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Abstract 10 

Background. Non-random species co-occurrence is of fundamental interest to 11 

ecologists. One approach to analysing non-random patterns is null modelling. This 12 

involves calculation of a metric for the observed dataset, and comparison to a 13 

distribution obtained by repeatedly randomising the data. Choice of randomisation 14 

algorithm, specifically whether null model species richness is fixed at that of the 15 

observed dataset, is likely to affect model results. This is particularly important in cases 16 

when there is high variation in species richness between sampling units in the observed 17 

data.  18 

Methods. Here I demonstrate the effects of accounting for variation in species richness. 19 

I use the C-score, a metric measuring species segregation as “checkerboard units”, 20 

applied to 289 datasets. First, I run null models in which sites are equally likely to be 21 

occupied (fixed-equiprobable algorithm). I do this both for the original datasets, and for 22 

the same datasets where occurrences are randomised with the species richness 23 

distribution fixed (pre-randomised datasets). Second, I run null models that fix site 24 

species richness to that observed (fixed-fixed algorithm). 25 

Results. For real datasets, using the fixed-equiprobable algorithm (sites are equally 26 

likely to be colonised), C-score standardised effect size (SES) was positively related to 27 

variability in species richness between sites within a dataset. This effect was also found 28 

for pre-randomised datasets, indicating that variability in species richness can be 29 

exclusively responsible for detection of non-random species co-occurrence. When using 30 

the fixed-fixed algorithm (richness is constrained to that of real sites), there was no 31 
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relationship between SES and variability in species richness. There was also a reverse 32 

in the effect direction, with 94% of significant tests indicating a lower C-score than 33 

expected for the fixed-equiprobable algorithm, but 98% of significant tests indicating a 34 

higher C-score than expected for the fixed-fixed algorithm. 35 

Discussion. I speculate that when variation in species richness is high, fewer 36 

checkerboard units are possible, regardless of segregation between species. Therefore, 37 

use of fixed-equiprobable algorithms in situations where real species richness is highly 38 

variable between sites within a dataset will yield significant results, even if species co-39 

occur randomly within the constraints of the species richness distribution. Consequently, 40 

use of such tests makes the a priori assumption that high within-dataset variation in 41 

species richness indicates non-random species co-occurrence. I recommend using 42 

algorithms that explicitly take into account species richness distributions when one 43 

wants to eliminate the effect of richness variation in terms of producing significant but 44 

spurious positive co-occurrence results. Alternatively, non-null mechanistic models can 45 

be created, in which hypothesised species assembly processes must be explicitly stated 46 

and tested. 47 

Keywords: competition, facilitation, species assembly, niche, Narcissus effect, C-score, 48 

species segregation, species aggregation. 49 

Introduction 50 

Species commonly co-occur non-randomly with respect to each other. Determining the 51 

particular deterministic patterns to which species conform lies at the heart of ecology. 52 

Non-random co-occurrence patterns can be caused by a range of interactions between 53 
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species, including competition, predation, parasitism, facilitation, and mutualism (Bell et 54 

al. 2010; Holdaway & Sparrow 2006). Drivers other than direct interactions can also 55 

play a role, including similar or differing environmental preferences leading to positive or 56 

negative co-occurrence respectively, and dispersal limitation over different scales (Holt 57 

et al. 2013; Hubbell 2001). Often data for testing such patterns take the form of a 58 

presence/absence species by sites matrix. One approach for analysing such matrices is 59 

to use null models of species co-occurrence (Gotelli 2000). This suite of methods 60 

involves the calculation of a metric measuring the way in which species co-occur. 61 

However, solely from such a metric it is not possible to tell whether the structure of the 62 

matrix differs from that which would be expected if species co-occurred independently. 63 

For example, even in randomly structured matrices it is likely that some pairs of species 64 

will not co-occur (Connor & Simberloff 1979). To overcome this problem, observed 65 

species occurrences are randomised to break any associations between the species. 66 

