulated values are not exactly sampled from our prior (the coverage probability should be
95% only if the simulated values are sampled from the prior), because we reject trees with m > 1.3,
which generally corresponds to high ¢ values. The coverage probability somewhat surprisingly does
not improve with tree size (Fig 2D), but the size of the coverage intervals gets smaller as tree size
increases (FigS2), reflecting a higher precision in our estimates.
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Figure 2: Estimation of ClaDS hyperparameters. A: Inferred versus simulated o values on a
log-log scale. Each cross is the result of an individual fit, and colors correspond to the tree sizes
indicated in the legend. The thick solid lines display the sliding means, the thick dotted lines the
sliding medians, and colored areas sliding intervals that contain 95% of the inferred values. The
dotted black line shows the 1:1 bisector. B: Inferred versus simulated a values on a log-log scale. C:
Inferred versus simulated e values. D: Coverage probability for o, o and €. The middle of the barplot
indicates the percentage of the 95% credibility interval that contains the simulated parameter value,
while the darker and lighter bar respectively indicate the percentage of the inference for which the
simulated value is lower or higher than the 95% credibility interval .

ClaDS returns branch-specific estimates for all branches of the augmented tree, as well as mean
rates through time and diversity-through-time curves (Fig 3). The branch-specific speciation rates
are also well inferred (Fig 4), as we see from the correlation between the simulated and inferred rates
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(FigdA) and the mean relative error across simulated trees (FigdB). The rates are slightly biased
towards low values for small trees (Fig4, 50 tips) but this bias disappears quickly with increasing
tree size, and the mean relative error is well centered on 1 for trees with 100, 200 and 500 tips. The
correlation also improves with tree size (Fig 4A). For a given reconstructed tree size, the correlation
is better when the clade is well sampled (FigdA). This is also the case for the regression slope, that
is generally below 1, because estimated rate variations tend to be smoothed with respect to the true
variations (FigS3). It is the reverse for the mean relative error, which increases with the size of the
complete tree (and thus is closer to 1 for lower f, FigdB). This shows that the local variations are
better inferred for well sampled trees, while the global trends are best inferred for big clades. The
patterns are similar for tip rates (FigdD,E).

A —= B =

0.002 0.005 0.01 0.02 0.05

o
=Y
2

S o
wn
g (%]
o 2
5 ° e
g ge
i - ; -
£ g 2 .
<
(=]
S o
o r T T T T 1 r T T T T 1
0 50 100 150 200 250 0 50 100 150 200 250
time time

Figure 3: Inference on a simulated tree with 50 tips. A: The reconstructed simulated tree,
with branches colored accorded to the simulated branch-specific speciation rates. B: Draws from the
posterior distribution of complete phylogenies with speciation rates. C: Mean rate through time.
Yellow line: true mean rate through time obtained in the simulation; Thin blue lines: individual
draws from the MCMC; Thick blue lines: 95% credibility interval in the MCMC; Dotted green line:
inferred mean rate through time estimated by taking the mean of the MCMC iterations. D: Diversity
through time plot. Black line: number of lineages through time in the reconstructed phylogeny (the
LTT plot); Yellow line: true number of lineages through time obtained in the simulation; Thin blue
lines: individual draws from the MCMC; Thick blue lines: 95% credibility interval in the MCMC;
Dotted green line: inferred number of lineages through time estimated by taking the mean of the
MCMC iterations.

For about 30% of the trees, the simulated mean speciation rates fall within the inferred 95%
interval over the entire time span of the simulation (Fig4C); for most of the trees for which this is
not the case, they fall within the credibility interval at least a 80% of the times (Fig4C). For about
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40% of the trees, the simulated number of lineages fall within the inferred 95% interval over the
entire diversity-through-time curve (FigdD); for most of the trees for which this is not the case, they
fall within the credibility interval at least 80% of the times (FigdD). Similarly to what happens for
the hyperparameter, tree size increases the precision of the estimation but not coverage probability.
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Figure 4: ClaDS performs well in estimating branch-specific rates, diversity-through-
time, and mean rates through time. A: Correlation between simulated and inferred branch-
specific speciation rates (the rates at the beginning of each branch) across all simulations, for each
tip number and sampling probability (from left to right for each tree size: f = 1.,0.9,0.5). The
violin plots represent the distribution of correlation values. White dots represent the medians, and
thick black lines the quartiles. B: Mean relative error in branch-specific speciation rates (the rates
at the beginning of each branch). C: Distribution of the number of time points when the true curve
of the mean speciation rate through time is out of the credible interval for each simulated tree. D:
Correlation between simulated and inferred branch-specific speciation rates at present. E: Mean
relative error in branch-specific speciation rates at present. F: Distribution of the number of time
points when the true curve of the number of lineages through time is out of the credible interval for
each simulated tree.

