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Abstract - In this paper, we introduce a new         

combination of software and hardware PIM      
(Process-in-Memory) architecture to accelerate the variant      
calling genomic process. PIM translates into bringing data        
intensive calculations directly where the data is: within the         
DRAM, enhanced with thousands of processing units. The        
energy consumption, in large part due to data movement,         
is significantly lowered at a marginal additional hardware        
cost. Such design allows an unprecedented level of        
parallelism to process billions of short reads. Experiments        
on real PIM devices developed by the UPMEM company         
show significant speed-up compared to pure software       
implementation. The PIM solution also compared nicely to        
FPGA or GPU based acceleration bringing similar to twice         
the processing speed but most importantly being 5 to 8          
times cheaper to deploy with up to 6 times less power           
consumption. 

Keywords – variant calling; processing-in-memory; PIM;      
bioinformatics, genomic; I/O disk bandwidth; hardware      
accelerator; power consumption 

I.  INTRODUCTION  
With an estimated 100M of human genomes to be         

sequenced in 2025, the computing challenge to process the         
Terabytes of data produced by sequencers is at the root of the            
upcoming revolution in personalized medicine. Both the speed        
and the cost of genomics analysis will be determinant in the           
wide spreading of its applications.  

A fundamental genomic analysis, called variant calling ,       
consists in detecting, at a DNA level, small differences         
between two genomes. More precisely, from a pool of short          
DNA fragments (reads) coming from a specific individual, and         
obtained using high throughput sequencing, the objective is to         
locate the place, in a reference genome, where short DNA          
strings (< 50 bp) differ. The variant calling process proceeds          

in several steps which first map the reads on the reference           
genome and then analyse the mapping especially in the         
regions where differences are found. 

Many software, such as GATK [1], Strelka2 [2], Varscan2         
[3], SOAPsnp [4] or DeepVariant [5] have been developed for          
that purpose. Although these tools have some advantages and         
disadvantages, they are daily used to identify a large number          
of specific variations in many health or agronomic application         
domaines. Due to the large volume of data to analyze, the           
execution times of these software can be very long, i.e. a few            
hours on standard bioinformatics servers. Thus, speeding-up       
the variant calling process is a real challenge, especially in the           
context of personalized medicine that requires systematic       
deep analysis of human individual genomes. 

Several methods have been proposed to accelerate variant        
calling by the means of parallel and distributed computing         
techniques: HugeSeq [6], MegaSeq [7], Churchill [8] and        
Halvade [9] support variant calling pipelines related to GATK         
[10]. These parallel implementations exploit the fact that the         
alignment of one read is independent of the alignment of the           
others, while the call of variants is independent from one          
region to another. Other parallel pipelines for variant calling         
include SpeedSeq [11] and ADAM [12]. 

Other strategies are based on hardware accelerators. FPGA        
technologies are particularly well suited to hardwire DNA        
computation intensive algorithms such as sequence alignments       
or read mapping. Among recent FPGA systems dedicated to         
genomic data analysis, the following platforms demonstrate       
significant speed-up compared to standard GATK software:       
the Illumina DRAGEN-Bio-IT platform [13] and the WASAI        
Lightning platform [14]. These FPGA architectures associate       
both reconfigurable computing resources and memory chips.       
They provide nice speed-up ranging from 10 to 50 on variant           
calling applications. 
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GPU devices offer another alternative to reduce genomic        

analysis runtime, especially for read mapping which is an         
important step in the variant calling process [15][16][17][18].        
More recently the parallelization of GATK on the NVIDIA         
Clara Parabricks pipelines [19] achieves a 35-50X       
acceleration. 

This paper explores another way of speeding up the variant          
calling process using a Processing-in-Memory (PIM)      
architecture. We present an original parallelization based on        
new PIM chips developed by the UPMEM company. Actually,         
PIM architecture is not a new concept. In the past, various           
research projects have investigated the possibilities to close        
data and computation. The Berkley IRAM project [20]        
probably pioneers this kind of architecture to limit the Von          
Neumann bottleneck between the memory and the CPU. The         
PIM project of the University of Notre Dame [21] was also an            
attempt to solve this problem by combining processors and         
memories on a single chip. 

