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Abstract 13 

BRAFV600E melanoma patients, despite initially responding to the clinically prescribed anti-BRAFV600E 14 

therapy, often relapse and their tumors develop drug resistance. While it is widely accepted that these 15 

tumors are originally driven by the BRAFV600E mutation, they often eventually diverge and become 16 

supported by various signaling networks. Therefore, patient-specific altered signaling signatures should be 17 

deciphered and treated individually. 18 

In this study, we design individualized melanoma combination treatments based on personalized network 19 

alterations. Using an information-theoretic approach, we compute high-resolution patient-specific altered 20 

signaling signatures. These altered signaling signatures each consist of several co-expressed subnetworks, 21 

which should all be targeted to optimally inhibit the entire altered signaling flux. Based on these data, we 22 

design smart, personalized drug combinations, often consisting of FDA-approved drugs. We validate our 23 

approach in vitro and in vivo showing that individualized drug combinations that are rationally based on 24 

patient-specific altered signaling signatures are more efficient than the clinically used anti-BRAFV600E or 25 
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BRAFV600E/MEK targeted therapy. Furthermore, these drug combinations are highly selective, as a drug 26 

combination efficient for one BRAFV600E tumor is significantly less efficient for another, and vice versa.  27 

The approach presented herein can be broadly applicable to aid clinicians to rationally design patient-28 

specific anti-melanoma drug combinations.   29 

 30 

Introduction 31 

The rates of melanoma have been rapidly increasing [1]. Melanoma is one of the most common cancers in 32 

young adults, and the risk for melanoma increases with age [1]. However, alongside the rapid increase in 33 

incidence, there has also been rapid clinical advancement over the past decade, with targeted therapy and 34 

immunotherapy that have become available to melanoma patients [2].  35 

Melanoma is associated with a great burden of somatic genetic alterations [3], with the primary actionable 36 

genomic data being an activating mutation in the BRAF gene, BRAFV600E, occurring in ~50% of all 37 

melanomas [3,4].  38 

Nearly a dozen new treatments have been approved by the Food and Drug Administration (FDA) for 39 

unresectable or metastatic melanoma harboring the BRAFV600E mutation, among them vemurafenib (a 40 

BRAFV600E inhibitor), cobimetinib (a MEKMAPK inhibitor), or a combination of dabrafenib and trametinib 41 

(a BRAFV600E inhibitor and a MEKMAPK inhibitor, respectively) [2].  42 

While targeted therapy revolutionized melanoma treatment, the high hopes shortly met a disappointment, 43 

as it became evident that most patients treated with BRAFV600E inhibitors eventually relapse and their 44 

tumors become resistant to the treatment [5–7]. Various combination treatments were suggested to 45 

overcome the acquired resistance to BRAFV600E inhibitors [5,6,9,10]. Nevertheless, BRAFV600E and MEK 46 

inhibitors remain the only targeted agents approved by the FDA for melanoma. 47 

In this study, we design patient-specific targeted treatments for melanoma based on individualized 48 

alterations in signaling protein networks, rather than on genomic or protein biomarkers. Attempting to 49 

treat patients based on the identification of single biomarkers or signaling pathways may overlook tumor-50 
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specific molecular alterations that have evolved during the course of disease, and the consequently 51 

selected therapeutic regimen may lack long term efficacy resulting from partial targeting of the tumor 52 

imbalance. We have shown that different patients may display similar oncogene expression levels, albeit 53 

carrying biologically distinct tumors that harbor different sets of unbalanced molecular processes [11]. 54 

Therefore, we suggest to explore the cancer data space utilizing an information theoretic approach that is 55 

based on surprisal analysis [11–13], to unbiasedly identify the altered signaling network structure that has 56 

emerged in every single tumor [11,12].  57 

Our thermodynamic-like viewpoint grasps that tumors are altered biological entities, which deviate from 58 

their steady state due to patient-specific alterations. Those alterations can manifest in various manners 59 

that are dependent on environmental or genomic cues (e.g. carcinogens, altered cell-cell communication, 60 

mutations, etc.) and give rise to one or more distinct groups of co-expressed onco-proteins in each tumor, 61 

named unbalanced processes [11–13]. A patient-specific set of unbalanced processes constitutes a unique 62 

signaling signature and provides critical information regarding the elements in this signature that should 63 

be targeted. Each tumor can harbor several distinct unbalanced processes, and therefore all of them should 64 

be targeted in order to collapse the altered signaling flux in the tumor [11,12]. We have demonstrated that 65 

with comprehensive knowledge about the patient-specific altered signaling signature (PaSSS) in hand, we 66 

can predict highly efficacious personalized combinations of targeted drugs in breast cancer [12]. 67 

Herein, we decipher the accurate network structure of co-expressed functional proteins in melanoma 68 

tumors, hypothesizing that the PaSSS identified will guide us on how to improve the clinically used 69 

BRAFV600E-targeted drug combinations. Our aim was to examine the ability of PaSSS-based drug 70 

combinations to reduce the development of drug resistance, which frequently develops following 71 

BRAFV600E inhibition in melanoma.  72 

To this end, we studied a dataset consisting of 353 BRAFV600E and BRAFWT skin cutaneous melanoma 73 

(SKCM) samples, aiming to gain insights into the altered signaling signatures that have emerged in these 74 

tumors. A set of 372 thyroid carcinoma (THCA) samples was added to the dataset, as these tumors 75 
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frequently harbor BRAFV600E as well, therefore enabling studying the commonalities and differences 76 

between tumor types that frequently acquire the BRAFV600E mutation. 77 

We show that 17 distinct unbalanced processes are repetitive among the 725 SKCM and THCA patient-78 

derived cancer tissues. Each tumor is characterized by a specific subset of typically 1-3 unbalanced 79 

processes. Interestingly, we demonstrate that the PaSSS does not necessarily correlate with the existence 80 

of the BRAFV600E, namely different tumors can harbor different signatures while both carrying the 81 

mutated BRAF, and vice versa – tumors can harbor the same altered signaling signature regardless of 82 

whether they carry BRAFV600E or BRAFWT. These data suggest that examination of the BRAF gene alone 83 

does not suffice to tailor effective medicine to the patient. SKCM and THCA patients harboring 84 

