
1

Variant Calling Parallelization
on Processor-in-Memory Architecture

Dominique Lavenier
Univ. Rennes, IRISA / CNRS, INRIA

Rennes - France
lavenier@irisa.fr

Remy Cimadomo, Romaric Jodin

UPMEM
Grenoble - France

rcimadomo,rjodin@upmem.com

Abstract - In this paper, we introduce a new

combination of software and hardware PIM
(Process-in-Memory) architecture to accelerate the variant
calling genomic process. PIM translates into bringing data
intensive calculations directly where the data is: within the
DRAM, enhanced with thousands of processing units. The
energy consumption, in large part due to data movement,
is significantly lowered at a marginal additional hardware
cost. Such design allows an unprecedented level of
parallelism to process billions of short reads. Experiments
on real PIM devices developed by the UPMEM company
show significant speed-up compared to pure software
implementation. The PIM solution also compared nicely to
FPGA or GPU based acceleration bringing similar to twice
the processing speed but most importantly being 5 to 8
times cheaper to deploy with up to 6 times less power
consumption.

Keywords – variant calling; processing-in-memory; PIM;
bioinformatics, genomic; I/O disk bandwidth; hardware
accelerator; power consumption

I. INTRODUCTION
With an estimated 100M of human genomes to be

sequenced in 2025, the computing challenge to process the
Terabytes of data produced by sequencers is at the root of the
upcoming revolution in personalized medicine. Both the speed
and the cost of genomics analysis will be determinant in the
wide spreading of its applications.

A fundamental genomic analysis, called variant calling ,
consists in detecting, at a DNA level, small differences
between two genomes. More precisely, from a pool of short
DNA fragments (reads) coming from a specific individual, and
obtained using high throughput sequencing, the objective is to
locate the place, in a reference genome, where short DNA
strings (< 50 bp) differ. The variant calling process proceeds

in several steps which first map the reads on the reference
genome and then analyse the mapping especially in the
regions where differences are found.

Many software, such as GATK [1], Strelka2 [2], Varscan2
[3], SOAPsnp [4] or DeepVariant [5] have been developed for
that purpose. Although these tools have some advantages and
disadvantages, they are daily used to identify a large number
of specific variations in many health or agronomic application
domaines. Due to the large volume of data to analyze, the
execution times of these software can be very long, i.e. a few
hours on standard bioinformatics servers. Thus, speeding-up
the variant calling process is a real challenge, especially in the
context of personalized medicine that requires systematic
deep analysis of human individual genomes.

Several methods have been proposed to accelerate variant
calling by the means of parallel and distributed computing
techniques: HugeSeq [6], MegaSeq [7], Churchill [8] and
Halvade [9] support variant calling pipelines related to GATK
[10]. These parallel implementations exploit the fact that the
alignment of one read is independent of the alignment of the
others, while the call of variants is independent from one
region to another. Other parallel pipelines for variant calling
include SpeedSeq [11] and ADAM [12].

Other strategies are based on hardware accelerators. FPGA
technologies are particularly well suited to hardwire DNA
computation intensive algorithms such as sequence alignments
or read mapping. Among recent FPGA systems dedicated to
genomic data analysis, the following platforms demonstrate
significant speed-up compared to standard GATK software:
the Illumina DRAGEN-Bio-IT platform [13] and the WASAI
Lightning platform [14]. These FPGA architectures associate
both reconfigurable computing resources and memory chips.
They provide nice speed-up ranging from 10 to 50 on variant
calling applications.

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted November 4, 2020. ; https://doi.org/10.1101/2020.11.03.366237doi: bioRxiv preprint

mailto:lavenier@irisa.fr
https://doi.org/10.1101/2020.11.03.366237
http://creativecommons.org/licenses/by-nd/4.0/

2
GPU devices offer another alternative to reduce genomic

analysis runtime, especially for read mapping which is an
important step in the variant calling process [15][16][17][18].
More recently the parallelization of GATK on the NVIDIA
Clara Parabricks pipelines [19] achieves a 35-50X
acceleration.

This paper explores another way of speeding up the variant
calling process using a Processing-in-Memory (PIM)
architecture. We present an original parallelization based on
new PIM chips developed by the UPMEM company. Actually,
PIM architecture is not a new concept. In the past, various
research projects have investigated the possibilities to close
data and computation. The Berkley IRAM project [20]
probably pioneers this kind of architecture to limit the Von
Neumann bottleneck between the memory and the CPU. The
PIM project of the University of Notre Dame [21] was also an
attempt to solve this problem by combining processors and
memories on a single chip.