UPMEM solution tackles the problem by designing high        
density DRAM and RISC processors on the same die. Several          
chips are then encapsulated into standard 16 GBytes DIMM         
modules. The idea is to complement the main memory of a           
multicore processor with PIM devices. Data located in these         
specific memories can be independently processed releasing       
the pressure on the CPU-memory transactions. 

The variant calling task perfectly illustrates how such        
time-consuming applications can benefit from the PIM       
architecture. The mapping step, which represents a large part         
of the overall computation time, is particularly well suited, as          
fine grained parallelization can be efficiently executed to        
perform multiple independent alignments along the whole       
reference genome. Deporting this activity directly to the        
PIM-DRAM module, and parallelizing the whole process to        
hundreds of PIM cores, avoids a lot of CPU-memory         
transactions compared to a standard multithreaded solution. 

The objective of the research work presented here, is to          
precisely evaluate the potentialities of a PIM architecture        
composed of a bunch of UPMEM DIMM modules, coupled to          
the main computer memory bus, on a critical genomic         
treatment. A generic variant calling algorithm, called upVC,        
has been implemented as a testbed on real PIM components to           
provide exact measurement and fair comparison with existing        
systems in terms of speed-up, energy consumption and cost.         
From a quality point of view, the upVC implementation is not           
intended to immediately compete with mature software such        
as GATK. 

The rest of the paper is structured as follows: the next           
section describes the main features of the PIM architecture         
proposed by the UPMEM company. Section 3 details how the          
variant calling process is implemented on a PIM architecture.         
Section 4 details the experimentation conducted on a 1024         
core prototype PIM. Section 5 compares the PIM approach         
with alternative hardware accelerators. Section 6 concludes       
the paper. 

 

II. UPMEM A RCHITECTURE OVERVIEW 
A. Server level architecture 

UPMEM’s PIM technology consists of thousands of       
parallel coprocessors (called DPU) within the main memory of         
a host CPU (e.g., x86, ARM64, or Power9). Standard and          
UPMEM DIMMS can coexist on a server to operate both          
regular processing and PIM. The CPU provides programming        
instructions to DPUs, and collects their results as they operate          
individually. This design relieves the CPU from a memory         
bottleneck and greatly reduces the energy hungry data        
movement. 

 

Figure 1: PIM server architecture 

 

B. DIMM organization 

The UPMEM DDR4 2400 DIMM (dual ranks) comprises        
16 PIM enabled chips totaling 128 DPU. A DPU is a 32-bit            
processor running at 500MHz. Up to 20 UPMEM DIMMs can          
be plugged into a x86 platform, keeping 2 slots per socket for            
traditional DRAM. The solution scales with the ability to         
increase the number of DPU in a system and can reach 5120            
DPUs in a quadri socket platform with 40 PIM DIMMs .  

C. The chip 

A PIM memory chip contains 8 DPUs. Each DPU is          
associated with 64MB of DRAM shared with the host CPU.          
The calculations happen on chip and within each unit with a           
memory bandwidth of 1GB/s. This is why PIM imposes data          
locality and parallelism with the consequence to alleviate the         
need for important data movements.  

D. The DPU 

A DPU is a 24 threads, 32-bit RISC processor – with           
64-bit capabilities – working at 500Mhz with an ISA close to           
traditional ARM or RISC-V equivalent processors, making it        
easily programmable. DPUs have a 64KB of WRAM        
(Working RAM) and a 24KB instruction memory, called        
IRAM, that can hold up to 4,096 48-bit encoded instructions.          
DPUs are independent from each other and run        
asynchronously 
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Figure 2: UPMEM PIM chip diagram  

E. Development Environment 

Every DPU can be programmed individually or in groups         
while orchestrated through the host code. The PIM        
architecture sits on an efficient toolchain centered around a         
LLVM based C-compiler using LLVM v10.0.0 and with        
Linux drivers for x86 servers. It also contains a full-featured          
runtime library for the DPU, management and communication        
libraries for host to DPUs operations and a LLDB based          
debugger. This experiment has been achieved using the SDK         
v2020.3.0 [27]. 

III. VARIANT CALLING ON  PIM 
This section presents the variant calling strategy elaborated        

to fully exploit the PIM architecture. The next subsection         
gives first an overview of the implementation, and how the          
full variant calling process has been parallelized.  