BRAFV600E can respond differently to the same therapeutic regimen, or rather benefit from the same 85 

treatment even though their BRAF mutation status differs. 86 

We experimentally demonstrate our ability to predict effective personalized therapy by analyzing a cell 87 

line dataset and tailoring efficacious personalized combination treatments to two BRAFV600E-harboring 88 

melanoma cell lines, A375 and G361. The predicted PaSSS-based drug combinations were shown to have 89 

an efficacy superior to monotherapies or other drug combinations (such that were not predicted to target 90 

the individualized altered signaling signatures, and combinations used in clinics), both in vitro and in 91 

vivo. We show that an in depth resolution of individualized signaling signatures allows inhibiting the 92 

development of drug resistance and melanoma regrowth, by demonstrating that while A375 and G361 93 

melanomas develop drug resistance several weeks following initial administration of the clinically used 94 

combination, dabrafenib+trametinib, individualized PaSSS-based drug combinations gain a longer lasting 95 

effect and show high selectivity.  96 

 97 

Methods 98 

Datasets. 99 
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This study utilized a protein expression dataset consisting of 353 skin cutaneous melanoma (SKCM) 100 

sample and 372 thyroid carcinoma (THCA) samples. The samples were selected from a large TCPA 101 

dataset containing 7694 cancer tissues from various anatomical origins (PANCAN32, level 4 [14]). Each 102 

cancer tissue was profiled on a reverse phase protein array (RPPA) for 258 cancer-associated proteins. 103 

After filtering out proteins that had NA values for a significant number of patients, 216 proteins remained 104 

for further analysis. 105 

The dataset for the cancer cell lines was downloaded from the TCPA portal [14]. The data was already 106 

published by Li et al. [15]. A part of the original dataset containing 290 cell lines from 16 types of cancers 107 

was selected, including breast, melanoma, ovarian, brain, blood, lung, colon, head and neck, kidney, liver, 108 

pancreas, bone and different types of sarcomas,  stomach-oesophagus, uterus and thyroid cancers. The 109 

cell lines in the dataset were profiled for 224 phospho-proteins and total proteins using RPPA. 110 

Surprisal analysis 111 

Surprisal analysis is a thermodynamic-based information-theoretic approach [16–18]. The analysis is 112 

based on the premise that biological systems reach a balanced state when the system is free of constraints 113 

[19–21]. However, when under the influence of environmental and genomic constraints, the system is 114 

prevented from reaching the state of minimal free energy, and instead reaches a state which is higher in 115 

free energy (in biological systems, which are normally under constant temperature and constant pressure, 116 

minimal free energy equals maximal entropy). 117 

Surprisal analysis can take as input the expression levels of various macromolecules, e.g. genes, 118 

transcripts, or proteins. However, be it environmental or genomic alterations, it is the proteins that 119 

constitute the functional output in living systems, therefore we base our analysis on proteomic data. The 120 

varying forces, or constraints, that act upon living cells ultimately manifest as alterations in the cellular 121 

protein network. Each constraint induces a change in a specific part of the protein network in the cells. 122 

The subnetwork that is altered due to the specific constraint is termed an unbalanced process. System can 123 

be influenced by several constraints thus leading to the emergence of several unbalanced processes. When 124 
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tumor systems are characterized, the specific set of unbalanced processes is what constitutes the tumor-125 

specific signaling signature. 126 

Surprisal analysis discovers the complete set of constraints operating on the system in any given tumor, k, 127 

by utilizing the following equation [22]: ln Xi(k) = ln Xi
0(k) – ΣGiαλα(k), where i is the protein of interest, 128 

Xi
0 is the expected expression level of the protein when the system is at the steady state and free of 129 

constraints, and ΣGiαλα(k) represents the sum of deviations in expression level of the protein i due to the 130 

various constraints, or unbalanced processes, that exist in the tumor k. 131 

The term Giα denotes the degree of participation of the protein i in the unbalanced process α, and its sign 132 

indicates the correlation or anti-correlation between proteins in the same process (Table S1). Proteins 133 

with significant Giα values are grouped into unbalanced processes (Fig. S1, Table S2) that are active in 134 

the dataset [12].  135 

The term λα(k) represents the importance of the unbalanced process α in the tumor k (Table S1). 136 

The partial deviations in expression level of the protein i due to the different constraints sum up to the 137 

total change in expression level (relative to the balance state level), ΣGiαλα(k). 138 

For complete details regarding the analysis please refer to the SI of reference 12. 139 

Determination of the number of significant unbalanced processes. 140 

The analysis of the 725 patients provided a 725x216 matrix of λα(k) values, such that every row in the 141 

matrix contained 216 values of λα(k) for 725 patients, and each row corresponded to an unbalanced 142 

process (Table S1). However, not all unbalanced processes are significant. Our goal is to determine how 143 

many unbalanced processes are needed to reconstruct the experimental data, i.e. for which value of n: ln 144 

(Xi(k)/M) ≈ - ΣGiαλα(k). To find n, we performed the following two steps: 145 

 (1) Reproduction of the experimental data by the unbalanced processes was verified: We plotted 146 

ΣGiαλα(k) for α =1, 2, … , n against ln Xi(k) for different proteins, i, and for different values of n, and 147 

examined the correlation between them as n was increased. An unbalanced process, α = n, was 148 
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considered significant if it improved the correlation significantly relative to α = n – 1 (Fig. S2) 149 

(see [11] for more details).  150 

(2) Processes with significant amplitudes were selected: To calculate threshold limits for λα(k) values 151 

(presented in Table S1 and Fig. S3) the standard deviations of the levels of the 10 most stable proteins in 152 

this dataset were calculated (e.g. those with the smallest standard deviations values). Those fluctuations 153 

were considered as baseline fluctuations in the population of the patients which are not influenced by the 154 

unbalanced processes. Using standard deviation values of these proteins the threshold limits were 155 

calculated as described previously [23]. The analysis revealed that from α = 18, the importance values, 156 

λα(k), become insignificant (i.e. do not exceed the noise threshold), suggesting that 17 unbalanced 157 

processes are enough to describe the system.  158 

For more details see references 12 and 22. 159 

Generation of functional subnetworks.  160 

The functional sub-networks presented in Figures 2, 5, 6, S1 and S4 were generated using a python script 161 

as described previously [12]. Briefly, the goal was to generate a functional network according to STRING 162 

database, where proteins with negative G values are marked blue and proteins with positive G values are 163 

marked red, to easily identify the correlations and anti-correlations between the proteins in the network. 164 