4.2 TIllustration on the bird phylogeny

Our new implementation of ClaDS allows fitting the model with extinction and incomplete
sampling to the entire bird phylogeny (6670 tips, Fig. 5), which we were not able to do in our
previous study as it would have required a huge amount of time. We fit the full tree in less than a
day with the new implementation, while in our previous study it took several months to approach
convergence for family-level fits. Consistent with what we found on individual bird clades (Maliet
et al., 2019), we find that the variability in rates is high, as indicated by the o value (Fig. 5D,
o = 0.55), and branch-specific speciation rates are spread over more than two orders of magnitude
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(Fig. 5C, from 0.01 to 4 events per million years). We also confirm that there is a general tendency
for rates to decline through time, as we can see from the trend parameter « (Fig. 5E, « = 0.68) and
the mean new rate m = o e /2 (Fig. 5G, m = 0.79). Contrary to what could have been expected
from these hyperparameter estimates, the estimated mean speciation rate appears relatively constant
through time, with a slow decline for the first 60 million years, followed by a slow increase (Fig. 5A).
We find a very low level of extinction (Fig. 5F, ¢ = 0.07). Consequently, the diversity-through-time
curve is very similar to the LTT plot, diverging only close to the present because of incomplete
sampling (Fig. 5B).
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Figure 5: Fit of ClaDS to the entire bird radiation. A: Inferred mean rate through time, with
individual MCMC iterations (thin blue line), the 95% credibility interval for each time point (thick
blue line), the mean for each time point (dotted green). Time goes from root time to the present. B:
Inferred number of lineages through time, with the count from the reconstructed phylogeny (black
line), individual MCMC iterations (thin blue line), the 95% credibility interval for each time point
(thick blue line), the mean for each time point (dotted green). Time goes from root time to the
present. C: Inferred lineage-specific speciation rates for the bird phylogeny. D: Marginal posterior
of the heterogeneity parameter . The orange line indicates the value of the MAP estimate. E:
Marginal posterior of the trend parameter a. F: Marginal posterior of the turnover rate €. D:
Marginal posterior of the mean change in rate m = e’ /2,
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5 Discussion

We developed a new implementation of ClaDS, using data augmentation, that allows a fast and
accurate inference of branch-specific speciation rates, while accounting for extinction and incomplete
sampling. This new implementation renders the application of ClaDS to large phylogenies feasible
and should be useful for empirical studies that aim to understand how and why diversification
rates vary across lineages. The approach provides more resolution than models with few large rate
shifts (Alfaro et al., 2009; Rabosky, 2014; Barido-Sottani et al., 2018; Hohna et al., 2019; Laudanno
et al., 2020) and more theoretical grounding than summary statistics such as DR (Jetz et al., 2012).
We implemented our approach in a Julia package with a user-friendly interface, and we provide a
tutorial illustrating how to run the model (SI).

In addition to estimating branch-specific speciation rates, our new implementation of ClaDS
provides a distribution of complete phylogenies consistent with the empirical reconstructed tree,
along with associated branch-specific rates (i.e. the augmented data). This can be useful to recon-
struct past dynamics, as we have illustrated here with diversity-through-time and rate-through-time
curves; we show that these curves are well estimated for most of our simulated trees. Other methods
that allow the estimation of diversity-through-time curves from reconstructed phylogenies assume
that diversification rates are homogeneous across lineages (Etienne et al., 2012; Manceau et al.,
2019), or require an a priori specification of nodes in the phylogeny where rate shifts occurred (Mor-
lon et al., 2011; Billaud et al., 2020). Almost all these methods also require estimating diversification
rates (e.g. by maximum likelihood; but see Manceau et al., 2019) prior to computing the curves,
while ours estimate diversification rates and diversity jointly along the MCMC. Our implementation
thus allows estimating diversity-through-time curves while accounting for heterogeneous speciation
rates among lineages and uncertainty in model parameters.