This is done repeatedly, and the metric calculated for each of these randomised 67 

matrices, allowing estimation of the distribution of the metric expected under the null 68 

hypothesis that species co-occur independently of each other (hence the term “null 69 

modelling”). This then allows the calculation of a p-value, that is, the probability that the 70 

observed metric, or one more extreme, would be observed under the null hypothesis of 71 

random species co-occurrence. 72 

A critical step in this null modelling process is defining what is “random” in a given 73 

situation, and hence choosing exactly how to create randomised matrices from the 74 

observed data (Gotelli & Ulrich 2012). However, this aspect of the field remains 75 

contentious (e.g. Fayle & Manica 2011; Gotelli & Ulrich 2011). Specifically, the modeller 76 
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needs to select which aspects of the real dataset to maintain in the null model. 77 

Algorithms range from those that do not constrain either species richness or species 78 

occurrences across sites, keeping constant only the total number of species 79 

occurrences across the entire matrix, to more restrictive methods that constrain both 80 

richness and species occurrence distributions to be exactly the same as those from the 81 

observed dataset (Connor & Simberloff 1979; Gotelli 2000; Miklós & Podani 2004). Most 82 

analyses constrain the null occurrences of species to be the same as those observed in 83 

the real population (Fayle & Manica 2010), thus assuming that the occurrences of 84 

species in the observed sample correlate with the occurrences of species in the 85 

unobserved species pool. However, deciding the degree to which null species richness 86 

should reflect that of the real community is more problematic (Wilson 1995). Either null 87 

species richness across sites can be constrained to exactly match those observed (or 88 

some probabilistic version of this), or all sites can be defined to be equally likely to be 89 

occupied by a particular species, although with the richness distribution being able to 90 

vary to some degree (Gotelli 2000). 91 

Constraining species richness values has the disadvantage that differences in species 92 

richness might have been caused by non-random co-occurrence between species. For 93 

example, presence of a keystone mutualist might lead to highly variable species 94 

richness, dependent on the presence of that species. Since this is the very mechanism 95 

that is under study it should therefore be excluded from the null model, potentially 96 

making any test that includes such constraints overly conservative (i.e. risking type 2 97 

errors). This has been called the “Narcissus effect” (Colwell & Winkler 1984), since the 98 
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signal of the processes under study is already “reflected” in the null model, and hence is 99 

not detected. 100 

However, allowing unconstrained occupation of sites means that factors causing non-101 

random differences in species richness between sites unrelated to species co-102 

occurrence patterns are also excluded from the null model (the “Jack Horner effect”, 103 

Wilson 1995). Thus, it is not clear whether significant results of analyses using this less 104 

conservative method arise specifically from non-random species co-occurrence 105 

patterns, or merely from the real species richness distribution being more variable 106 

across sites within a dataset than is accounted for in the null model (in which case 107 

significant results could be type 1 errors). An example of this is the need to account for 108 

differences in island size when assessing co-occurrence between island dwelling 109 

species, since larger islands will have more species, because they have more living 110 

space and also present a larger target for incoming colonists (Connor & Simberloff 111 

1979). Even if all islands represented identical habitats in terms of abilities of different 112 

species to survive there, it would still be necessary to account for differences in island 113 

size in a null model of species co-occurrence. 114 

This problem was discussed during earlier development of null modelling of species co-115 

occurrence (Colwell & Winkler 1984; Wilson 1995). However, sometimes a range of 116 

different methods for generating null matrices is used, and any non-random patterns 117 

that emerge are discussed without reference to null model constraints (e.g. De los Ríos 118 

et al. 2008). It is even possible to get opposite patterns (segregation vs aggregation) by 119 

using different randomisation algorithms on the same dataset (Hétérier et al. 2008; 120 

Rooney 2008), which is clearly a concern. The differences in results are expected to be 121 
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more severe the greater the variation in species richness between sites within a 122 

dataset, since both randomisation methods should give similar results for datasets with 123 

low variation in species richness, because the null models specified will be similar. Note 124 

that co-occurrence metrics (even when standardised using null models) are correlated 125 

with the richness of the entire assemblage across all sites (Ulrich et al. 2017; Ulrich et 126 

al. 2018). Hence it is recommended that analyses including datasets with varying total 127 

species richness (and number of sites), account for this, at a minimum by using these 128 

measures of matrix size as a covariate during modelling (Ulrich et al. 2018). However, 129 

the effects of variation in species richness between sites within an assemblage remain 130 

unexplored. The purpose of this article is to demonstrate how variation in site species 131 

richness (as opposed to total assemblage richness across all sites) impacts the results 132 

of null models of species co-occurrence, with parallel analyses using randomisation 133 

algorithms that either constrain or do not constrain site species richness. Note that here 134 