The script takes as an input the names of the genes in the network and their G values, obtains the 165 

functional connections and their weights from STRING database (string-db.org), and then plots the 166 

functional network (using matplotlib library). 167 

Barcode calculation. 168 

The barcodes of unbalanced processes were generated using a python script. For each patient, λα(k) (α = 1, 169 

2, 3, …, 17) values were normalized as follows: If λα(k) > 2 (and is therefore significant according to 170 

calculation of threshold values) then is was normalized to 1; if λα(k) < -2 (significant according to 171 

threshold values as well) then it was normalized to -1; and if -2 < λα(k) < 2 then it was normalized to 0.  172 
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Cell Culture.  173 

The BRAF mutated melanoma cell lines, A375 and G361, were obtained from the ATCC and grown in 174 

DMEM (G361) or RPMI (A375) medium. The cells were supplemented with 10 % fetal calf serum 175 

(FCS), L-glutamine (2mM), 100 U/ml penicillin and 100 mg/ml streptomycin and incubated at 37 ֯C in 176 

5% CO2. The cell lines were authenticated at the Biomedical Core Facility of the Technion, Haifa, Israel.  177 

Western blot analysis. 178 

The cells were seeded into 6 well plates (~1.5 x 106 cells/well) and grown under complete growth media.  179 

A375 cells were treated the next day as indicated for 48 hours in partial starvation medium (RPMI 180 

medium with 1.2% FCS). G361 cells were treated in complete growth medium for 24 hours. The dead 181 

cells were collected from the medium. The adherent cells were then treated with IGF for 15 minutes. The 182 

cells were then lysed using hot sample buffer (10% glycerol, 50 mmol/L Tris-HCl pH 6.8, 2% SDS, and 183 

5% 2-mercaptoethanol) and western blot analysis was carried out. The lysates were fractionated by SDS-184 

PAGE and transferred to nitrocellulose membranes using a transfer apparatus according to the 185 

manufacturer’s protocols (Bio-Rad). Blots were developed with an ECL system according to the 186 

manufacturer’s protocols (Bio-Rad). 187 

Methylene blue assay. 188 

In a 96 well plate, the cells were seeded and treated as indicated for 72 hours. The cells were fixed with 189 

4% paraformaldehyde and then stained with methylene blue. To calculate the number of surviving cells, 190 

the color was extracted by adding 0.1M Hydrochloric acid and the absorbance was read at 630 nm.  191 

MTT assay.  192 

Cells were seeded and treated as indicated in a 96 well plate for 72 hours. Cell viability was checked 193 

using MTT assay kit (Abcam).  Equal volumes of MTT solution and culture media were added to each 194 

well and incubated for 3 hours at 37 ֯C. MTT solvent was added to each well, and then the plate was 195 
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covered in aluminum foil and put on the orbital shaker for 15 minutes. Absorbance was read at 590nm 196 

following 1 hour.  197 

Resistance Assay. 198 

Cells were seeded in multiple 96 well plates and treated as needed in various time points (3, 7, 14, 21, 28, 199 

35, 42, 49, 54 days). At every time point the cells were fixed with 4% paraformaldehyde and then stained 200 

with methylene blue. The number of cells which survived at each time point was quantified by adding 201 

0.1M Hydrochloric acid and reading the absorbance at 630 nm.  202 

 203 

Animal Studies.  204 

The cells - A375 (0.25 x 106 cells/mouse) or G361 (0.5 x 106 cells/ mouse ) - were inoculated 205 

subcutaneously into NSG mice (n = 8 mice per group), and once the volume of the tumors reached 50 206 

mm3, treatments were initiated 6 times a week for up to 4 weeks. Tumor volume was measured twice a 207 

week. Trametinib (0.5mg/kg), dasatinib (35mg/kg) and dabrafenib (35mg/kg) were suspended in an 208 

aqueous mixture of 0.5% hydroxypropyl methylcellulose + 0.2% tween 80 and administered by oral 209 

gavage. 2-deoxy-D-glucose (500mg/kg) was suspended in saline and injected intraperitoneally. All the 210 

drugs were purchased from Cayman chemicals (Enco, Israel). The Hebrew University is an AAALAC 211 

International accredited institute. All experiments were conducted with approval from the Hebrew 212 

University Animal Care and Use Committee. Ethical accreditation number: Md-17-15174-4. 213 

 214 
Results 215 

An overview of the experimental-computational approach 216 
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Figure 1: Conventional biomarker analysis vs. patient-specific signaling signature analysis. 
Genetic/protein biomarker analysis relies on evaluation of the expression levels of common cancer type-
associated genes or proteins (left). The design of a drug combination is done according to inference of the state 
of the surrounding signaling network, based on previous knowledge (left). In contrast, patient-specific signaling 
signature (PaSSS) analysis involves proteomic analysis of hundreds of cancer-associated proteins, and unbiased 
identification of the altered signaling signature in every sample, i.e. that does not depend on previous knowledge 
of signaling pathways. This enables rationally designing personalized combinations of targeted drugs that are 
based on the patient-specific uniquely rewired signaling network (right). 

Biomarker analysis in melanoma relies mainly on the identification of mutations in the BRAF gene [24]. 217 

If mutation/upregulation of the mutant BRAFV600E is identified (Fig. 1, left), the patient will likely be 218 

treated with a BRAFV600E inhibitor (e.g. vemurafenib [25] or dabrafenib [26]), possibly concurrently with 219 

an inhibitor of MEKMAPK (e.g. trametinib [27]). The combination of BRAFV600E and MEKMAPK inhibitors 220 

was shown to be superior to BRAFV600E inhibition alone and to delay or prevent the development of drug 221 

resistance [9]. 222 

However, the biomarker analysis utilized in clinics lacks information about the altered signaling network, 223 

and, for example, may overlook additional or alternative protein targets that, if targeted by drugs, may 224 

enhance the efficacy of the treatment (Fig. 1, left). 225 
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We utilize an information theoretic approach that is based on surprisal analysis (Methods) [11–13] to 226 

gain information regarding the patient-specific signaling signature (PaSSS) that has emerged in every 227 

individual tumor (Fig. 1, right). Based on proteomic analysis of the samples, we identify the set of altered 228 

protein-protein co-expressed subnetworks, or unbalanced signaling processes, that has arisen as a result 229 

of constraints (environmental or genomic) which operate on the tumor, and then design a combination of 230 

targeted drugs that is expected to collapse the tumor-specific altered signaling signature (Fig 1, right and 231 

