






Figure 4: Pamona integrated the heterogeneous PBMC data set by incorporating cell type annotation informa-
tion. (a) Visualizations of the scATAC-seq (upper panel) and scRNA-seq (lower panel) datasets separately using UMAP before
alignment. (b) Visualizations of the common space of the two aligned datasets by Pamona by incorporating cell type annotation
information (γ = 0.5): upper panel: cells are colored according to their corresponding datasets; lower panel: cells are colored
according to their corresponding types. (c) The Label Transfer Accuracy and Alignment Score of Pamona and SCOT when γ
in the disagreement matrix M was set from 0 to 0.9, which is equivalent to the growing influence of cell annotations compared
to data structure. We similarly incorporated prior information for SCOT. Results by Seurat v3, MMD-MA and UnionCom did
not incorporate cell type annotation information.

[14]. The key technique of partial-GW is adding virtual/dummy points onto the marginals to
enforce points with large discrepancies absorbed by the virtual points [14,15]. Virtual points have
also been discussed in the partial graph matching problem [23]. As we can see from the computed
probabilistic coupling matrices by Pamona, the virtual points achieved the goal of absorbing the
dataset-specific cells (Supplementary Figs. 11-13). We also proposed an SPL method to estimate
the shared cell number across datasets. We demonstrate that SPL is very accurate in our tested
datasets (Supplementary Fig. 14).

Pamona is a computationally efficient algorithm. However, it requires O(n2) memory consump-
tion in the storage of distance matrices. Therefore, it may not perform well when sample size is in
large-scale (e.g., > 1 million cells). As large-scale single-cell multi-omics datasets are emerging, it is
challenging to resolve the scalability problem for Pamona. One approach to tackle this problem is
to develop a distributed storage and distributed computational framework for Pamona. Meanwhile,
since large-scale single-cell datasets can be highly redundant, we can take the alternative approach
by (1) adopting the state-of-the-art neural network with mini-batch framework [24], or (2) selecting
a subset of informative samples using the advanced geometric sketching tool [25] prior to applying
Pamona. We plan to pursue these topics in our future work.
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Methods

Mathematical formulation of Pamona

Pamona is a partial manifold alignment algorithm for single-cell multi-omics data integration. The
procedure used by Pamona includes 4 major steps (see Fig. 1a and Supplementary Note 1 for the
pseudocode).

First, suppose that X = [x1, · · · ,xnx ] ∈ Rdx×nx and Y = [y1, · · · ,yny ] ∈ Rdy×ny are the inputs
of two single-cell multi-omics datasets where dx(dy) and nx(ny) are the number of features and
cells for X(Y). We compute the weighted k-nn graphs for each of the two datasets where the nodes
of each graph correspond to cells within the dataset, and edges have weights based on pairwise
Euclidean distances between cells. In case the k-nn graph for a given k is not connected, we adopt
the same procedure as that in Klimovskaia et al. [26] to enforce connectivity.

Second, we compute the geodesic distances of cells within the same dataset by calculating
the shortest distance between each pair of nodes (cells) on the k-nn graph using the Dijkstra
algorithm. The path with the shortest distance will approximate to geodesic distance on the
embedded manifold [27]. We denote the geodesic distance matrices for X and Y as [Dx]nx×nx and
[Dy]ny×ny , respectively.

Third, we compute the probabilistic cell-cell correspondence between X and Y to identify
the shared and dataset-specific cells. Here, we formulate the problem as the partial-GW optimal
transport framework [14]. Partial-GW extends the GW optimal transport to allow only a fraction
of the total mass to be matched/transported [12].

Specifically, we assign each cell from each of the two datasets with a point mass 1/N , where
N = max{nx, ny}. Partial-GW aims to match (transport) a fraction of s/N mass from X to Y.
Here, s ≤ min{nx, ny} needs to be specified, and it can be regarded as the number of shared cells
between X and Y. Partial-GW finds a probabilistic coupling matrix T ∈ Rnx×ny from nx cells in
X to ny cells in Y able to minimize discrepancy between the geodesic distances in [Dx]nx×nx and
[Dy]ny×ny , that is

PGW (p, q)
def
= min

T∈Πu(p,q)

∑
i,j,k,l

(Dx
ik −Dy

jl)
2TijTkl, (1)

where Tij is the relative probability that matches cell i in X to cell j in Y, satisfying the constraints
on the set of all admissible coupling Πu(p, q) as

Πu(p, q)
def
= {T ∈ Rnx×ny

+ : T1ny ≤ p, T>1nx ≤ q , 1>nx
T1ny = s/N},

where p = 1
N 1nx and q = 1

N 1ny are the mass marginal distributions for X and Y, respectively.
Here, 1n ∈ Rn denotes an n-dimensional vector of ones, and the superscript > denotes the transpose
of a vector or matrix. The equality 1>nx

T1ny = s/N in Πu(p, q) enforces the relaxed requirement
that only a fraction of s/N cells needs to be matched/transported between the two datasets.