Since we compute mean rate-through-time curves from the complete, data-augmented phyloge-
nies, we avoid potential biases due to not accounting for extinct or unsampled lineages by computing
these curves on the reconstructed phylogeny (Rabosky, 2014). As illustrated here with the applica-
tion on the bird phylogeny with an inferred m below 1 and a rather constant mean rate-through-time
curve, the mean temporal tendency can be counter-intuitive given inferred m values. Indeed, even
though m < 1 indicates the tendency for daughter rates to be lower than parental rates, lineages that
by chance have a high rate have a higher probability of speciating and having offspring, such that
the mean rate does not necessarily decrease through time. Hence examining mean rate-through-time
curves in addition to m values is an essential step when studying the diversification dynamics of a
clade with ClaDS.

Computing likelihoods for augmented data is in general much easier mathematically, and efficient
computationally, than computing likelihoods for reconstructed data. Hence we can envision several
extensions of the ClaDS model using data augmentation. For example, the current implementation
can accommodate only bifurcating trees, but trees with polytomies could be accommodated in the
future by simulating unresolved nodes during the tree enhancement phase, in the spirit of polytomy
resolvers (Kuhn et al., 2011). Similarly, non-ultrametric trees, such as those that integrate extinct
(fossil) species (Stadler, 2010), could readily be accommodated. It would also be rather straightfor-
ward to modify the distribution in which daughter rates are drawn to allow for both large and small
rate shifts, which would allow testing how much variations in diversification rates are associated
with major shifts, for example linked to key innovations, and small variations, for example linked to
gradual trait evolution. Other potential extensions include integrating the effect of environmental
correlates (Condamine et al., 2013; Lewitus and Morlon, 2017), species interactions (Etienne et al.,
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2012), or phenotypic evolution (Maddison et al., 2007) within ClaDS, which would allow testing the
role of these various factors on diversification while accounting for rate heterogeneity.

Our approach shares some characteristics with the implementation of ClaDS by Ronquist et al.
(2020) using Probabilistic Programming Languages (PPL) and alive particle filters. The two ap-
proaches rely on intensive simulation of the process. The use of particle filters has the additional
advantage of giving an estimate of the marginal likelihood of the model, which is useful for model
comparison. It would be interesting to compare the performance of both approaches in terms of
computation time.

The fit of ClaDS to the full bird radiation, made possible by the new implementation, confirms
our earlier results based on family-level analyses, and allows a comparison with previous studies
that have used the same bird phylogeny (Jetz et al., 2012; Rabosky, 2016). The extent of rate
variation we found with ClaDS is similar to what has been found with the DR statistic (Jetz et al.,
2012) and wider than the one found when using BAMM (Rabosky, 2016). Interestingly, our rate
through time curve is very similar to the one found for the same phylogeny in Jetz et al. (2012) (Fig
1), even though the model they used was very different from ours, with diversification rates that
are homogeneous among lineages but can jump at given time points (Stadler, 2011). Consistently
with previous studies (Jetz et al., 2012; Maliet et al., 2019; Ronquist et al., 2020), we infer a very
low level of extinction in this tree. This could be due to the dating of this tree which was done
using a pure birth prior, as dating priors can have a strong impact on tree dating and posterior
diversification analyses (Condamine et al., 2015). It could also be due to the yet-to-be explained
difficulty of inferring extinctions from empirical trees (Rabosky, 2010); as we have shown extinction
is well inferred on trees simulated under the ClaDS process.

The fit of ClaDS to the full bird radiation reveals a clear tendency for decrease in rates at
speciation (m = 0.78), as is regularly found in empirical phylogenetic studies (Phillimore and Price,
2008; Moen and Morlon, 2014). However, this does not translate into a rate decrease through time
at the global level; we even find a slight increase in rates starting from 60 Myrs ago. The rate
decline at speciation is compensated by the lineage selection effect (lineages with relatively high
speciation rates leave more daughter lineages), which is all the more preponderant that o (i.e. the
level of stochasticity) is large. So even though a slow-down can be seen at a small phylogenetic scale,
repeated bursts of diversification rates hide this signal at the global scale, as proposed by Henao Diaz
et al. (2019). This result emphasizes the importance of using heterogeneous diversification models
when studying large clades, which our new implementation now makes possible for ClaDS.