Methods) [11–13].  232 

We obtained from the TCPA database [14] a dataset containing 353 skin cutaneous melanoma (SKCM) 233 

and 372 thyroid cancer (THCA) samples (725 samples in total). The thyroid cancer samples were added 234 

to the dataset for two main reasons: (1) to increase the number of samples in the dataset, thereby 235 

increasing the resolution of the analysis; (2) THCA tumors frequently harbor the BRAFV600E mutation, 236 

and we were therefore interested in examining the commonalities and differences between the altered 237 

signaling signatures that emerged in SKCM and THCA tumors. 238 

17 unbalanced processes repeat themselves throughout 725 SKCM and THCA tumors 239 

The analysis of the dataset revealed that the 725 SKCM and THCA tumors can be described by 17 240 

unbalanced processes (Fig. S1; the amplitudes for each process in each patient and the importance of each 241 

protein in the different processes can be found in Table S1; the protein composition of each process is 242 

presented in Table S2), i.e. 17 distinct unbalanced processes suffice to reproduce the experimental data 243 

(Fig. S2 and Methods). 244 

Unbalanced processes 1 and 2, the two most significant unbalanced processes, which appear in the largest 245 

number of tumors, distinguish well between SKCM and THCA tumors, as can be seen by the 2D plots of 246 

λ(k) values (i.e. amplitudes of each process in every tumor; Fig. 2A,C,E). Unbalanced process 1 appears 247 

almost exclusively in THCA tumors (372 THCA tumors harbor unbalanced process 1, vs. 46 SKCM 248 

tumors; Fig. 2A,E, Table S2), while unbalanced process 2 characterizes almost exclusively SKCM 249 
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tumors (331 SKCM tumors harbor unbalanced process 2, vs. only 4 THCA tumors; Fig. 2C,E, Table S2). 250 

Unbalanced process 1 involves upregulation of proteins that have been previously linked to THCA: 251 

LKB1 [28], fibronectin [29,30], Bcl-2 [31], claudin 7 [32] (Fig. 2B). Unbalanced process 2 is 252 

characterized by the upregulation of proteins that have been implicated in melanoma, such as Stat5 [33], 253 

Akt [34], cKit [35], Her3 [36], and ATM [37] (Fig. 2D). As can be seen in the graph in Figure 2C, 254 

unbalanced process 2 was assigned a positive amplitude in all 331 SKCM tumors in which it appears, 255 

while in 4 THCA tumors it was assigned a negative amplitude (see also Table S2). This means that the 256 

proteins that participate in this unbalanced process deviate to opposite directions in the two types of 257 

tumors (importantly, this remark denotes only the partial deviation that occurred in these proteins due to 258 

unbalanced process 2; some of these proteins may have undergone additional deviations due to the 259 

activity of other unbalanced processes. See Table S2 and Methods). Although this dominant process 260 

appears in a significant number of BRAFV600E SKCM patients (Fig. 2C), it does not include 261 

pS(445)BRAF and downstream signaling. This finding corresponds to a recent characterization of 262 

melanoma tissues [4] and suggests that the signaling signatures of BRAFV600E tissues may diverge over 263 

time and acquire additional signaling routs which are not necessarily related to the original driver 264 

mutations, such as BRAFV600E or its downstream MEKMAPK signaling.  265 

Unbalanced process 2 can also be found in BRAFWT patients (Fig. 2C). See, for example, patient TCGA-266 

XV-AAZV (Fig. 3). The signature of this patient did not include additional processes. A total of 181 267 

SKCM patients harbor this signaling signature, consisting only of unbalanced process 2: 100 of them 268 

harbor BRAFWT and 81 of them harbor BRAFV600E (Fig. 3). In contrast, no THCA patients harbor this 269 

signature (Fig. 3). The finding that BRAFWT and BRAFV600E SKCM patients can, in some cases, harbor 270 

the same altered signature suggests that these patients can also benefit from the same combination of 271 

targeted drugs.  272 

Although unbalanced processes 1 and 2 distinguish well between SKCM and THCA patients (Fig. 273 

2A,C,E), these processes alone do not suffice to describe the PaSSS of all patients. Our analysis suggests 274 
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that to decipher the altered signaling signature in every patient, 17 unbalanced processes should be 275 

considered. Hence, 2D plots may overlook important therapeutic information. When we inspect the 276 

patients in the context of a 17-dimensional space, where each dimension represents an unbalanced 277 

process, we find that not all SKCM patients harbor unbalanced process 2, and that those who  278 

 

Figure 2: Unbalanced processes 1 and 2 distinguish well between SKCM and THCA tumors when plotted 
in 2D. The majority of THCA tumors harbor unbalanced process 1 (A), while the majority of SKCM tumors 
harbor unbalanced process 2 (C). Unbalanced processes 1 and 2 are shown in panels B and D. Note that red 
proteins are upregulated, and blue proteins are downregulated given that the amplitude of the process is 
positive. In tumors where the amplitude is negative, the direction of change is opposite. (E) A 2D plot showing 
λ2(k) against λ1(k) for all SKCM and THCA patients. The plot shows nicely the separation between SKCM and 
THCA patients in this 2D space. Note, however, that every tumor is characterized by a set of unbalanced 
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processes (a PaSSS), and that unbalanced processes 1 and 2 alone do not suffice to describe the complete tumor-
specific altered signaling signatures. 

do harbor this process may harbor additional unbalanced processes as well (Fig. 3 and Fig. S3). We have 279 

shown that mapping the patients into a multi-dimensional space, a 17D space in our case, allows 280 

deciphering the set of unbalanced process, namely the PaSSS, in every tumor. This mapping  is crucial for 281 

the design of efficacious treatments [12]. 282 

The SKCM patient TCGA-EB-A5SE, for example, is characterized by a PaSSS consisting of unbalanced 283 

processes 2 and 4 (Fig. 3). Only 5 SKCM patients were found to be characterized by this set of 284 

unbalanced processes. Two of the patients harbor BRAFWT tumors, and 3 of them BRAFV600E (Fig. 3).  285 

The SKCM patient TCGA-ER-A2NF was found to harbor a PaSSS consisting of unbalanced processes 1, 286 

6 and 10 (Fig. 3). This patient harbors a one-of-a-kind tumor, as no other patients in the dataset harbor 287 

this altered signaling signature (Fig. 3).   288 

The PaSSS of THCA patient TCGA-DJ-A13V includes unbalanced processes 1 and 4 (Fig. 3). This 289 

signature characterizes 38 THCA patients, 12 of them BRAFWT and 26 of them BRAFV600E (Fig. 3). These 290 