UPMEM solution tackles the problem by designing high
density DRAM and RISC processors on the same die. Several
chips are then encapsulated into standard 16 GBytes DIMM
modules. The idea is to complement the main memory of a
multicore processor with PIM devices. Data located in these
specific memories can be independently processed releasing
the pressure on the CPU-memory transactions.

The variant calling task perfectly illustrates how such
time-consuming applications can benefit from the PIM
architecture. The mapping step, which represents a large part
of the overall computation time, is particularly well suited, as
fine grained parallelization can be efficiently executed to
perform multiple independent alignments along the whole
reference genome. Deporting this activity directly to the
PIM-DRAM module, and parallelizing the whole process to
hundreds of PIM cores, avoids a lot of CPU-memory
transactions compared to a standard multithreaded solution.

The objective of the research work presented here, is to
precisely evaluate the potentialities of a PIM architecture
composed of a bunch of UPMEM DIMM modules, coupled to
the main computer memory bus, on a critical genomic
treatment. A generic variant calling algorithm, called upVC,
has been implemented as a testbed on real PIM components to
provide exact measurement and fair comparison with existing
systems in terms of speed-up, energy consumption and cost.
From a quality point of view, the upVC implementation is not
intended to immediately compete with mature software such
as GATK.

The rest of the paper is structured as follows: the next
section describes the main features of the PIM architecture
proposed by the UPMEM company. Section 3 details how the
variant calling process is implemented on a PIM architecture.
Section 4 details the experimentation conducted on a 1024
core prototype PIM. Section 5 compares the PIM approach
with alternative hardware accelerators. Section 6 concludes
the paper.

II. UPMEM A RCHITECTURE OVERVIEW
A. Server level architecture

UPMEM’s PIM technology consists of thousands of
parallel coprocessors (called DPU) within the main memory of
a host CPU (e.g., x86, ARM64, or Power9). Standard and
UPMEM DIMMS can coexist on a server to operate both
regular processing and PIM. The CPU provides programming
instructions to DPUs, and collects their results as they operate
individually. This design relieves the CPU from a memory
bottleneck and greatly reduces the energy hungry data
movement.

Figure 1: PIM server architecture

B. DIMM organization

The UPMEM DDR4 2400 DIMM (dual ranks) comprises
16 PIM enabled chips totaling 128 DPU. A DPU is a 32-bit
processor running at 500MHz. Up to 20 UPMEM DIMMs can
be plugged into a x86 platform, keeping 2 slots per socket for
traditional DRAM. The solution scales with the ability to
increase the number of DPU in a system and can reach 5120
DPUs in a quadri socket platform with 40 PIM DIMMs .

C. The chip

A PIM memory chip contains 8 DPUs. Each DPU is
associated with 64MB of DRAM shared with the host CPU.
The calculations happen on chip and within each unit with a
memory bandwidth of 1GB/s. This is why PIM imposes data
locality and parallelism with the consequence to alleviate the
need for important data movements.

D. The DPU

A DPU is a 24 threads, 32-bit RISC processor – with
64-bit capabilities – working at 500Mhz with an ISA close to
traditional ARM or RISC-V equivalent processors, making it
easily programmable. DPUs have a 64KB of WRAM
(Working RAM) and a 24KB instruction memory, called
IRAM, that can hold up to 4,096 48-bit encoded instructions.
DPUs are independent from each other and run
asynchronously

2

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted November 4, 2020. ; https://doi.org/10.1101/2020.11.03.366237doi: bioRxiv preprint

https://doi.org/10.1101/2020.11.03.366237
http://creativecommons.org/licenses/by-nd/4.0/

3

Figure 2: UPMEM PIM chip diagram

E. Development Environment

Every DPU can be programmed individually or in groups
while orchestrated through the host code. The PIM
architecture sits on an efficient toolchain centered around a
LLVM based C-compiler using LLVM v10.0.0 and with
Linux drivers for x86 servers. It also contains a full-featured
runtime library for the DPU, management and communication
libraries for host to DPUs operations and a LLDB based
debugger. This experiment has been achieved using the SDK
v2020.3.0 [27].

III. VARIANT CALLING ON PIM
This section presents the variant calling strategy elaborated

to fully exploit the PIM architecture. The next subsection
gives first an overview of the implementation, and how the
full variant calling process has been parallelized.