A. Overview 
Schematically, the variant calling computation is based on        

a main loop that sequentially process packets of reads: 

 
   Loop 

   G: Get paired-end read packet from disk 

   D: Dispatch read packet to DPUs 

   M: Map reads on DPUs 

   U: Update VC data structure 

 

The loop is composed of 4 independent tasks. The first one           
(G) get packets of paired-end reads from external storage         
support, the second one (D) dispatched these reads to the          
DPUs, the third one (M) maps the reads using the DPU           
computational resources to the reference genome, and the last         
one (U) updates a variant calling (VC) data structure with the           
mapping results of the previous stage.  

Parallelism is both brought by pipelining the four tasks of          
the loop on the main processor and by executing concurrently          
the read mapping on the PIM memory. The 4 tasks overlap as            
follows: 

G 
1  G 2  G 3    G 4   G 5   . . .  G n 

    D 
1  D 2   D 3   D 4   . . .  D n-1  D n 

        M 
1   M 2   M 3   . . .  M n-2  M n-1  M n 

            U 
1   U 2    . . .  U n-3  U n-2  U n-1  U n 

Considering n packets of reads, the total loop execution         
time is approximately equal to tmax x (n+3), where tmax is the            
time of the slowest task. In this implementation, a first          
challenge is to have a good load balancing between these tasks           
in order to fully exploit the parallelism capacity of the          
multicore processor together with the PIM memory computing        
resources. 

Before entering the loop, the reference genome is indexed         
based on small kmers (see genome indexing section). The         
index is then distributed non redundantly across all the DPUs.          
This initialization step (genome indexing + index dispatching)        
can be significantly long, compared to the loop execution.         
However, in the case of intensive human variant calling, for          
example, it can be performed only once. Different sequencing         
datasets can then be processed without resetting the PIM         
memory. 

The final variant calling stage is performed after the loop          
execution. The U task of the loop simply updates a specific           
data structure according to the results of the mapping         
alignments. This is a fast process that consists in scanning          
intermediate results built during the U task. 

B. Genome indexing 
As the mapping is done by the DPUs, the idea is to build a              

distributed index allowing reads to be evenly dispatched into         
the 64 MB memories associated with each DPU. The index is           
a hash table whose keys are all the distinct kmers of the            
reference genome and values are a list of positions of the           
kmers (chromosome number, position on the chromosome)       
associated with their nucleotide context. 

 

 values 
keys position nucleotide context 
AAAA chr2, 3456245 

chr4, 982243 

ATTAGGGACCAGTTT 

TTGGAGCCACAGCGT 

AAAC chr3, 85333477 

chr5, 8913678 

chr8, 33422 

GTAGGACCACAGACT 

GTTGAGAGGATATCA 

GGTATGAGAGGAAAA 

AAAG chr2, 78892 

chr5, 34987529 

TGGACCAAGGATCAC 

TGGACCAGAGGATTC 

. . .   

Figure 3: hash table example 
 

The nucleotide context corresponds to the nucleotide       
sequence right after the key sequence on the reference         
genome. Its size is equal to the read size. 

kmer size has been fixed to 14, leading to 268,435,456          
(414) different entries in the hash table. These entries are          
dispatched in the different DPUs in such a way that each DPU            
memory will be allocated with the same amount of data. As           
the number of DPUs is smaller than the number of entries,           
each DPU will contain several entries. The entry assignment is          
done according to a workload estimation based on the genome          
kmer distribution. 

3 

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 4, 2020. ; https://doi.org/10.1101/2020.11.03.366237doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.03.366237
http://creativecommons.org/licenses/by-nd/4.0/


4 
C. Mapping  

After receiving a read packet, reads are dispatched to the          
DPUs. As the first 14-mers of the reads correspond to the key,            
it can be immediately sent to the DPU where the          
corresponding entry has been allocated. This is the D task of           
the loop. Once all reads have been dispatched, each DPU          
contains a subset of reads that are ready to be mapped. 

The mapping algorithm proceeds in two stages. First a no gap           
alignment algorithm is performed. This is a very fast         
procedure that finds good maps with the majority of the reads.           
It simply computes a Hamming distance between a read and          
its associated nucleotide contexts. For example, the read        
AAAATTGGAGCTACAGCGT whose 4-mer key is AAAA, will       
trigger Hamming distance computation between the two       
sequences corresponding to the first entry of the hash table of           
figure 3.1. 
 