THCA patients may benefit from a combination of drugs that target central protein nodes in unbalanced 291 

processes 1 and 4, regardless of whether they harbor BRAFV600E or not. No SKCM patients harbor this 292 

altered signaling signature (Fig. 3).  293 

Another interesting finding is that SKCM and THCA patients may harbor the same PaSSS, as is the case 294 

of the signature consisting of unbalanced process 1, shared by 3 SKCM patients and 142 THCA patients 295 

(Fig. 3 and Table S2). All these patients may be treated with the same drug combination, targeting key 296 

proteins in unbalanced process 1, e.g. LKB1 and fibronectin (Fig. 2B). 297 
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 298 

Figure 3: Examples for patient-specific sets of active unbalanced processes. Each patient typically harbors a 299 
set of 1-3 active unbalanced processes. Our results show that a specific set of active processes does not necessarily 300 
distinguish between BRAFV600E- and BRAFV600E+ patients, or between SKCM and THCA patients. 301 

The altered signaling signatures identified in SKCM and THCA are almost mutually exclusive 302 

To explore the entire dataset in terms of the set of unbalanced processes that each patient harbors, we 303 

assigned to each patient a patient-specific barcode, denoting the normalized PaSSS, i.e. the active 304 

unbalanced processes in the specific tumor, and the signs of their amplitudes (positive/negative) 305 

disregarding the size of the amplitude (Fig. 4, Table S3). These barcodes represent the mapping of every 306 

patient to a 17-dimensional space where each dimension denotes a specific unbalanced process [11,12]. 307 

We found that 138 distinct barcodes repeated themselves in the dataset (Table S4). Interestingly, the 308 

barcodes are almost mutually exclusive: 87 of the barcodes characterize SKCM tumors; 84 of them 309 

characterize only SKCM tumors and are not harbored by any THCA tumor (Table S4). 51 barcodes 310 

characterize THCA tumors; of them 48 characterize solely THCA tumors (Table S4). 311 

Most of the barcodes are rare: 81 barcodes are shared by only 5 SKCM tumors or less; 56 of them 312 

describe single, one-of-a-kind SKCM tumors (Table S4). 47 barcodes are shared by only 5 THCA tumors 313 

or less; 36 of them describe single THCA tumors (Table S4). This finding corroborates with our previous 314 

studies of signaling signatures in cancer [12], and underscores the need for personalized cancer diagnosis 315 

that is not biased by, e.g., the anatomical origin of the tumor. 316 
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Patient-specific barcodes guide the rational design of personalized targeted combination therapy 317 

 318 

Figure 4: Patient-specific altered signaling signatures, or barcodes, can guide the design of personalized 319 
combination therapies. For each tumor, processes with amplitudes exceeding the threshold values (Methods) were 320 
selected and included in patient-specific sets of unbalanced processes. Those sets were converted into schematic 321 
barcodes. Central proteins from each process were suggested as potential targets for personalized drug 322 
combinations.   323 

We have previously shown the predictive power of our analysis in determining effective patient-tailored 324 

combinations of drugs that target key proteins in every unbalanced process [12,13].  325 

Utilizing the maps of the unbalanced processes identified in the dataset herein (Fig. S1), we predicted 326 

process-specific protein targets for each process (Table S5). Each individual patient is predicted to 327 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 3, 2020. ; https://doi.org/10.1101/2020.11.03.366245doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.03.366245


17 

 

benefit from a therapy that combines drugs against all the unbalanced processes active in the specific 328 

tumor (Fig. 4, Table S5). 329 

As mentioned above, SKCM patients can in some cases benefit from the same combination therapy, 330 

regardless of their BRAF mutational status. This is the case for patients TCGA-EE-A3AD (carrying 331 

BRAFV600E) and TCGA-EB-A4XL (carrying BRAFWT), that were found to harbor tumors characterized by 332 

the same barcode of unbalanced processes, and were therefore predicted to benefit from the same 333 

treatment, where Stat5 and cKit are targeted simultaneously (Fig. 4).  334 

Patient TCGA-EE-A180 carries BRAFWT, as does patient TCGA-EB-A4XL (Fig. 4). However, patient 335 

TCGA-EE-A180 harbors two active unbalanced processes that are not active in the tumor of patient 336 

TCGA-EB-A4XL – processes 3 and 8 (Fig. 4). Therefore, the list of proteins that should be targeted in 337 

order to collapse the tumor differs in these patients (Fig. 4).  338 

A375 and G361 melanoma cell lines harbor distinct altered signaling signatures 339 

To experimentally validate our hypothesis that BRAFV600E harboring cells may benefit from drug 340 

combinations that are designed based on the PaSSS identified at the time of diagnosis, we turned to 341 

analyze a different dataset containing 290 cell lines originating from 16 types of cancer, including blood, 342 

bone, breast, colon, skin, uterus, and more (see Methods). The cell lines were each profiled for the 343 

expression levels of 224 proteins and phosphoproteins using reverse phase protein assay.  344 

PaSSS analysis of this cell line dataset revealed that 17 unbalanced processes were repetitive in the 291 345 

cell lines (Table S6, Table S7, Fig. S4). 346 

We selected two melanoma cell lines for experimental validation, G361 and A375. Both cell lines harbor 347 

the mutated BRAFV600E. In the clinic, patients bearing tumors with BRAFV600E would all be treated 348 

similarly, with BRAF inhibitors alone or in combination with MEK inhibitors [9,27]. 349 

Our analysis, however, shows that G361 and A375 each harbor a distinct PaSSS (Fig. 5,6). G361 was 350 

found to harbor a PaSSS consisting of unbalanced processes 1 and 6 (Fig. 5A). The PaSSS of A375, on 351 
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the other hand, consisted of three unbalanced processes, 1, 3 and 6 (Fig. 6A). The full lists of proteins 352 

participating in these processes are presented in Table S7, and images of the complete unbalanced 353 

processes can be found in Figure S4. 354 

To predict cell line-specific drug combinations, central protein targets were selected from each active 355 

unbalanced process. In unbalanced process 6, pMEK1/2, GAPDH and PKM2 represent central 356 

upregulated proteins (Fig. 5B, Fig. 6B). Unbalanced process 3 was characterized by an upregulation of 357 