I use “unconstrained species richness” to mean that null model species richness is not 135 

dictated to be precisely that of the observed dataset; I do not mean that species 136 

richness is completely free to vary. 137 

I first quantify the degree to which within-dataset variability in species richness 138 

correlates with the detection of significant patterns of species segregation in 289 real 139 

datasets when that richness variability is not taken into account in the null model. To 140 

assess the degree to which this pattern might relate solely to variability in species 141 

richness itself, I then generate a series of datasets that match the real ones in terms of 142 

species richness and species occurrence distributions, but for which species 143 

occurrences are already randomised, and repeat this analysis. If detected patterns of 144 
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species segregation relate only to variability in species richness (and not to non-random 145 

patterns of species co-occurrence), then we would expect the results from these two 146 

analyses to be similar. Finally, I repeat both analyses using a randomisation algorithm 147 

that constrains null site species richness to match the species richness distribution of 148 

the real datasets. These models should allow detection of species segregation or 149 

aggregation within the observed pattern of species richness. 150 

Materials and methods 151 

Does variability in species richness between sites within a dataset correlate with 152 

detection of deterministic species co-occurrence patterns? 153 

First, I tested the degree to which variability in species richness affects the probability of 154 

finding significant patterns of co-occurrence between species in real datasets when this 155 

observed variability is not included in the model (i.e. using a randomisation algorithm 156 

that assumes uniform probability of species occurrence across sites). Note that for 157 

these analyses there will still be variability in species richness between sites, since 158 

species occupy sites randomly, but this variability will not necessarily reflect the 159 

variability in the observed data. This was done using 289 presence-absence datasets 160 

available in the nestedness temperature program (Atmar & Patterson 1993). Two 161 

datasets were not analysed from the original collection of 291, since for these it was not 162 

possible to randomise species co-occurrences. Note that many of these datasets relate 163 

to distributions of species across islands, although some are from continuous areas of 164 

habitat. The C-score was used to assess the degree of structure in these matrices. This 165 

metric is a standardised measure of the number of checkerboard units present in a 166 
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matrix, i.e. the number of pairs of sites and pairs of species for which each species 167 

occurs only once and at a different site (Stone & Roberts 1990). If the C-score is higher 168 

than expected by chance, then pairs of species tend to be segregated across sites. The 169 

C-score was calculated for each matrix (nestedchecker function in the R package 170 

vegan; Oksanen et al. 2018). Each matrix was then randomised 5000 times while 171 

maintaining occurrences per species, but assigning species occurrences to different 172 

sites with equal probability. This was done with algorithm c0 in the R oecosimu function 173 

(Oksanen et al. 2018) and results in matrices with identical species occurrence 174 

distributions and identical matrix fill to the observed dataset, but with each individual 175 

species occurrence being assigned to a site at random (unless that site is already 176 

occupied). P-values and standardised effect sizes were calculated on the basis of these 177 

null distributions. For each matrix I also calculated the mean absolute deviation (MAD) 178 

in species richness between sites as an easily interpretable measure of variability in 179 

species richness. The species richness MAD was then used to predict C-score 180 

standardised effect sizes (SES values) using a linear model. In the model I also 181 

included the matrix fill, the number of sites, and the number of species, since these are 182 

known to affect probability of pattern detection (Fayle & Manica 2010; Pitta et al. 2012; 183 

Ulrich & Gotelli 2007), and MAD is likely to be greater in larger matrices, all other things 184 

being equal. To test for any nonlinearity in the relationships between predictors, which 185 

might make them unsuitable for use in this kind of model, I plotted MAD against number 186 

of sites and number of species, and failed to find any nonlinear patterns (Supplementary 187 