A. Overview
Schematically, the variant calling computation is based on

a main loop that sequentially process packets of reads:

 Loop

 G: Get paired-end read packet from disk

 D: Dispatch read packet to DPUs

 M: Map reads on DPUs

 U: Update VC data structure

The loop is composed of 4 independent tasks. The first one
(G) get packets of paired-end reads from external storage
support, the second one (D) dispatched these reads to the
DPUs, the third one (M) maps the reads using the DPU
computational resources to the reference genome, and the last
one (U) updates a variant calling (VC) data structure with the
mapping results of the previous stage.

Parallelism is both brought by pipelining the four tasks of
the loop on the main processor and by executing concurrently
the read mapping on the PIM memory. The 4 tasks overlap as
follows:

G
1 G 2 G 3 G 4 G 5 . . . G n

 D
1 D 2 D 3 D 4 . . . D n-1 D n

 M
1 M 2 M 3 . . . M n-2 M n-1 M n

 U
1 U 2 . . . U n-3 U n-2 U n-1 U n

Considering n packets of reads, the total loop execution
time is approximately equal to tmax x (n+3), where tmax is the
time of the slowest task. In this implementation, a first
challenge is to have a good load balancing between these tasks
in order to fully exploit the parallelism capacity of the
multicore processor together with the PIM memory computing
resources.

Before entering the loop, the reference genome is indexed
based on small kmers (see genome indexing section). The
index is then distributed non redundantly across all the DPUs.
This initialization step (genome indexing + index dispatching)
can be significantly long, compared to the loop execution.
However, in the case of intensive human variant calling, for
example, it can be performed only once. Different sequencing
datasets can then be processed without resetting the PIM
memory.

The final variant calling stage is performed after the loop
execution. The U task of the loop simply updates a specific
data structure according to the results of the mapping
alignments. This is a fast process that consists in scanning
intermediate results built during the U task.

B. Genome indexing
As the mapping is done by the DPUs, the idea is to build a

distributed index allowing reads to be evenly dispatched into
the 64 MB memories associated with each DPU. The index is
a hash table whose keys are all the distinct kmers of the
reference genome and values are a list of positions of the
kmers (chromosome number, position on the chromosome)
associated with their nucleotide context.

 values
keys position nucleotide context
AAAA chr2, 3456245

chr4, 982243

ATTAGGGACCAGTTT

TTGGAGCCACAGCGT

AAAC chr3, 85333477

chr5, 8913678

chr8, 33422

GTAGGACCACAGACT

GTTGAGAGGATATCA

GGTATGAGAGGAAAA

AAAG chr2, 78892

chr5, 34987529

TGGACCAAGGATCAC

TGGACCAGAGGATTC

. . .

Figure 3: hash table example

The nucleotide context corresponds to the nucleotide
sequence right after the key sequence on the reference
genome. Its size is equal to the read size.

kmer size has been fixed to 14, leading to 268,435,456
(414) different entries in the hash table. These entries are
dispatched in the different DPUs in such a way that each DPU
memory will be allocated with the same amount of data. As
the number of DPUs is smaller than the number of entries,
each DPU will contain several entries. The entry assignment is
done according to a workload estimation based on the genome
kmer distribution.

3

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted November 4, 2020. ; https://doi.org/10.1101/2020.11.03.366237doi: bioRxiv preprint

https://doi.org/10.1101/2020.11.03.366237
http://creativecommons.org/licenses/by-nd/4.0/

4
C. Mapping

After receiving a read packet, reads are dispatched to the
DPUs. As the first 14-mers of the reads correspond to the key,
it can be immediately sent to the DPU where the
corresponding entry has been allocated. This is the D task of
the loop. Once all reads have been dispatched, each DPU
contains a subset of reads that are ready to be mapped.

The mapping algorithm proceeds in two stages. First a no gap
alignment algorithm is performed. This is a very fast
procedure that finds good maps with the majority of the reads.
It simply computes a Hamming distance between a read and
its associated nucleotide contexts. For example, the read
AAAATTGGAGCTACAGCGT whose 4-mer key is AAAA, will
trigger Hamming distance computation between the two
sequences corresponding to the first entry of the hash table of
figure 3.1.

 TTGGAGCTACAGCGT TTGGAGCTACAGCGT

 | | ||| | 9 ||||||| ||||||| 1
 ATTAGGGACCAGTTT TTGGAGCCACAGCGT

The procedure is optimized in such a way that the

computation of the Hamming distance is stopped when it goes
beyond a predefined threshold. Furthermore, at that point, we
search for potential indels by shifting from 1 to 5 positions the
2 sequences, and by comparing the next 4 nucleotides. If there
is a match, then the second stage is triggered.