PDGFRβ (Fig. 6B), and unbalanced process 1 involved an upregulation of pS6 (Fig. 5B, Fig. 6B). We 358 

hypothesized that targeting these central proteins will reduce the signaling imbalance in A375 and G361 359 

cell lines. Therefore, we predicted that G361 cells will be effectively treated by a drug combination 360 

containing trametinib (a pMEK1/2 inhibitor, commonly used for melanoma in clinics; also inhibits pS6 361 

[38,39]) and 2-deoxy-D-glucose (2-DG; a glycolysis inhibitor, therefore affecting GAPDH and PKM2 362 

levels; Fig. 5B). Based on the PaSSS of G361, trametinib should effectively target both unbalanced 363 

processes, 1 and 6 (Fig. 5B). However, since unbalanced process 6 was assigned a relatively high 364 

amplitude in G361 cells (Table S6), we predicted that a combination treatment combining trametinib with 365 

2DG, which targets additional nodes in unbalanced process 6 (Fig. 5B), will more effectively target the 366 

PaSSS in G361 cells.  367 

For A375, the amplitude of unbalanced process 6 was ~2-fold lower than in G361 cells, and therefore we 368 

assumed that trametinib alone should suffice to efficiently reduce the signaling flux through this process. 369 

Thus, we predicted that a combination of trametinib and dasatinib (a multi-kinase inhibitor targeting also 370 

PDGFRβ) should effectively target the 3 unbalanced processes that constitute the PaSSS of these cells 371 

(Fig. 6B).  372 
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Figure 5: G361 melanoma cells altered signaling signature and treatment. (A) Barcode of active 
unbalanced processes for G361 based on PaSSS analysis. (B) Zoom in images of the active unbalanced 
processes, 1 and 6, in G361 cells, as well as the drugs targeting the central proteins in each unbalanced 
process. The upregulated proteins are colored red and the down regulated proteins are colored blue. (C, D) 
Survival rates of cells in response to different therapies. The cells were treated with the predicted 
combination (*) to target G361, the treatments used in the clinics for BRAF mutated melanoma malignancies, 
monotherapies of each treatment and the predicted combination used to target BRAF mutated melanoma cell 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 3, 2020. ; https://doi.org/10.1101/2020.11.03.366245doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.03.366245


20 

 

line A375. The combination predicted to target G361 was more efficient than any other treatment. (E) Results 
of the survival assay (shown in panels A and B) are shown as a heatmap. (F) Western blot results after 
treatment with different therapies. The predicted combination depletes the signaling in G361 cells as 
represented by decrease in phosphorylation levels of pS6, pERK and pAkt. Akt remains active when the cells 
are treated with dabrafenib or dabrafenib + trametinib. (G) G361 cells were treated as indicated for 72 hours 
and then the viability of the cells was measured in an MTT assay. The effect of the predicted combination 
(marked in the with an asterix sign) was superior to combinations and single drugs expected to partially 
inhibit the cell line-specific altered signaling signature. 

The predicted drug combinations are cell line-specific and highly efficacious 373 

Trametinib and dabrafenib, two clinically used drugs, indeed demonstrated relatively efficient killing of 374 

G361 cells, achieving up to ~55% and ~75% killing, respectively, when administered to the cells as 375 

monotherapies in a range of concentrations between 1 nM and 1 µM (Fig. 5C). Based on our analysis, we 376 

predicted that these drugs would each partially target the PaSSS in G361 cells (Fig. 5A,B). 377 

Monotherapies of erlotinib and dasatinib were used as negative controls, as both were not expected to 378 

target the altered signaling signature of G361 cells (Fig. 5C,D). Indeed, both drugs demonstrated a weak 379 

effect on G361 cells, reaching up to ~10% and ~20% killing, respectively (Fig. 5C,E). 2-DG, which was 380 

predicted to target one of the unbalanced processes active in G361 cells, killed up to ~70% of the cells at 381 

2 mM (Fig. 5C,E). 382 

When we tested combinations of drugs, we found that when G361 cells were treated with a combination 383 

of trametinib and dabrafenib, the clinically used combined treatment for BRAFV600E melanoma, the 384 

combination was superior to each drug administered alone, and reached ~90% killing of the cells when 385 

both drugs were administered at 1 µM (Fig. 5D,E). The results of our analysis, however, denoted that 386 

other major signaling nodes were altered in G361 cells, and that their targeting by drugs may be beneficial 387 

in these cells. When we tested the combination of trametinib and 2-DG, predicted by us to more 388 

effectively collapse the PaSSS that emerged in G361 cells, we indeed found that the combination 389 

abolished the cells almost completely when trametinib and 2-DG were added at 1 µM and 2mM, 390 

respectively (Fig. 5D,E). The combination of trametinib and 2-DG also effectively turned off the cellular 391 

signaling, as represented by the central proteins S6, Akt and ERK, while the other combinations we tested 392 
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failed to do so (Fig. 5F). For example, the clinically used combination, dabrafenib+trametinib, induced 393 

the activity of pS(473)Akt (Fig. 5F), possibly reflecting a response of the cells to incomplete inhibition of 394 

the altered signaling flux. 395 

In A375 cells, trametinib, dabrafenib and dasatinib killed up to ~80% of the cells, when administered as 396 

single drugs (Fig. 6C,E). Erlotinib was used as a negative control, as it was predicted not to target any 397 

major node in the PaSSS of A375 cells, and indeed killed only up to ~15% of the cells (Fig. 6C,E). 2-DG, 398 

which was predicted to target one of the three unbalanced processes active in A375 cells (Fig. 6A,B), 399 

killed up to ~30% of the cells when administered as monotherapy (Fig. 6C,E). 400 

The clinically used drug combination, trametinib and dabrafenib, was more effective than each drug 401 

alone, and killed up to 90% of the cells (Fig. 6D,E). However, as in the case of G361 cells, we predicted 402 

that the clinically used combination would not be optimal in A375 cells, because another major node, 403 

PDGFRβ, should be targeted as well in order to effectively collapse the PaSSS in A375 cells (Fig. 6A,B). 404 

We therefore predicted that a combination of trametinib and dasatinib would efficiently target the altered 405 

signaling flux generated by 3 unbalanced processes in A375 cells (Fig. 6A,B). When we tested this 406 

combination, we found that it was highly efficacious and killed up to ~95% of the cells (Fig. 6D,E). 407 

Moreover, trametinib and dasatinib, when combined, diminished S6 and ERK signaling, and lowered the 408 

levels of pPDGFRβ (Fig. 6F). As we found in the case of G361 cells, the clinically used combination, 409 

trametinib and dabrafenib, invoked an upregulation of pS(473)Akt in A375 cells as well (Fig. 6F).  410 