We write PGW in matrix form and add an entropic regularization penalty to the original
problem, resulting in the entropic regularized partial-GW metric as follows:

PGW ε(p, q) = min
T∈Πu(p,q)

〈L(Dx,Dy)⊗T,T〉 − εH(T), (2)

where 〈·, ·〉 denotes Frobenius dot product of matrices, (L⊗T) denotes an nx×ny cost matrix with

its (i, j)-th element defined as (L⊗T)ij
def
=
∑nx

k=1

∑ny

l=1 LijklTkl, the discrepancy between geodesic
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distances Lijkl
def
= (Dx

ik −Dy
jl)

2, the entropic regularization term H(T)
def
=
∑

i,j Ti,j log(Ti,j), and ε
is a tradeoff parameter between PGW and H(T).

To solve the optimization problem of PGW ε, Pamona adds virtual points onto the marginals
as in [14]. The virtual points are used as buffers when comparing distributions with different
probability masses. In this way, the partial-GW problem is equivalent to a point (cell) augmented,
but still standard GW problem, which can be efficiently solved by Sinkhorn iterations [28, 29].
Pamona solves it iteratively as follows: for each iteration k:

A1. Update the cost matrix C(k) = (L ⊗T)(k) as follows:

C(k) = (Dx)2T(k)1ny1
>
ny

+ 1nx1>nx
T(k)((Dy)2)> − 2DxT(k)(Dy)>, (3)

where C
(k)
ij represents the cost of aligning cell i in X to cell j in Y at iteration k.

A2. Add two virtual points (cells), one to X and the other to Y, resulting in augmented cost

matrix C̃
(k)

and marginal distributions (p̃, q̃) defined as follows:

C̃
(k)

=

[
C(k) 0nx

0>ny
α

]
, p̃ = [p, (ny − s)/N ], q̃ = [q , (nx − s)/N ], (4)

where the variable α ∈ R+ is set as a relatively large value greater than the elements of the
cost matrix C(k), with the aim of preventing the alignment within virtual cells between two

datasets. In practice, α can be chosen as any value such that > max
(
C

(k)
ij

)
(∀i, j), and the

performance of Pamona is robust to the choice of α (see Supplementary Fig. 2e,f). The mass
of virtual cell in X is set as (ny − s)/N in p̃, and the mass of virtual cell in Y is set as
(nx − s)/N in q̃.

A3. Compute GW optimal transport plan with C̃
(k)

and (p̃, q̃). We first normalize p̃← p̃
‖p̃‖1 and

q̃← q̃
‖q̃‖1 to construct probability distributions. Afterwards, we formulate the problem as

T̃
(k+1)

= arg min
T̃∈Πs(p̃,q̃)

〈
C̃

(k)
, T̃
〉
− ε
∑
i,j

T̃i,j log(T̃i,j), (5)

where

Πs(p̃, q̃)
def
= {T̃ ∈ R(nx+1)×(ny+1)

+ : T̃1ny+1 = p̃, T̃
>

1nx+1 = q̃}, (6)

which is a standard entropic regularized optimal transport problem. The T̃
(k+1)

is efficiently

solved by Sinkhorn iterations [29]. Once T̃
(k+1)

is obtained, we remove the last row and

column of T̃
(k+1)

to obtain T(k+1) as in [14].

The mechanism of adding virtual points with the designed augmented cost matrix C̃
(k)

and marginal
distributions (p̃, q̃), as defined above, is based on the theory that the virtual cell in X attracts mass

of (ny − s)/N cells in Y, with large values in corresponding columns of the cost matrix C̃
(k)

, and
that the virtual cell in Y attracts mass of (nx− s)/N cells in X, with large values in corresponding

rows of the cost matrix C̃
(k)

.
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Four, we then perform manifold alignment by aligning cellular modalities with distinct un-
matched features in a common low-dimensional space for feature comparability. The common
space should preserve both shared and dataset-specific structures across cellular modalities. Sup-
pose we have l + 1(l ≥ 1) datasets. As in Seurat [3], we fix a dataset Y ∈ Rdy×ny as the reference
dataset, and the other datasets Xi ∈ Rdi×ni , i = 1, · · · , l as the query datasets. We apply partial-
GW to Xi and Y in the three steps above and obtain the probabilistic coupling matrices Tis of
cells between Xis and Y, respectively, as the probabilistic cell-cell correspondence information.