The second stage executes a banded Smith & Waterman
algorithm that precisely locates indels between the two
sequences. The result of the mapping step is the position of the
reads where good maps have been found together with their
scores. Several mapping locations can be attached to a single
read.

D. Variant Calling
The variant calling is done once all the reads have been

mapped. However, during the loop execution, the U task
preprocess the mapping results of the previous packet of reads.
First of all, according to the mapping position of a pair of
reads, it finds the best location of the pair on the reference
genome. If several locations map identically, then the position
with the lowest coverage on the genome is chosen to ensure a
regular distribution of the read mapping.

In addition, the U task performs the following actions:

● Update the coverage . Each chromosome is associated
with an integer array of the same size. This array is
zero initialized. Each time a read maps the
chromosome, the array entries corresponding to the
mapping positions are incremented by one. For
example, if a read maps at position 246 on
chromosome 3, then the entries [246:246+read_size]
of the array associated to chromosome 3 are
incremented by one.

● Update a list of variants. Each read is systematically
aligned to the reference genome at the position
previously chosen. The alignment provides potential

variant positions which are systematically stored in a
list. An element of the list is defined by the 3-uplet
<position , type , occurrence >. If a new variant is
detected, a new element of the list is created. If not,
the occurrence item is incremented by one.

After the full loop execution, the list of variants is scanned
and decisions, based on the occurrence item, are taken to
consider if elements of the list are effective variants, or
sequencing errors.

Performing variant calling task in parallel with the
mapping task has the following advantages:

● The major part of the variant calling computation time
is hidden. Only the last part (scan of the variant list) is
visible. Actually, it represents a very small fraction of
the time dedicated to the variant calling computation.

● No intermediate file, such as BAM file, for storing the
mapping results is needed. Sorting the alignments is
also no longer needed as it is done in conventional
calling variant pipelines where the mapping step and
the variant calling step are done sequentially.

E. Implementation
The parallelization described on the previous section

supposes the reference genome index to fit completely into the
PIM memory. If the number of available DPUs is too small,
then the variant calling process must be partitioned into
several passes. The current implementation includes this
possibility. The structure of the program becomes:

 Loop (external)

 I: load part of index into DPU

 Loop (internal)

 G: Get paired-end read packet from disk

 D: Dispatch read packet to DPUs

 M: Map reads on DPUs

 S: Store map results

 U: if last external loop

 Update VC data structure

In this configuration, the index is split into P parts and the

external loop is run P times. The full read dataset is then
processed P times on different parts of the index This implies
to slightly modify the update of the VC structure which can
only be done after all reads have faced the full index. A new
task (S) is thus added to store intermediate mapping results,
and the VC update is simply done on the last iteration. The
length of the internal loop pipeline is now equal to 5.

Another level of parallelism is achieved by multithreading
the tasks D, S and U. Their parallelization with 8 threads
ensures a short time execution for each of them.

This optimized implementation is written in C and is called
upVC in the rest of this paper.

4

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted November 4, 2020. ; https://doi.org/10.1101/2020.11.03.366237doi: bioRxiv preprint

https://doi.org/10.1101/2020.11.03.366237
http://creativecommons.org/licenses/by-nd/4.0/

5
IV. EXPERIMENT WITH A 1024 DPU SYSTEM

This section describes the experiment conducted on a real
1024 DPU prototype system (266 MHz) for calling variants on
the Human genome using the upVC implementation.

A. Dataset
In order to have a ground truth to validate the correct

functionality of upVC, and also to compare results with other
variant calling softwares, a simulated sequencing dataset has
been generated according to the following steps:

● step_1: The DNA sequence has been extracted from
the HG38 Human reference genome . 1

● step_2: A list of 3,153,377 variants from the
common_all_20170710.vcf file of the dbSNP 2

database has been created by randomly selecting
variants indexed in this file. Variants have been
restricted to SNPs and small indels (<= 5nt).

● step_3: Paternal and maternal chromosomes have
been generated using the vcf2diploid tool [22]. Input
data are the human genome reference sequence
(step_1) and the list of variants selected at step_2.

● Step_4: Short Illumina paired-end reads have been
generated with the ART read simulator [23] for all
chromosomes with the following parameters: insert
size = 400; standard deviation = 50; read length =
150bp; coverage = 30X.