Figure 1). To achieve normally distributed residuals in this analysis and in all following 188 
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analyses, the response (C-score SES) and all predictors with the exception of matrix fill 189 

were log transformed. 190 

I carried out a second set of analyses to assess whether detection of non-random 191 

patterns of species co-occurrence could arise solely from high variability in species 192 

richness with species otherwise co-occurring at random. To do this I generated a series 193 

of 289 matrices for which the row and column sums (and therefore also matrix fill) were 194 

fixed to those from the real 289 matrices, but in which species occurrences were 195 

randomised. This meant that for each matrix the distribution of species richness 196 

between sites, occurrences between species, matrix fill, and matrix size were all 197 

identical to the corresponding real matrix. This was done by running the quasiswap 198 

algorithm in the R package vegan (Oksanen et al. 2018) on the corresponding real 199 

dataset, and then conducting null model analyses in the same way as described in the 200 

preceding paragraph. I also ran all of the analyses presented here using the curveball 201 

randomisation algorithm in vegan (Strona et al. 2014), to check that these two 202 

commonly used fixed-fixed algorithm give similar results. The results of these analyses 203 

are almost identical to those using the quasiswap algorithm and hence only the latter 204 

are presented in the main text (see Supplementary Figures 2 and 3 for plots using 205 

curveball), I then used the same linear modelling framework as described above for the 206 

real datasets to assess the effects of species richness MAD, matrix fill, the number of 207 

sites, and the number of species on C-score standardised effect sizes, in the absence 208 

of any interactions between species. Null model tests of these pre-randomised matrices 209 

should give significant results (i.e. result in type 1 errors, since species co-occurrence is 210 

known to be random) at a rate equal to the critical p-value. In order to test these type 1 211 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 5, 2020. ; https://doi.org/10.1101/2020.11.04.367839doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.04.367839
http://creativecommons.org/licenses/by-nc-nd/4.0/


11 
 

error rates, the total number of matrices (out of 289) giving significantly non-random 212 

results was tested against a binomial distribution with P(significant)=0.1 (note that 213 

oecosimu uses p=0.1 as a critical value for two-tailed tests). 214 

What is the effect of including variability in species richness between sites within a 215 

dataset in null models on detection of co-occurrence patterns? 216 

Including observed variability in species richness in null models should decrease the 217 

probability of detecting non-random species co-occurrence. This is because, first, for 218 

communities in which differences between species have generated non-uniform 219 

patterns of species richness, the power to detect this effect will be decreased (the 220 

Narcissus effect, see Introduction). Second, in communities in which species richness 221 

deviates from the distribution expected with equal probabilities of species occupation 222 

across sites as a result of processes unrelated to species co-occurrence, for which an 223 

equiprobable model therefore incorrectly detected non-random co-occurrence patterns, 224 

these errors will be corrected. I tested the degree to which accounting for differences in 225 

species richness between sites in null models altered the outcomes of analyses of real 226 

and simulated communities. The null models of species co-occurrence and linear 227 

models linking MAD and standardised effect sizes were rerun on the real and pre-228 

randomised datasets, but null matrices for were generated using a fixed-fixed 229 

randomisation algorithm that does not allow species richness in the null matrices to 230 

deviate from that in the observed matrix (algorithm quasiswap in R oecosimu function, 231 

see Supplementary Figure 3 for parallel analysis using the curveball algorithm). Note 232 

that the pre-randomised datasets were the same as those used in the first section, 233 

being generated using the quasiswap algorithm that constrains both row and column 234 
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sums. Hence the second of these analyses involving matrices pre-randomised using the 235 

quasiswap algorithm, and then analysed using the quasiswap algorithm as a null model 236 

are expected to give significant results no more than would be expected at random, and 237 

are presented here for completeness only. Type 1 error rates were tested using 238 

binomial tests, as described above. 239 

Results 240 

Does variability in species richness between sites within a dataset correlate with 241 

detection of deterministic species co-occurrence patterns? 242 

Of the 289 real matrices tested, 218 (75%) showed significant deviations in the C-score 243 

from null models for which observed richness variability between sites was not included 244 

(Table 1). The C-score standardised effect size (SES) was more negative with 245 

increasing variation in species richness between sites (Linear model: mean absolute 246 

deviation: t4,284=-3.54, P<0.001, Figure 1A,B). That is, detecting non-random species 247 

co-occurrence was more likely if there was high variation in species richness between 248 

sites within a dataset (Figure 1A). This was still the case after taking into account 249 

negative relationships between SES and number of species, number of sites, and 250 

matrix fill (species: t4,284=-28.75, P<0.001; sites: t4,284=-3.03, P=0.003, fill: t4,284=-9.50, 251 