We then align Xis and Y in a de-dimensional common space, resulting in the new embeddings
of Xie ∈ Rde×ni , i = 1, · · · , l, and Ye ∈ Rde×ny . To preserve the local neighborhood relationship,
we construct the graph Laplacian matrices Lix of Xi, i = 1, · · · , l, and Ly of Y, as other manifold
learning algorithms have done [30–32]. Besides, we also introduce the rotation-invariant constraints
and find the embeddings of cells by solving the optimization problem as

max
Xe,Ye

tr(XeTeYe>) (7)

s.t. XeSxxX
e> = I, YeSyyY

e> = I,

where Xe = [X1e, · · · ,Xle], Te =

T1

...

Tl

 ,Sxx =

L1
x + λΣ1

x
. . .

Llx + λΣl
x

, Syy =
∑l

i=1(Ly +

λΣi
y), Σi

x = diag(Ti1ny), Σi
y = diag(1>ni

Ti) and tr(·) is the trace of matrix (see Supplementary
Note 2 for details). We solve this optimization problem using the eigenvalue decomposition method
as in [30,33].

Extension of partial-GW framework to incorporate prior information

Pamona can also incorporate existing prior information in the alignment, such as cell types or cell-
cell correspondence, similar to the labeled graph matching problem [23]. Suppose each modality
has its associated cell labels or correspondence, and the objective is to find an alignment that fits
the prior information and data structure simultaneously. Let Mij denote the disagreement between
the i-th cell of dataset X and j-th cell of dataset Y. Then the alignment problem based on prior
information can be formulated as

min
T∈Πu

〈M,T〉 =

nx∑
i=1

ny∑
j=1

TijMij . (8)

A natural way of unifying (2) and (8) to match both the data structure and the prior information
is to minimize a convex combination [34]:

L(p, q) = min
T∈Πu

〈(1− γ)L(Dx,Dy)⊗T,T〉+ γ 〈M,T〉

= min
T∈Πu

〈(1− γ)L(Dx,Dy)⊗T + γM,T〉 , (9)

where γ is a non-negative regularization constant, and γ ∈ [0, 1], which represents a tradeoff between
cost of individual matchings and faithfulness to the data structure.

However, being in different scales for different domain knowledge can affect integration perfor-
mance considerably, e.g., a change in the scale of M. To overcome this problem, we introduce a
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more stable multiplication operator as

L(p, q) = min
T∈Πu

〈(L(Dx,Dy)⊗T)�M,T〉 , (10)

where � denotes Hadamard product which is the element-wise product taken on two matrices of
the same dimensions. In implementation, we set Mij = 1− γ (0 < γ < 1) if cell i in dataset X and
cell j in Y are in a correspondence relationship or the same cell type, and Mij = 1 otherwise. A
larger γ value gives more importance to the matching of prior information.

Scree-Plot-Like estimation of the shared cell number s

The original partial-GW framework needs to specify the shared cell number s, i.e., the shared
mass that needs to be transported. Nevertheless, in practice, s is generally unavailable. The user
can choose s empirically. However, such an approach can either overestimate or underestimate s,
leading to inaccurate alignment of the datasets.

The scree plot is used to determine the number of factors to retain in PCA [35]. In this study,
we propose a SPL method that can accurately estimate shared cell number ŝ with errors < 10% of
the true s in our tested data sets (Supplementary Fig. 14). The procedure of SPL is as follows.

Given a reference dataset Y with ny cells and a query dataset X with nx cells, we first give
a rough guess of s, denoted as s(g), which is smaller than nx, e.g., say in the range from 0.8 ∗ nx
to 0.9 ∗ nx. We apply Pamona with s(g) and compute the corresponding cost matrix C̃

(g)
and the

transport coupling matrix T̃
(g)

. Then, we take out the last column of T (g) from T̃
(g)

, divide the
interval between the minimum value and maximum value of T (g) into d equal spaced bins (small
intervals), count the number of cells (the elements of T (g)) falling into each bin, and plot the number
of cells in each bin (Fig. 1b). Ideally, if query X has dataset-specific cells, they tend to be absorbed
by the virtual point of Y with relatively high values in T (g). Thus, we can see a bump in the plot
close to the side of maximum value of T (g). We then detect the flat bin preceding the bump. To
be specific, suppose each bin has bi cells, where i ∈ 1, · · · , d, and we want to find a bin with largest
i satisfying the following 

bi − bi−1 ≤ 0,

bi−1 − bi−2 ≤ 0,∣∣|bi − bi−1| − |bi−1 − bi−2|
∣∣ ≤ δ, (11)

where | · | represent the absolute value, and δ = max{1, 0.005×nx}. Once i is identified, we estimate
s as ŝ = min{

∑i
j=1 bj , ny}. In this study, we applied SPL to estimate ŝ for all partial manifold

alignment tasks.