The resulting dataset contains 586 x 106 reads split into
two fastq files. With reads of length 150bp, the index size for
the human genome is equal to 120 GBytes.

B. upVC validation

To better estimate the variant calling quality, we measure

the following metrics:

● True Positive (TP): existing variants found by upVC

● False Negative (FN): variants not found by upVC

● False Positive (FP): non existing variants found by
upVC

From these values, the following metrics can be computed:

● Precision (P): TP / (TP+FP)

● Sensitivity (S): TP / (TP+FN)

We run both upVC and GATK. The following table
summarizes the quality.

1 ftp.ncbi.nlm.gov/genomes/H_sapiens/Assembled_chromosomes/seq/
2 ftp.nci.nlm.gov/snp/organisms/human_9606_b150_GRCh38p7/VCF/

 substitution insertion deletion

 upVC GATK upVC GATK upVC GATK

TP % 99.77 100 99.10 99.69 99.57 99.98

FN % 0.50 0.23 0.91 0.74 0.57 0.37

FP % 0.23 0 0.90 0.31 0.43 0.02

P % 99.77 100 99.10 99.69 99.57 99.98

S % 99.50 99.77 99.08 99.26 99.42 99.63

GATK has been run with standard parameters. Compared
to upVC, the quality is clearly better. However, upVC
provides excellent results and legitimates our variant calling
implementation on PIM architecture, knowing that the current
code has plenty of room for improvement.

C. Execution time
The experiments have been done on an Intel® Xeon®

Silver 4110 CPU @ 2.1 Ghz, 8 cores with 64 GBytes of RAM,
equipped with 10 additional UPMEM double-rank DIMM
devices with DPU running at 266 MHz. Of a total of 1280
available DPUs (10 x 128), only 1024 full operational DPUs
have been used. The available PIM memory size is thus equal
to 64 GBytes (64 Mbytes per DPU).

The maximum space allocated to store the index per DPU
is about 48 Mbytes, that is 48 GBytes for 1024 DPUs. The
human genome index (120 GBytes) requires then 3 passes.

The upVC software has been run with packets of
paired-end reads equal to 218 (or 219 = 524288 reads). The
average measured execution time for the different tasks of the
main loop are the following:

 1024 DPU system
Get reads 0.32 sec
Dispatch reads 0.12 sec
Map reads 3.21 sec
Store map results 0.18 sec
Update 0.53 sec

The number of loop iterations depends of the number of

reads to process and is equal to:

(Number of reads / read packet size) + 4
= (586 x 106 / 2 19) + 4 = 1122

The execution time of one iteration is given by the slowest

task, here the mapping (3.21 sec). Consequently, the total
execution time of the loop (T LOOP) is:

TLOOP = 1122 x 3.21 = 3602 sec

Note that this time must be augmented by the time (T INDEX)

for downloading part of the index before each pass, that is
around 40 GBytes. With SSD drives having a bandwidth of

5

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted November 4, 2020. ; https://doi.org/10.1101/2020.11.03.366237doi: bioRxiv preprint

https://doi.org/10.1101/2020.11.03.366237
http://creativecommons.org/licenses/by-nd/4.0/

6
500 Mbytes/sec, 80 seconds must then be added to each pass.
The last step of the process is the creation of the VCF file. It's
a very quick operation that takes less than two seconds (T VCF).

The complete execution time (T UPVC), that requires 3
passes to process the human genome, is finally given by:

3 x (TINDEX + T LOOP) + T VCF = 11048 sec (~184 minutes)

D. Extrapolation to future 5120 DPU systems
In this section we extrapolate the real results obtained

with a 1024 DPU system running at 266 MHz to a 5120
system running at 600 MHz, the target frequency of the next
generation of DPUs.

On such a system, that can be seen as a standard
bioinformatics server, the full human genome index fits the
PIM memory. The whole variant calling process will thus be
done in a single pass, leading to the following execution time:

TUPVC = T INDEX + T LOOP +T VCF

TINDEX is the time for downloading the 120 GBytes index
to the memory DPU (240 sec). The execution time of TLOOP
will mainly depend on the execution time of the mapping task
since each DPU will store a smaller index (120 GBytes/5120 =
23 MBytes) and then will have proportionally less work to do
(23/40 = 0.57). DPU will also run faster (600/266 = 2.25). The
mapping task can be approximated by:

3.21 sec x 0.57 / 2.25 = 0.8 sec.