  TTGGAGCTACAGCGT       TTGGAGCTACAGCGT 

   |   |   |||  |  9     ||||||| ||||||| 1 
  ATTAGGGACCAGTTT       TTGGAGCCACAGCGT 
 
The procedure is optimized in such a way that the          

computation of the Hamming distance is stopped when it goes          
beyond a predefined threshold. Furthermore, at that point, we         
search for potential indels by shifting from 1 to 5 positions the            
2 sequences, and by comparing the next 4 nucleotides. If there           
is a match, then the second stage is triggered. 

The second stage executes a banded Smith & Waterman         
algorithm that precisely locates indels between the two        
sequences. The result of the mapping step is the position of the            
reads where good maps have been found together with their          
scores. Several mapping locations can be attached to a single          
read. 

D. Variant Calling  
The variant calling is done once all the reads have been           

mapped. However, during the loop execution, the U task         
preprocess the mapping results of the previous packet of reads.          
First of all, according to the mapping position of a pair of            
reads, it finds the best location of the pair on the reference            
genome. If several locations map identically, then the position         
with the lowest coverage on the genome is chosen to ensure a            
regular distribution of the read mapping. 

In addition, the U task performs the following actions: 

● Update the coverage . Each chromosome is associated       
with an integer array of the same size. This array is           
zero initialized. Each time a read maps the        
chromosome, the array entries corresponding to the       
mapping positions are incremented by one. For       
example, if a read maps at position 246 on         
chromosome 3, then the entries [246:246+read_size]      
of the array associated to chromosome 3 are        
incremented by one. 

● Update a list of variants. Each read is systematically         
aligned to the reference genome at the position        
previously chosen. The alignment provides potential      

variant positions which are systematically stored in a        
list. An element of the list is defined by the 3-uplet           
<position , type , occurrence >. If a new variant is        
detected, a new element of the list is created. If not,           
the occurrence item is incremented by one. 

After the full loop execution, the list of variants is scanned           
and decisions, based on the occurrence item, are taken to          
consider if elements of the list are effective variants, or          
sequencing errors. 

Performing variant calling task in parallel with the        
mapping task has the following advantages: 

● The major part of the variant calling computation time         
is hidden. Only the last part (scan of the variant list) is            
visible. Actually, it represents a very small fraction of         
the time dedicated to the variant calling computation. 

● No intermediate file, such as BAM file, for storing the          
mapping results is needed. Sorting the alignments is        
also no longer needed as it is done in conventional          
calling variant pipelines where the mapping step and        
the variant calling step are done sequentially. 

E. Implementation 
The parallelization described on the previous section       

supposes the reference genome index to fit completely into the          
PIM memory. If the number of available DPUs is too small,           
then the variant calling process must be partitioned into         
several passes. The current implementation includes this       
possibility. The structure of the program becomes: 

 
    Loop (external) 

       I: load part of index into DPU 

       Loop (internal) 

           G: Get paired-end read packet from disk 

        D: Dispatch read packet to DPUs 

        M: Map reads on DPUs 

           S: Store map results 

           U: if last external loop 

                Update VC data structure 

 
In this configuration, the index is split into P parts and the            

external loop is run P times. The full read dataset is then            
processed P times on different parts of the index This implies           
to slightly modify the update of the VC structure which can           
only be done after all reads have faced the full index. A new             
task (S) is thus added to store intermediate mapping results,          
and the VC update is simply done on the last iteration. The            
length of the internal loop pipeline is now equal to 5. 

Another level of parallelism is achieved by multithreading        
the tasks D, S and U. Their parallelization with 8 threads           
ensures a short time execution for each of them.  

This optimized implementation is written in C and is called          
upVC in the rest of this paper. 
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IV. EXPERIMENT WITH A 1024 DPU SYSTEM 

This section describes the experiment conducted on a real         
1024 DPU prototype system (266 MHz) for calling variants on          
the Human genome using the upVC implementation. 

A. Dataset 
In order to have a ground truth to validate the correct           

functionality of upVC, and also to compare results with other          
variant calling softwares, a simulated sequencing dataset has        
been generated according to the following steps:  

● step_1: The DNA sequence has been extracted from        
the HG38 Human reference genome .  1

● step_2: A list of 3,153,377 variants from the        
common_all_20170710.vcf file of the dbSNP     2

database has been created by randomly selecting       
variants indexed in this file. Variants have been        
restricted to SNPs and small indels (<= 5nt). 