Method evaluations

We evaluate the single-cell multi-omics integration methods using three scores, (i) Label Transfer
Accuracy, (ii) Alignment Score, and (iii) FOSCTTM, to measure the alignment accuracies. All
three scores work on the basis of the common space (coordinate) of the integrated datasets.

Label Transfer Accuracy, which has been widely used in the transfer learning community and
was adopted by UnionCom [9] and SCOT [10], is used to measure the ability to transfer labels
of cells from one dataset to another in the common space. It is computed only using the shared
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cells and works when the cell label information (e.g., cell types, branches of cell trajectories) is
available. We construct a klta-nn classifier trained by using the reference dataset (e.g., Dataset Y)
and compute the prediction accuracy of the shared cell labels on the query dataset (e.g., Dataset
X) using the klta-nn classifier. Label Transfer Accuracy is defined as the percentage of shared
cells in the query dataset with correctly predicted labels, ranging from 0 to 100%. A higher Label
Transfer Accuracy is indicative of better performance. In this study, we chose the parameter of the
klta-nn classifier as klta = max{10, 0.01 ∗n}, where n is the total number of cells in both query and
reference datasets.

Alignment Score, which is the extension of the alignment score used in Seurat v2 [36], is applied
to measure the ability to preserve both shared and dataset-specific structures in the common space.
It works when the information of both shared and dataset-specific cells is available. First, for shared
cells only, the procedure of Alignment Score is exactly the same as that in Seurat. Specifically,
we randomly downsample the shared cells for larger datasets such that all datasets have the same
number of shared cells as the dataset with the smallest shared cell number. Next we construct
a kas nearest-neighbor graph for all shared cells sampled based on their Euclidean distances in
the common space. For each shared cell, we then compute how many of its kas nearest-neighbors
belong to the same dataset and compute the averaged value over all shared cells, denoted as x̄s.
If the shared cells are well aligned, we would expect that the nearest neighbors of each shared
cell to be uniformly shared across all datasets. For dataset-specific cells, we also construct a kas

nearest-neighbor graph of all shared and dataset-specific cells, based on their Euclidean distances
in the common space, followed by computing how many of its kas nearest-neighbors belong to
the dataset-specific cells of the same dataset, and compute the averaged values over all dataset-
specific cells, denoted as x̄ds. If the dataset-specific cells are well separated, we would expect that
nearest neighbors of each dataset-specific cell to be all the dataset-specific cells in the same dataset.
Suppose l+1 is the number of single-cell multi-omics datasets. Then the Alignment Score is defined
as:

Alignment Score =

{
1− x̄s−kas/(l+1)

kas−kas/(l+1) , no dataset-specific cells
1
2(1− x̄s−kas/(l+1)

kas−kas/(l+1) + x̄ds−kas/(l+1)
kas−kas/(l+1)), existing dataset-specific cells.

(12)

A higher Alignment Score is indicative of better performance. In this study, we chose the parameter
of kas = max{10, 0.01 ∗ n}, where n is the total number of the shared cells.

The FOSCTTM, or fraction of samples closer than the true match, score was introduced by
MMD-MA [7] to measure the preservation of cell-cell relationships in the common space when the
information of cell-cell correspondence across datasets is available. We compute the Euclidean
distances between a fixed sample point from one dataset and all the data points in the other
dataset. Next, we compute the fraction of those distances that are closer to the sample point than
the distance to the true matched point (correspondence cell). The FOSCTTM score is defined as
the averaged value of the fractions over all the samples. For perfect alignment, all samples would
be closest to their true match, yielding a FOSCTTM score of zero. Therefore, a lower FOSCTTM
score is indicative of better performance.

Data and data preprocessing

Our Simulation 1 data set was first simulated by SCOT [10]. It embedded a bifurcated tree into
two datasets: dataset X has 300 cells and 1000 features; dataset Y has 300 cells and 2000 features,
respectively.
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Our Simulation 2 data set was first simulated by UnionCom [9]. It embedded a bifurcated tree
into dataset X, which has 200 cells and 1000 features, and embedded a trifurcated tree into dataset
Y, which has 250 cells and 500 features. Dataset Y has a dataset-specific branch.