We tested the effect of combination predicted for G361 cells, trametinib and 2-DG, on A375 cells, and 411 

found that it was less effective in inhibiting the intra-cellular signaling (Fig. 6F) as well as cell survival  412 

than the drug combination predicted for the PaSSS of A375 (Fig. 6D,E). We attribute this finding to the 413 

fact the combination of trametinib and 2-DG targets only unbalanced processes 1 and 6, while leaving 414 

unbalanced process 3 untargeted, and therefore a partial effect is achieved by these drugs in A375 cells 415 

(Fig. 6A,B). 416 

 417 
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Figure 6: A375 melanoma cells altered signaling signature and SA-based treatment. Even though A375 
cells harbor BRAFV600E, as do G361 cells, they were found to be characterized by a different set of active 
unbalanced processes, or PaSSS. (A) Barcode of the unbalanced processes for A375 based on PaSSS 
analysis. (B) Zoom in images of the active unbalanced processes, 1, 3 and 6, in A375 cells, as well as the 
drugs targeting the central proteins in each unbalanced process. The upregulated proteins are colored red and 
the down regulated proteins are colored blue. (C, D) Survival rates of cells in response to different therapies. 
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The cells were treated with the predicted combination (*) to target A375, the treatments used in the clinics for 
BRAF mutated melanoma malignancies, monotherapies of each treatment and the predicted combination 
used to target BRAF mutated melanoma cell line G361. The combination predicted to target A375 was more 
efficient than any other treatment.  (E) Results of the survival assay (shown in panels A and B) are shown as 
a heatmap. (F) Western blot results after treatment with different therapies. The predicted combination 
depletes the signaling in A375 cells as represented by decrease in phosphorylation levels of pS6, pERK, pAkt 
and pPDGFRβ. Akt remains active when the cells are treated with monotherapies - trametinib or dabrafenib, 
and the combination therapies - dabrafenib + trametinib or trametinib + 2-deoxy glucose, the predicted 
combination of G361. (G) A375 cells were treated as indicated for 72 hours and then the viability of the cells 
was measured in an MTT assay. The effect of the predicted combinations (marked in the figure with asterix 
signs) was superior to combinations and single drugs expected to partially inhibit the cell line-specific altered 
signaling signature. 

When tested in an MTT assay (assessing metabolic activity of the cells), the predicted combinations 418 

demonstrated higher efficacy and selectivity and were superior to other drug combinations or to each 419 

inhibitor alone (Fig. 5G, 6G). 420 

As opposed to common therapies used in clinics, the rationally designed cell line-specific drug 421 

combinations prevented the development of drug resistance 422 

We hypothesized that since our predicted drug combinations target the main altered processes 423 

simultaneously, they may delay or prevent the development of drug resistance (Fig. 7A). To test this 424 

hypothesis, G361 and A375 cells were treated twice a week with single inhibitors or with different 425 

combinations of inhibitors, for 4-8 weeks. 426 

In G361 cells, 1 nM of trametinib demonstrated little to no effect on the survival of the cells (Fig. 7B). 1 427 

µM of dabrafenib killed up to ~92% of the cells at day 21, and then the cells began to regrow, even 428 

though the drug was still administered to the cells twice a week (Fig. 7B). 2 mM of 2-DG killed up to 429 

~78% of the cells at day 7, and then the cells began to regrow regardless of the presence of the drug (Fig. 430 

7B). Combined treatment with trametinib and dabrafenib, a combination expected to partially target the 431 

altered signaling signature (Fig. 5A,B), effectively killed up to ~96% of the cells at day 21, but then the 432 

cells began to regrow at day 28 in the presence of the drugs (Fig. 7B). However, when the cells were 433 

treated with the G361 PaSSS-based combination, trametinib and 2-DG (Fig. 5A,B), the cells continued to 434 

die until they reached a plateau at day 21, and no regrowth of the cells was evident (Fig. 7B). 435 
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Similar results were obtained in A375 cells: 1 nM trametinib killed 60% of the cells at day 7, and then the 436 

effect plateaued until the cells began to regrow at day 56 (Fig. 7C). 1 µM dabrafenib killed ~78% of the 437 

cells at day 3, and then the cells kept growing till they reached 40% survival on day 56 (Fig. 7C). 1 µM 438 

dasatinib killed ~40% of the cells at day 3, and then the cells regrew to 100% survival (Fig. 7C). 439 

Combined treatment with trametinib and dabrafenib achieved 88% killing at day 3, but then the cells grew 440 

until they plateaued at ~30% survival at day 56 (Fig. 7C). Trametinib and 2-DG killed 55% of the cells at 441 

day 3 with an increase in effect over time, reaching a plateau of 15% survival at day 42 (Fig. 7C). The 442 

A375 PaSSS-based combination, trametinib and dasatinib (Fig. 6A,B), demonstrated a significant killing 443 

effect that became stronger with time, reaching near complete killing of the cells at 56 days (Fig. 7C).  444 

These results clearly show that the PaSSS-based combinations predicted for each melanoma cell line 445 

prevent cellular regrowth in-vitro. Thus, targeting the actual altered signaling state, identified in the 446 

melanoma cells, and not necessarily the primary driver mutations, can be especially effective in disturbing 447 

the signaling flux and preventing cellular regrowth. 448 
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Figure 7: Development of resistance to different therapies.  (A) The development of resistance to different 
types of therapies is shown in the illustration. The cells were treated with different therapies twice a week and 
then checked for cell survival. (B) A375 cells were treated with the monotherapies, trametinib+dasatinib, 
dabrafenib+trametinib or trametinib+2-deoxyglucose, twice weekly for 56 days. A development of resistance 
was evident after 21 days, but not in cells treated with trametinib+dasatinib. (C) G361 cells were treated with 
monotherapies, dabrafenib+trametinib, or trametinib+2-deoxyglucose, twice weekly for 28 days. The cells 
exhibited signs of drug resistance after 28 days. However, resistance development was not evident in cells that 
were treated with trametinb+2-deoxyglucose. 