● step_3: Paternal and maternal chromosomes have      
been generated using the vcf2diploid tool [22]. Input        
data are the human genome reference sequence       
(step_1) and the list of variants selected at step_2. 

● Step_4: Short Illumina paired-end reads have been       
generated with the ART read simulator [23] for all         
chromosomes with the following parameters: insert      
size = 400; standard deviation = 50; read length =          
150bp; coverage = 30X. 

The resulting dataset contains 586 x 106 reads split into          
two fastq files. With reads of length 150bp, the index size for            
the human genome is equal to 120 GBytes. 

 

B. upVC validation 
 
To better estimate the variant calling quality, we measure         

the following metrics: 

● True Positive (TP): existing variants found by upVC 

● False Negative (FN): variants not found by upVC 

● False Positive (FP): non existing variants found by        
upVC 

From these values, the following metrics can be computed: 

● Precision (P): TP / (TP+FP) 

● Sensitivity (S): TP / (TP+FN) 

We run both upVC and GATK. The following table         
summarizes the quality. 

 

 

1 ftp.ncbi.nlm.gov/genomes/H_sapiens/Assembled_chromosomes/seq/ 
2 ftp.nci.nlm.gov/snp/organisms/human_9606_b150_GRCh38p7/VCF/ 

 substitution insertion deletion 

 upVC GATK upVC GATK upVC GATK 

TP % 99.77 100 99.10 99.69 99.57 99.98 

FN % 0.50 0.23 0.91 0.74 0.57 0.37 

FP % 0.23 0 0.90 0.31 0.43 0.02 

P  % 99.77 100 99.10 99.69 99.57 99.98 

S % 99.50 99.77 99.08 99.26 99.42 99.63 

 

GATK has been run with standard parameters. Compared        
to upVC, the quality is clearly better. However, upVC         
provides excellent results and legitimates our variant calling        
implementation on PIM architecture, knowing that the current        
code has plenty of room for improvement.  

C. Execution time 
The experiments have been done on an Intel® Xeon®         

Silver 4110 CPU @ 2.1 Ghz, 8 cores with 64 GBytes of RAM,             
equipped with 10 additional UPMEM double-rank DIMM       
devices with DPU running at 266 MHz. Of a total of 1280            
available DPUs (10 x 128), only 1024 full operational DPUs          
have been used. The available PIM memory size is thus equal           
to 64 GBytes (64 Mbytes per DPU). 

The maximum space allocated to store the index per DPU          
is about 48 Mbytes, that is 48 GBytes for 1024 DPUs. The            
human genome index (120 GBytes) requires then 3 passes.  

The upVC software has been run with packets of         
paired-end reads equal to 218 (or 219 = 524288 reads). The           
average measured execution time for the different tasks of the          
main loop are the following: 

 
 1024 DPU system 
Get reads 0.32 sec 
Dispatch reads 0.12 sec 
Map reads 3.21 sec 
Store map results 0.18 sec 
Update 0.53 sec 

 
The number of loop iterations depends of the number of          

reads to process and is equal to: 
 

(Number of reads / read packet size) + 4 
= (586 x 106 / 2 19) + 4 = 1122 

 
The execution time of one iteration is given by the slowest           

task, here the mapping (3.21 sec). Consequently, the total         
execution time of the loop (T LOOP ) is: 

 
TLOOP = 1122 x 3.21 = 3602 sec 

 
Note that this time must be augmented by the time (T INDEX )           

for downloading part of the index before each pass, that is           
around 40 GBytes. With SSD drives having a bandwidth of          
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500 Mbytes/sec, 80 seconds must then be added to each pass.           
The last step of the process is the creation of the VCF file. It's              
a very quick operation that takes less than two seconds (T VCF ). 

The complete execution time (T UPVC), that requires 3        
passes to process the human genome, is finally given by: 

3 x (TINDEX + T LOOP) + T VCF = 11048 sec (~184 minutes) 

D. Extrapolation to future 5120 DPU systems 
In this section we extrapolate the real results obtained         

with a 1024 DPU system running at 266 MHz to a 5120            
system running at 600 MHz, the target frequency of the next           
generation of DPUs. 