The mapping task still remains the slowest task of the
loop, giving a total loop execution time TLOOP = 898 sec,
leading to:

TUPVC = 240 + 898 + 2 = 1140 sec = 19 minutes

Considering a server dedicated to human variant calling,
the index doesn’t need to be reloaded for each new variant
calling task. Once downloaded and stored into the DPU
memories, the following variant calling tasks will be
performed in 15 minutes.

This experimentation clearly indicates that in this parallel
upVC implementation, the mapping task performed by the
DPUs is by far the longest. The other tasks that run
concurrently on the CPU cores are shorter, and lead to an
approximate 70% inactivity rate of the host processor. In
future implementation, this idle time will be used to
consolidate the calling step in order to improve the quality of
the results.

V. COMPARISON WITH ALTERNATIVE SYSTEMS

We compare the performances of the upVC PIM
implementation with two other hardware accelerators that
efficiently implement the variant calling process: Illumina
DRAGEN using proprietary software on 8 FPGA Xilinx

UltraScale Plus 16 nm FPGA [13], and Nvidia Parabricks
using BWA-GATK4 on 8 NVIDIA®Tesla®V100 GPUs [19].

To provide a fair comparison, we extend performance
results to different PIM configurations with increased density
and DPU frequency. At the time of writing, the reference
platform available at UPMEM is a 2*Xeon Silver 4108 with
128GB RAM and 160 GB of PIM memory with 2560 DPUs
clocked at 400MHz. Servers with higher PIM DIMM density
such as the Cooper Lake 4* Xeon Gold 6328H with 5120
DPUs and the AMD ARM Epyc with 3584 DPUs are in the
process of qualification while DPUs clocked at 500MHz and
more are under development.

Performances of these systems are analysed following the
three following criteria:

1. Execution time
2. Power consumption
3. Total Cost of Ownership (TCO)

A. Execution time
Figure 4 reports the execution time of the different

systems to process a typical variant calling operation on a 30X
human genome dataset. The loading of the reference genome
in MRAM is not considered as part of the computation time if
enough PIM memory in a system allows single batch runs of
upVC. In this case, the reference genome loading process only
happens at the start of the server and can be used for all
subsequent sample analysis.

Figure 4: Execution time based on 30X human genome
dataset on FPGA, GPU and PIM

A 2560 DPUs configuration does not allow enough space

in MRAM to load the entire genome and simultaneously retain

6

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted November 4, 2020. ; https://doi.org/10.1101/2020.11.03.366237doi: bioRxiv preprint

https://doi.org/10.1101/2020.11.03.366237
http://creativecommons.org/licenses/by-nd/4.0/

7
enough space to save the reads in MRAM. One DPU has 45,5
MB available to store reference neighbors, which totalizes
116,5 GB with 2560 memory banks, slightly less than the 120
GB of the reference genome. To avoid the need for 2 batches
and consequently load 2 halves of the reference genome with
long HDD transfers we divide the input read buffer by 2. This
way we free enough space for the reference genome but still
has for consequence to double the DPU processing time on
this configuration. Naturally we observe a gain in
performance once the memory space issue is alleviated in
3000+ DPUs configurations.

B. Power consumption

Figure 5 gives the power consumption of FPGA, GPU
and PIM systems.

Figure 5: Power consumption (hardware accelerator +
server) of PIM, GPU (8 NVIDIA®Tesla®V100) and
FPGA (8 FPGA Xilinx UltraScale) systems.

The consumption of an FPGA board depends on its

configuration. For this workload it is estimated to be used near
maximum capacity at 320W per board, 90% of its TDP. The
consumption of a V100 GPU is provided by Nvidia and
reaches around 300W in full use. UPMEM provides precise
measurements of a DPU power consumption and depends on
its version and clocking. At 400Mhz, a DPU in current version
v1.2 consumes 160 mW, while it consumes 190 mW at
500MHz. DPUs at 600MHz are benefiting from energy
reduction designs and are expected at around 120mW. The
overall consumption accounts that the charge of DPUs can
hardly go over 90% during the entire execution and that every
PIM module consumes 3W. PIM based configurations are in

average 6x less energy consuming than the considered
alternative accelerators.
The consumptions of the server for PIM configurations is
based on the 2*Xeon Silver 4110 with 128GB RAM. The TDP
is given at 190W. An AMD 2*Epyc has a TDP around 280W
and a Cooper Lake with 4* Xeon Gold has a TDP of 700W.
We consider a 2*Xeon Gold 6328H server base for alternative
accelerators to ensure efficient orchestration at TDP of 400W.
3W per 8 GB of memory accounts for the DRAM
consumption.