6 Appendix

6.1 Probability density of the complete phylogeny

The probability density of the complete tree with branch-specific rates is the combination of: the
probability density of the waiting times between branching events ((14¢)\;e~(179)2) | the probability
that a given event is an extinction (¢/(1 + €)) or a speciation (1/(1 + €)), the probability density
of the two new speciation rates after a branching event (v(A;, A, ;)v(Ai, As; ,)), the probability that
no event happened on a given branch (e_(”e))‘i). Calling E; the set of internal branches, it can
thus be written as :
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n

H 67(1+5))\i H )‘i(V(Aiv /\Si,l)V()‘i’ )‘5132)) H eA; (1)

1=1 1€Es 1€l

6.2 Updating a branch

We note © the model hyperparameters, T, the reconstructed tree, T the complete tree enhanced
with 7; at branch i of the reconstructed tree, n; the number of tips of T; alive at present time,
and T_; the complete tree without branch ¢. We also note t; the starting time of branch ¢ in the
reconstructed tree, and s; its end time. Finally, we note A; ; (with j € [1,ns;]) the branch-specific
speciation rates of T;, with A\; 1 = \; the branch-specific speciation rate of branch i in 7;.. We use
the same notations with a * upper script when referring to these quantities in the precedent MCMC
state.

P(T, (i g)ieftn) jefins ©) = [ [P(To Nii)jerpnsg|©:Mia) [T voeis Asi)vo(Mois As,n)  (2)

iinternal

The probability to have 7). as a reconstructed tree knowing the complete tree T is the probability
that no species from 7T; was sampled if 7 is an internal branch ((1— f)™) and that exactly one species
from T; was sampled if 7 is a terminal branch (n;f(1 — f)"~1). So

P = ] a-pH™ J[ mra-pm? (3)

iinternal iterminal

For branch i, we propose a new phylogeny 7T; simulated with ClaDS2 for a time ¢; with initial
speciation rate \;. So the probability to propose T; when the current enhanced tree is T is

p(T7 (Ai,j)ie[l,n],je[l,nsi] ‘T*7 (Ai,j):€[17n},j€[17n5i]7 @7 T’I‘) = p(,—z—lbv ()\i,j)je[l,nsi} |@7 ti? Siy A’L) (4>
which is independent of the previous state 7", so the Hastings ratio is
P(T5, (Xig) jen ns|©s tis sy M) /(75 (Nig)jeqinst)
The posterior probability of the new state is

p(Tv ()‘@j)ie[l,n],je[l,nsi]? 6|T7") = p(Ta ()‘i,j)ie[l,n},je[l,nsi] |T7"7 @> * p(G)
_ p(T’/"T7 @) X p(Ta (Ai,j)ie[l,n],je[l,nsi} |@) (6)
p(T:|©)

O, t;, si, \i) (5)

The new proposed branch is accepted with probability

p(T, ()\i,j)ie[l,n},je[l,nsi]y ®|Tr) p(T*’ ()‘i7j)Ze[1,n],je[17n5;] T, ()‘i,]’)ie[l,n],je[l,nsi}v @)
p(T*, (Ai,j);‘kg[l,n},jg[l,nsi]a @|Tr) p(T, (Ai,j)ie[l,n],je[l,nsi] ‘T*7 (Aivj)?e[l,n},je[l,ns*]’ @7 TT)

k3

(7)

Injecting the respective value of these quantities, we obtain that the acceptance probability is, if
branch 7 is internal

Ab,iv0 (Abis As; 1 )V0 (Abis As; o)

1— n;—n; ]
SN W PG U W A ®)

14


https://doi.org/10.1101/2020.11.03.365155
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.11.03.365155; this version posted November 4, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

And, if branch 7 is terminal

6.3 Simulating a phylogeny conditioned on tip number under ClaDS

In our former implementation of simulations of ClaDS conditioned on the number of tips at
present (Maliet et al., 2019), we simulated a tree with n tips by running the model until n species
were reached and stopping the simulation at the time of the following event. While this approach
is very commonly used, it leads to biased tree sampling as soon as the model differs from the pure
birth model, because it does not allow to simulate phylogenies in which the number of species has
been higher than n before decreasing (Hartmann et al., 2010). Here we implement an alternative
approach, the General Sampling Approach (GSA), that avoids this bias (Hartmann et al., 2010).
The GSA consists in simulating the process until it is very unlikely that it will reach n species latter
on, either because the process went extinct or because a larger number of species was reached (in
our model, we typically stop when 5n species are reached). The simulation time is then drawn
uniformly in the set of times during which there has been n species, and the corresponding tree is
retrieved.
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