On such a system, that can be seen as a standard           
bioinformatics server, the full human genome index fits the         
PIM memory. The whole variant calling process will thus be          
done in a single pass, leading to the following execution time: 

TUPVC = T INDEX + T LOOP  +T VCF 

TINDEX is the time for downloading the 120 GBytes index          
to the memory DPU (240 sec). The execution time of TLOOP           
will mainly depend on the execution time of the mapping task           
since each DPU will store a smaller index (120 GBytes/5120 =           
23 MBytes) and then will have proportionally less work to do           
(23/40 = 0.57). DPU will also run faster (600/266 = 2.25). The            
mapping task can be approximated by: 

3.21 sec x 0.57 / 2.25 = 0.8 sec. 

The mapping task still remains the slowest task of the          
loop, giving a total loop execution time TLOOP = 898 sec,           
leading to: 

TUPVC = 240 + 898 + 2 = 1140 sec = 19 minutes 

Considering a server dedicated to human variant calling,        
the index doesn’t need to be reloaded for each new variant           
calling task. Once downloaded and stored into the DPU         
memories, the following variant calling tasks will be        
performed in 15 minutes. 

This experimentation clearly indicates that in this parallel        
upVC implementation, the mapping task performed by the        
DPUs is by far the longest. The other tasks that run           
concurrently on the CPU cores are shorter, and lead to an           
approximate 70% inactivity rate of the host processor. In         
future implementation, this idle time will be used to         
consolidate the calling step in order to improve the quality of           
the results. 

V. COMPARISON WITH ALTERNATIVE SYSTEMS 

We compare the performances of the upVC PIM        
implementation with two other hardware accelerators that       
efficiently implement the variant calling process: Illumina       
DRAGEN using proprietary software on 8 FPGA Xilinx        

UltraScale Plus 16 nm FPGA [13], and Nvidia Parabricks         
using BWA-GATK4 on 8 NVIDIA®Tesla®V100 GPUs [19]. 

To provide a fair comparison, we extend performance        
results to different PIM configurations with increased density        
and DPU frequency. At the time of writing, the reference          
platform available at UPMEM is a 2*Xeon Silver 4108 with          
128GB RAM and 160 GB of PIM memory with 2560 DPUs           
clocked at 400MHz. Servers with higher PIM DIMM density         
such as the Cooper Lake 4* Xeon Gold 6328H with 5120           
DPUs and the AMD ARM Epyc with 3584 DPUs are in the            
process of qualification while DPUs clocked at 500MHz and         
more are under development. 

Performances of these systems are analysed following the        
three following criteria: 

1. Execution time 
2. Power consumption  
3. Total Cost of Ownership (TCO) 

A. Execution time 
Figure 4 reports the execution time of the different         

systems to process a typical variant calling operation on a 30X           
human genome dataset. The loading of the reference genome         
in MRAM is not considered as part of the computation time if            
enough PIM memory in a system allows single batch runs of           
upVC. In this case, the reference genome loading process only          
happens at the start of the server and can be used for all             
subsequent sample analysis.  

 
Figure 4: Execution time based on 30X human genome         
dataset on FPGA, GPU and PIM 

 
A 2560 DPUs configuration does not allow enough space         

in MRAM to load the entire genome and simultaneously retain          
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7 
enough space to save the reads in MRAM. One DPU has 45,5            
MB available to store reference neighbors, which totalizes        
116,5 GB with 2560 memory banks, slightly less than the 120           
GB of the reference genome. To avoid the need for 2 batches            
and consequently load 2 halves of the reference genome with          
long HDD transfers we divide the input read buffer by 2. This            
way we free enough space for the reference genome but still           
has for consequence to double the DPU processing time on          
this configuration. Naturally we observe a gain in        
performance once the memory space issue is alleviated in         
3000+ DPUs configurations.  
 
B. Power consumption 
 

Figure 5 gives the power consumption of  FPGA, GPU 
and PIM systems. 

 
Figure 5: Power consumption (hardware accelerator +       
server) of PIM, GPU (8 NVIDIA®Tesla®V100) and       
FPGA (8 FPGA Xilinx UltraScale) systems. 