The sc-GEM data set of samples from human cells undergoing reprogramming to iPSCs was
generated by [17]. We utilized the preprocessed sc-GEM data obtained from MATCHER [6] and
the cell type annotation obtained from Cheow et al. [17]. It contains a DNA methylation dataset
with 177 cells and 27 features and a gene expression dataset with 177 cells and 34 features (genes),
respectively.

The scNMT-seq data set of mouse gastrulation samples collected at 4 time stages was generated
by [18]. It contains 3 datasets of RNA, DNA methylation and chromatin accessibility. We followed
the data analysis pipeline of scNMT-seq [18] and chose samples annotated as “E4.5 Epiblast”,
“E5.5 Epiblast”, “E6.5 Epiblast”, “E6.5 Primitive Streak”, “E6.5 Mesoderm”, “E7.5 Epiblast”,
“E7.5 Primitive Streak”, “E7.5 Ectoderm”, “E7.5 Endoderm”, and “E7.5 Mesoderm” for the inte-
gration, resulting in 2147 cells with 3473 genes in RNA, 647 cells with 10000 features in chromatin
accessibility, and 725 cells with 5000 features in DNA methylation, respectively. We further filtered
samples of the RNA dataset and selected out cells from the first batch of scRNA-seq of mouse
embryos E4.5 to E7.5 in Gene Expression Omnibus accession GSE121708, resulting in 597 cells
retained in the RNA dataset. Finally, we performed PCA dimensionality reduction for each of
the three modalities and retained the top 30 components. The preprocessed scNMT-seq data set
contains a gene expression dataset with 597 cells and 30 features, a chromatin accessibility dataset
with 647 cells and 30 features, and a DNA methylation dataset with 725 cells and 30 features,
respectively.

The SNARE-seq data set of samples, derived from a mixture of BJ, H1, K562, and GM12878
cell lines, was generated by [19] and utilized by SCOT [10]. We followed the data preprocessing
procedure of SCOT as follows: We performed dimensionality reduction of the scATAC-seq dataset
using cisTopic [37] and applied PCA for dimensionality reduction of the scRNA-seq dataset. The
preprocessed SNARE-seq data set contains an scRNA-seq dataset with 1047 cells and 10 features
and an scATAC-seq dataset with 1047 cells and 19 features, respectively.

The PBMC data set of samples of human peripheral blood mononuclear cells was generated
by 10X Genomics. The preprocessed PBMC data set, which was obtained from MAESTRO [20],
contains an scATAC-seq dataset with 1919 cells and 50 features and an scRNA-seq dataset with
1985 cells and 50 features, respectively. We followed the cell type annotation functions “ATA-
CAnnotationCelltype.R” and “RNAAnnotationCelltype.R” provided by MAESTRO to annotate
scATAC-seq and scRNA-seq data, respectively, resulting in cell types “CD8Tex”, “Monocytes”,
“NaiveCD4Tcells” and “RestNK” for both scATAC-seq and scRNA-seq datasets, “Tfh” and “Mem-
oryBcells” for the scATAC-seq dataset only, and “CD8Tcells”, “RestMemCD4Tcells”, “RestpDCs”
and “NaiveBcells” for the scRNA-seq dataset only. We normalized the features across samples
within each of the datasets before alignment using z-score method.

Computational complexity and time

Memory complexity of Pamona is O(n2), where n is the number of samples. Time complexity
of Pamona is O(kn3) with k iterations, which is similar to GW-based methods (e.g. SCOT in
Supplementary Fig. 9d). Our experimental environment includes Intel Core CPU i9-9980XE
3.0GHz, 128GB DDR4 memory and NVIDIA GPU TITAN RTX. For data sets of Simulation 1,
Simulation 2, sc-GEM and scNMT-seq, running time of Pamona is less than 20 seconds. For PBMC
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data set, it is around 2 minutes, and for SNARE-seq data set, it is around 7 minutes.

Data availability

The simulated data is available at https://noble.gs.washington.edu/proj/mmd-ma.
The sc-GEM data is available at https://github.com/jw156605/MATCHER/tree/master/pymatcher/data.
The scNMT-seq data is available at https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE121708
and ftp://ftp.ebi.ac.uk/pub/databases/scnmt gastrulation/scnmt gastrulation.tar.gz.
The SNARE-seq data is available at http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE126074
(preprocessed data available at https://github.com/rsinghlab/SCOT/tree/master/data).
The PBMC data is available at https://github.com/liulab-dfci/MAESTRO/tree/master/data.

Code availability

Pamona software is available at https://github.com/caokai1073/Pamona. The implementation
of the partial GW framework is based on the POT: Python Optimal Transport toolbox [38].
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