C. Total Cost of Ownership (TCO)

Server and infrastructure costs follow the comprehensive
AWS TCO cost estimator [24]. The estimator accounts for an
annual maintenance of 15% of the hardware cost. The same
logic if applied to each of the considered accelerator’s
hardware. The consumption evaluation is based on previous
energy considerations for a full 3 years and accounts for a
cooling and infrastructure overhead (additional 70% of the
hardware consumption). The cost of electricity is based on
median US commercial price [25]: $0,1/kWh.

Figure 6: years TCO Comparison between PIM
configurations against GPU and FPGA based accelerators
for Mapping+Variant calling.

A full 3 years on premise FPGA based solution’s TCO
nears $135,000, which accounts for FPGA board at around

7

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted November 4, 2020. ; https://doi.org/10.1101/2020.11.03.366237doi: bioRxiv preprint

https://doi.org/10.1101/2020.11.03.366237
http://creativecommons.org/licenses/by-nd/4.0/

8
$8,800 per unit. It is about 5 times more expensive than
UPMEM PIM solution at identical throughput for a 4096
DPUs at 500MHz configuration. Note that if we were to
consider the software cost for running Illumina Dragen, an
additional $572,000 would be required over a period of 3
years, multiplying the cost reduction made by UPMEM
solution by yet again a factor 5.

Nvidia quotes its V100 GPU at $9,500 per unit resulting

in a full 3 years TCO of Nvidia Parabrick estimation over
$140,000. In terms of algorithms, they are identical to
BWA-GATK4, using DNA-Bricks to port them over GPU
architectures and do not represent an overhead cost to use the
solution. At equivalent throughput it is about 8 times more
costly than UPMEM PIM FASTQ to VCF using 4096 DPUs
at 500MHz.

Thus, UPMEM technology offers a drastic financial and

environmental gain compared to both Nvidia and Illumina
solutions. Though it does not reach an as high accuracy,
development efforts on upVC are progressively narrowing the
gap.

VI. CONCLUSION
This implementation demonstrates the performance of the

PIM architecture when dedicated to a large scale and highly
parallel task in genomics: every DPU independently computes
read mapping against his fragment of the reference genome
while the variant calling is pipelined on the host.

The algorithm works well within the confines of the
experiment but still remains a long way from a real-world
application with a holistic alignment strategy. It is a prototype
that verifies the capabilities of a PIM architecture in the
context of mapping and variant calling . The low CPU usage
of this implementation allows additional CPU based functions
to complete the pre-variant calling workflow that would pave
the road towards a commercial application.

In comparison to existing accelerators, the PIM solution
promises to deliver equal to better performances but with
massive energy reduction and TCO gains. It is a crucial
advantage in sight of the prominent place that genomics is
about to occupy in the world of data computing and for its
accessibility by medical institutions across the globe. A
configuration with 3584 DPUs at 600MHz has the best TCO
profile and could bring the cost of human genome analysis
near $0,34/genome.

PIM is a promising technology that shows a great
potential to solve some of the challenges of genomics in terms
of actionable computing power, programmability and cost.

REFERENCES
[1] Van der Auwera, G. A. et al . From FastQ data to high

confidence variant calls: the Genome Analysis Toolkit best
practices pipeline. Curr Protoc Bioinformatics 43(11), 10.1–33
(2013).

[2] Kim, S. et al . Strelka2: fast and accurate calling of germline and
somatic variants. Nat Methods 15, 591–594 (2018).

[3] Koboldt, D. C., Larson, D. E. & Wilson, R. K. Using VarScan 2
for Germline Variant Calling and Somatic Mutation Detection.
Curr Protoc Bioinformatics 44(15.4), 1–17 (2013).

[4] Li R, Li Y, Fang X, Yang H, Wang J, Kristiansen K. SNP
detection for massively parallel whole-genome resequencing.
Genome Res. 2009;19(6):1124–1132.

[5] Ryan Poplin, Pi-Chuan Chang, David Alexander, Scott
Schwartz, Thomas Colthurst, Alexander Ku, Dan Newburger,
Jojo Dijamco, Nam Nguyen, Pegah T. Afshar, Sam S. Gross,
Lizzie Dorfman, Cory Y. McLean, and Mark A. DePristo. A
universal SNP and small-indel variant caller using deep neural
networks. Nature Biotechnology 36, 983–987 (2018).