 
The consumption of an FPGA board depends on its         

configuration. For this workload it is estimated to be used near           
maximum capacity at 320W per board, 90% of its TDP. The           
consumption of a V100 GPU is provided by Nvidia and          
reaches around 300W in full use. UPMEM provides precise         
measurements of a DPU power consumption and depends on         
its version and clocking. At 400Mhz, a DPU in current version           
v1.2 consumes 160 mW, while it consumes 190 mW at          
500MHz. DPUs at 600MHz are benefiting from energy        
reduction designs and are expected at around 120mW. The         
overall consumption accounts that the charge of DPUs can         
hardly go over 90% during the entire execution and that every           
PIM module consumes 3W. PIM based configurations are in         

average 6x less energy consuming than the considered        
alternative accelerators. 
The consumptions of the server for PIM configurations is         
based on the 2*Xeon Silver 4110 with 128GB RAM. The TDP           
is given at 190W. An AMD 2*Epyc has a TDP around 280W            
and a Cooper Lake with 4* Xeon Gold has a TDP of 700W.             
We consider a 2*Xeon Gold 6328H server base for alternative          
accelerators to ensure efficient orchestration at TDP of 400W.         
3W per 8 GB of memory accounts for the DRAM          
consumption.  
 

C. Total Cost of Ownership (TCO) 
 

Server and infrastructure costs follow the comprehensive       
AWS TCO cost estimator [24]. The estimator accounts for an          
annual maintenance of 15% of the hardware cost. The same          
logic if applied to each of the considered accelerator’s         
hardware. The consumption evaluation is based on previous        
energy considerations for a full 3 years and accounts for a           
cooling and infrastructure overhead (additional 70% of the        
hardware consumption). The cost of electricity is based on         
median US commercial price [25]: $0,1/kWh. 

 

 
Figure 6: years TCO Comparison between PIM       
configurations against GPU and FPGA based accelerators       
for Mapping+Variant calling.  
 

A full 3 years on premise FPGA based solution’s TCO          
nears $135,000, which accounts for FPGA board at around         
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$8,800 per unit. It is about 5 times more expensive than           
UPMEM PIM solution at identical throughput for a 4096         
DPUs at 500MHz configuration. Note that if we were to          
consider the software cost for running Illumina Dragen, an         
additional $572,000 would be required over a period of 3          
years, multiplying the cost reduction made by UPMEM        
solution by yet again a factor 5.  

 
Nvidia quotes its V100 GPU at $9,500 per unit resulting          

in a full 3 years TCO of Nvidia Parabrick estimation over           
$140,000. In terms of algorithms, they are identical to         
BWA-GATK4, using DNA-Bricks to port them over GPU        
architectures and do not represent an overhead cost to use the           
solution. At equivalent throughput it is about 8 times more          
costly than UPMEM PIM FASTQ to VCF using 4096 DPUs          
at 500MHz. 

 
Thus, UPMEM technology offers a drastic financial and        

environmental gain compared to both Nvidia and Illumina        
solutions. Though it does not reach an as high accuracy,          
development efforts on upVC are progressively narrowing the        
gap. 

VI. CONCLUSION 
This implementation demonstrates the performance of the       

PIM architecture when dedicated to a large scale and highly          
parallel task in genomics: every DPU independently computes        
read mapping against his fragment of the reference genome         
while the variant calling is pipelined on the host. 

The algorithm works well within the confines of the         
experiment but still remains a long way from a real-world          
application with a holistic alignment strategy. It is a prototype          
that verifies the capabilities of a PIM architecture in the          
context of mapping and variant calling . The low CPU usage           
of this implementation allows additional CPU based functions        
to complete the pre-variant calling workflow that would pave         
the road towards a commercial application.  

In comparison to existing accelerators, the PIM solution        
promises to deliver equal to better performances but with         
massive energy reduction and TCO gains. It is a crucial          
advantage in sight of the prominent place that genomics is          
about to occupy in the world of data computing and for its            
accessibility by medical institutions across the globe. A        
configuration with 3584 DPUs at 600MHz has the best TCO          
profile and could bring the cost of human genome analysis          
near $0,34/genome.  

PIM is a promising technology that shows a great         
potential to solve some of the challenges of genomics in terms           
of actionable computing power, programmability and cost.  
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