P<0.001). The majority of observed matrices that deviated significantly from null models 252 

had fewer checkerboard units than would be expected at random (205 of 218 non-253 

random results; 94%), meaning that there were low levels of segregation between 254 

species. 255 
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For randomly generated matrices with identical species richness and species 256 

occurrence distributions to the real matrices, 223 of the 289 sites (77%) showed non-257 

random species co-occurrence (one tailed binomial test against P(significant)=0.1: 258 

P<0.001). As was the case with the real matrices, the C-score standardised effect size 259 

was more negative with increasing variation in species richness between sites (Linear 260 

model: mean absolute deviation: t4,284=-3.94, P<0.001, Figure 1C,D). This was still the 261 

case after taking into account negative relationships between SES and number of 262 

species, number of sites, and matrix fill (species: t4,284=-31.69, P<0.001; sites: t4,284=-263 

3.43, P=0.001, fill: t4,284=-9.75, P<0.001). The high proportion of significant results 264 

indicates that analyses of these datasets, in which species co-occurred at random, 265 

suffered from extremely high levels of type 1 errors. If non-random co-occurrence 266 

between species had generated variation in species richness, then this analysis of 267 

randomised datasets and the first set of analyses should have given different results. 268 

This is because the signature of non-random co-occurrence that generated differences 269 

in species richness should still be present in the first set of analyses, but would have 270 

been removed by pre-randomisation for the second set of analyses. However, this was 271 

not the case, and results of the two sets of analyses were similar (205 real matrices vs. 272 

210 pre-randomised matrices with C-score lower than expected at random, 13 real 273 

matrices vs. 13 pre-randomised matrices with C-score higher than random). 274 

What is the effect of including variability in species richness between sites within a 275 

dataset in null models on detection of co-occurrence patterns? 276 

When using a randomisation algorithm that preserves the number of species per site in 277 

addition to the number of occurrences per species (fixed-fixed), for real matrices, 111 of 278 
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the 289 sites (38%) showed non-random species co-occurrence. There was no longer a 279 

relationship between C-score SES and variation in species richness (Linear model: 280 

t4,284=0.17, P=0.866, Figure 2A,B). There were still positive relationships between C-281 

score SES and number of species, number of sites, and matrix fill (species: t4,284=-7.70, 282 

P<0.001; sites: t4,284=2.86, P=0.005, fill: t4,284=2.64, P=0.009). The majority of datasets 283 

for which there was significantly non-random co-occurrence had a higher C-score than 284 

would be expected (111 of 113 non-random results, 98%), in contrast with the results 285 

for the fixed-equiprobable algorithm (not accounting for observed variation in species 286 

richness), which gave most matrices as having significantly lower C-score than would 287 

be expected (205 of 218 non-random results, 94%; Figure 1A, Figure 2A, Table 1). 288 

As expected, for randomly generated matrices with identical species richness and 289 

species occurrence distributions to the real matrices, fixing the number of species per 290 

site in null models resulted in the loss of the relationship between C-score standardised 291 

effect size and variation in species richness between sites, although the relationship 292 

was only marginally non-significant (Linear model: mean absolute deviation: t4,284=-1.87, 293 

P=0.062, Figure 2C,D; compare to Figure 1C,D). Furthermore, there were also no 294 

relationships between SES and number of species, number of sites, and matrix fill 295 

(species: t4,284=-1.02, P=0.309; sites: t4,284=-0.09, P=0.173, fill: t4,284=-0.06, P=0.956). 296 

From the 289 sites, 12 (4%) showed non-random species co-occurrence (one tailed 297 

binomial test against P(significant)=0.1: P>0.999), indicating that type 1 error rates were 298 

within acceptable limits (10%) for these analyses. These results were expected because 299 

the same algorithm was used to generate the “observed” datasets and to create 300 

corresponding null models. 301 
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Discussion 302 

My results show that for this set of 289 real matrices, if null models are run without 303 

including observed variation in species richness, the majority of tests are significant, 304 

with most matrices having a smaller C-score (fewer checkerboard units) than would be 305 

expected at random. Furthermore, the greater the variation in species richness across 306 

sites, the larger the effect size. Such a pattern might be caused in two different ways. 307 

