New Results
Identifying temporal and spatial patterns of variation from multi-modal data using MEFISTO
View ORCID ProfileBritta Velten, View ORCID ProfileJana M. Braunger, View ORCID ProfileDamien Arnol, View ORCID ProfileRicard Argelaguet, View ORCID ProfileOliver Stegle
doi: https://doi.org/10.1101/2020.11.03.366674
Britta Velten
1Division of Computational Genomics and Systems Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
Jana M. Braunger
1Division of Computational Genomics and Systems Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
Damien Arnol
2European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Hinxton, Cambridgeshire, CB10 1SD, UK
Ricard Argelaguet
2European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Hinxton, Cambridgeshire, CB10 1SD, UK
Oliver Stegle
1Division of Computational Genomics and Systems Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
3European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany

Article usage
Posted November 05, 2020.
Identifying temporal and spatial patterns of variation from multi-modal data using MEFISTO
Britta Velten, Jana M. Braunger, Damien Arnol, Ricard Argelaguet, Oliver Stegle
bioRxiv 2020.11.03.366674; doi: https://doi.org/10.1101/2020.11.03.366674
Subject Area
Subject Areas
- Biochemistry (7772)
- Bioengineering (5667)
- Bioinformatics (21241)
- Biophysics (10561)
- Cancer Biology (8160)
- Cell Biology (11909)
- Clinical Trials (138)
- Developmental Biology (6737)
- Ecology (10388)
- Epidemiology (2065)
- Evolutionary Biology (13840)
- Genetics (9694)
- Genomics (13056)
- Immunology (8123)
- Microbiology (19953)
- Molecular Biology (7830)
- Neuroscience (42967)
- Paleontology (318)
- Pathology (1276)
- Pharmacology and Toxicology (2256)
- Physiology (3350)
- Plant Biology (7208)
- Synthetic Biology (1999)
- Systems Biology (5528)
- Zoology (1126)