[6] Lam HYK, Pan C, Clark MJ, Lacroute P, Chen R, Haraksingh
R, et al. Detecting and annotating genetic variations using the
HugeSeq pipeline. Nature Biotechnology. 2012
Mar;30(3):226–229

[7] Puckelwartz MJ, Pesce LL, Nelakuditi V, Dellefave-Castillo L,
Golbus JR, Day SM, et al. Supercomputing for the
parallelization of whole genome analysis. Bioinformatics. 2014
Jun;30(11):1508–1513

[8] Kelly BJ, Fitch JR, Hu Y, Corsmeier DJ, Zhong H, Wetzel AN,
et al. Churchill: an ultra-fast, deterministic, highly scalable and
balanced parallelization strategy for the discovery of human
genetic variation in clinical and population-scale genomics.
Genome biology. 2015 Jan;16(1)

[9] Decap D, Reumers J, Herzeel C, Costanza P, Fostier J. Halvade:
scalable sequence analysis with MapReduce. Bioinformatics.
2015 Mar;31(15):2482–2488

[10] McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K,
Kernytsky A, et al. The Genome Analysis Toolkit: a
MapReduce framework for analyzing next-generation DNA
sequencing data. Genome research. 2010 Sep;20(9):1297–1303

[11] Chiang C, Layer RM, Faust GG, Lindberg MR, Rose DB,
Garrison EP, et al. SpeedSeq: ultra-fast personal genome
analysis and interpretation. Nature Methods. 2015
Aug;12(10):966–968.

[12] Nothaft F. Scalable Genome Resequencing with ADAM and
avocado. UC Berkeley; 2015. Technical Report no
UCB/EECS-20IS-6S.

[13] Illumina DRAGEN Bio-IT Platform v3.2.8. User Guide. 2019
[14] https://www.wasaitech.com/genomics
[15] Y. Liu, B. Schmidt, D. Maskell: CUSHAW: a CUDA

compatible short read aligner to large genomes based on the
Burrows-Wheeler transform, Bioinformatics, (2012) 28(14):
1830-1837

[16] Y. Liu, B. Schmidt: CUSHAW2-GPU: empowering faster
gapped short-read alignment using GPU computing. IEEE
Design & Test of Computers 31(1):31-39, 2014

[17] Klus P, Lam S, Lyberg D, Cheung MS, Pullan G, McFarlane I,
Yeo GSH, Lam BY. (2012) BarraCUDA - a fast short read
sequence aligner using graphics processing units. BMC
Research Notes, 5:27.

[18] Langdon WB, Lam BY, Petke J, Harman M. (2015) Improving
CUDA DNA Analysis Software with Genetic Programming.
Proceedings of the 2015 Annual Conference on Genetic and
Evolutionary Computation - GECCO '15

[19] https://www.nvidia.com/en-us/docs/parabricks/
[20] Patterson, D., Anderson, T., Cardwell, N., Fromm, R., Keeton,

K., Kozyrakis, C., Thomas, R., and Yelick, K. (1997). "A Case
for Intelligent RAM: IRAM," IEEE Micro, 17 (2), pp. 34–44

[21] https://sdk.upmem.com/
[22] Kogge, P. M., T. Sunaga and e. a. E. Retter (1995). Combined

DRAM and Logic Chip for Massively Parallel Applications.
16th IEEE Conf. on Advanced Research in VLSI, Raleigh, NC

[23] Rozowsky J. et al. AlleleSeq: analysis of allele-specific
expression and bin ding in a network framework. Mol Syst Biol.
2011

[24] Huang, Weichun et al. “ART: a next-generation sequencing read
simulator.” Bioinformatics (Oxford, England) vol. 28,4 (2012):
593-4. doi:10.1093/bioinformatics/btr708

[25] https://awstcocalculator.com/
[26] U.S. Energy Information Administration’s Electric Power

Monthly report
[27] https://sdk.upmem.com/2020.3.0/

8

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted November 4, 2020. ; https://doi.org/10.1101/2020.11.03.366237doi: bioRxiv preprint

https://rdcu.be/7Dhl
https://rdcu.be/7Dhl
https://rdcu.be/7Dhl
https://www.wasaitech.com/genomics
https://www.nvidia.com/en-us/docs/parabricks/
https://sdk.upmem.com/
https://sdk.upmem.com/2020.3.0/
https://doi.org/10.1101/2020.11.03.366237
http://creativecommons.org/licenses/by-nd/4.0/