 449 

The predicted drug combinations were superior to clinically used therapies in vivo 450 
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We turned to examine the effect of the PaSSS-predicted drug combination in murine models. The cells 451 

(A375 or G361) were injected subcutaneously into NSG mice, and treatments were initiated 6 times a 452 

week for up to 4 weeks (Fig. 8). 453 

Trametinib alone, or in combination with dasatinib or dabrafenib, was predicted to partially target the 454 

PaSSS of G361 cells (Fig. 5A,B). And indeed, these treatments demonstrated a reduction in tumor 455 

growth, relative to vehicle treatment (Fig. 8A). However, the PaSSS-based combination, trametinib + 2-456 

DG, demonstrated the strongest effect, and achieved significant inhibition of G361 tumor growth (Fig. 457 

8A). 458 

A375 tumors that were treated with trametinib  alone or with a combination trametinib + 2-deoxyglucose  459 

(predicted to be efficient for G361 but not for A375 cells (Fig. 5, 6)) demonstrated slightly reduced 460 

growth relative to vehicle-treated tumors (Fig. 8B). When A375 tumors were treated with the clinically 461 

used combination, trametinib + dabrafenib, a stronger effect was observed (Fig. 8B). PaSSS analysis 462 

predicted that trametinib + dabrafenib would achieve partial inhibition of the altered signaling in A375 463 

cells (Fig. 6A,B), and that adding dasatinib to trametinib should achieve inhibition of intracellular 464 

signaling that have emerged in A375 cells (Fig. 6A,B). Indeed, the combination trametinib  + dasatinib 465 

demonstrated an effect superior to all other treatments, and significantly inhibited the growth of A375 466 

tumors (Fig. 8B). 467 

These results point to a significantly higher efficiency of the PaSSS-predicted combinations relative to 468 

drug combinations used in clinics. Moreover, we demonstrated the selectivity of the individualized 469 

treatments. The predicted and very effective combination for one BRAFV600E melanoma malignancy was 470 

significantly less effective for the other, and vice versa (Fig. 8). Our results underscore the need for a 471 

personalized treatment for each melanoma patient. 472 
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Figure 8: SA-based drug combinations demonstrated significantly reduced tumor growth in vivo.  G361 
(A) or A375 (B) were injected subcutaneously into mice, and once tumors reached 50 mm3, treatments were 
initiated. In both cases, the PaSSS-based drug combinations, predicted to target the cell line-specific altered 
signaling signature, significantly inhibited tumor growth and demonstrated an effect superior to monotherapy 
of trametinib or to combinations predicted to partially target the PaSSS (see Fig. 5,6 for details regarding the 
altered signaling signatures and PaSSS-based drug combination predictions). 

Discussion  473 

With the accelerated gain of knowledge in the field of melanoma therapy and cancer research, it is 474 

becoming clear that tumors evolving from the same anatomical origins cannot necessarily be treated the 475 

same way [40]. Inter tumor heterogeneity results in various response rates of patients to therapy [41–43]. 476 

Herein we extend this notion, and show that even tumors that were initially driven by the same 477 

oncogenes, specifically BRAFV600E-driven melanoma tumors, often evolve in different molecular manners 478 

[44], giving rise to distinct altered signaling signatures, or PaSSS (patient-specific altered signaling 479 

signature), at the time of biopsy.  480 

We show that 17 altered molecular processes are repetitive among the 725 SKCM and THCA tumors. 481 

Each tumor is characterized by a specific PaSSS, i.e. a subset of ~1-3 unbalanced processes. Accordingly, 482 

each patient is assigned a unique barcode, denoting the normalized PaSSS. We show that the collection of 483 

725 tumors is described by 138 distinct barcodes, suggesting that the cohort of patients consists of 138 484 

types of cancer, rather than only 4 types (SKCM or THCA; BRAFWT or BRAFV600E). These 138 types of 485 
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tumors, each representing a barcode, or a sub-combination of 17 unbalanced processes, are mapped into a 486 

multi-dimensional space, consisting of 17 dimensions. Once the tumor-specific information is 487 

transformed into a multi-dimensional space, treating these thousands of tumors becomes at an arm's 488 

reach. The specific barcode assigned to each patient allows the rational design of patient-tailored 489 

combinations of drugs, many of which already exist in clinics.   490 

We found that 353 BRAFV600E and BRAFWT melanoma tumors are described by 87 distinct barcodes of 491 

unbalanced processes, and that 372 BRAFV600E and BRAFWT THCA tumors are described by 51 barcodes. 492 

Interestingly, the barcodes appeared to be almost mutually exclusive between SKCM and THCA tumors 493 

(Table S4). While this finding suggests that the molecular processes underlying SKCM and THCA tumor 494 

evolution may have organ-specific differences, the large number of cancer type-specific barcodes and the 495 

large number of barcodes describing single patients underscore the need for personalized diagnosis and 496 

treatment. 497 

We show that tumors harboring BRAFV600E can harbor distinct PaSSSs, and in contrast, that tumors can 498 

harbor the same PaSSS regardless of whether they carry BRAFV600E or BRAFWT. We therefore deduce 499 

that profiling melanoma patients according to their BRAF mutational status is insufficient to assign 500 

effective therapy to the patient. Since the unbalanced processes each harbor a specific group of co-501 

expressed altered proteins, they should all be targeted simultaneously to reduce the altered signaling flux 502 

in the tumor. 503 

We demonstrate this concept experimentally by analyzing a cell line dataset and predicting efficient 504 

targeted drug combinations for two selected BRAFV600E melanoma cell lines, G361 and A375. We show 505 

that although both cell lines contain the mutated BRAFV600E, they harbor distinct barcodes, and demand 506 

different combinations of drugs (Fig. 5, 6). We demonstrate that in both cell lines, our PaSSS-based 507 

combinations indeed achieved efficient killing of the cells and reached a killing rate that was higher than 508 

that of the drug combination often prescribed clinically to BRAFV600E patients, dabrafenib+trametinib .  509 
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These results were recapitulated in vivo as well (Fig. 8). Moreover, we demonstrated the selectivity of the 510 

PaSSS-based drug combinations. The highly efficient PaSSS-based drug combination for one melanoma 511 

malignancy can be significantly less efficient for another melanoma and vice versa.  512 

The results reported here highlight the urgent need for the design of personalized treatments for 513 

melanoma patients based on individualized alterations in signaling networks rather than on initial 514 

mutational events. Furthermore, the study establishes PaSSS analysis as an effective approach for the 515 

design of personalized cocktails comprising FDA-approved drugs. Personalized targeted cocktails, which 516 

may be further combined with immunotherapy strategies, are expected to provide long term efficacy for 517 

melanoma patients. 518 
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