First, matrices with high variation in species richness might be those for which particular 308 

pairs of species co-occur non-randomly. In this case, since C-scores were lower than 309 

expected, this could be interpreted as evidence for ecological mechanisms that might 310 

lead to aggregation, such as mutualism, facilitation, or shared environmental 311 

preferences. It is easy to see how such mechanisms might give rise to sites with 312 

variable species richness. For example, if one “aggregator” species was present, which 313 

made the co-occurrence of many other species more likely, then this could generate 314 

sites with higher species richness. Conversely, if a strongly competitive species were 315 

present, which made co-occurrence with other species less likely, then this could 316 

generate sites with lower species richness. However, there is a second possible 317 

explanation for the tendency of matrices with high variance in richness to give 318 

significant results. 319 

This alternative explanation is that variation in species richness is not related to non-320 

random co-occurrence between species, and hence this variation has been incorrectly 321 

excluded from the null model, giving rise to false positive results (Type 1 errors). I 322 

explored this possibility by rerunning the same null model analyses, but with matrices 323 

pre-randomised, while maintaining species richness per site, and occurrences per 324 
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species. These tests gave similar results to those conducted on the real datasets. Of 325 

218 real datasets that tested significant using the fixed-equiprobable randomisation 326 

algorithm, 188 of these (86%) remained significant even when all structure other than 327 

species richness differences had been removed through a preliminary fixed-fixed 328 

randomisation (Figures 1a vs Figure 1c). It is therefore unclear whether the significant 329 

results for real datasets are driven entirely by variation in species richness between 330 

sites (unrelated to co-occurrence patterns between particular pairs of species), or if 331 

species really do co-occur non-randomly, and in the process of doing so, create 332 

variation in species richness. If the latter were the case, then one would expect that for 333 

matrices showing significantly low C-scores in the unconstrained analysis (e.g. where 334 

some hypothetical multi species mutualist had caused aggregations of species at high 335 

richness sites), then these significantly low C-scores should still be detectable even 336 

when richness distributions are fixed. I did not find this to be the case, since of the 205 337 

matrices found to have a lower C-score than expected at random in the unconstrained 338 

analysis, only 2 (1%) also gave the same result in the fixed-fixed analysis. Furthermore, 339 

the results of the second set of tests are cause for concern, since they show that it is 340 

possible to incorrectly detect non-random co-occurrence patterns in random datasets if 341 

there is variation in richness between sites that is not accounted for in the null model. 342 

Hence for any particular null modelling exercise, if species richness is not included in 343 

the model, any significant results might be due either to non-random co-occurrence 344 

between species (the usual interpretation) or to variation in species richness that has 345 

not been included in the model. The fact that my results were similar between real and 346 
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pre-randomised datasets indicates that the latter explanation is more likely to be correct 347 

in this case. 348 

Why does variation in species richness (in the absence of non-random species co-349 

occurrence) give rise to significantly different C-scores in the observed datasets from 350 

those predicted by the null model? I suggest that this relates to the way that variation in 351 

species richness between sites constrains the number of possible checkerboard units 352 

(Figure 3). For a given matrix, if variation in species richness is high, there are few 353 

possibilities for the formation of checkerboard units. However, species richness 354 

resulting from equal probability of site occupation (in this case represented as an 355 

extreme situation in which species richness is uniform, although note that if site 356 

occupancy is equiprobable, this would still lead to a case with variation in richness 357 

between sites) results in larger numbers of checkerboard units (on average). This holds 358 

for both structured and randomised matrices. Hence if a real matrix with high variation in 359 

species richness is randomised to create a null model under the assumption that 360 

species richness has lower variation, then the null model will have more checkerboard 361 

units than the observed dataset, independently of any non-random co-occurrence 362 

between species. In support of this speculation, an increase in C-scores for the real 363 

matrices used in this study was also observed when randomised using the c0 algorithm, 364 

but not when using fixed-fixed algorithms (Figure 4). Consequently, the real dataset will 365 

be interpreted as having a lower C-score than would be expected at random. Such 366 

results have been observed previously (Table 2 in Ulrich & Gotelli 2007), although have 367 

not been interpreted specifically in terms of the effects of variation in species richness 368 

between sites within a dataset. This potentially explains the large proportion of matrices 369 
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for which the C-score was significantly lower (i.e. fewer checkerboard units) than would 370 

be expected under random community assembly in my analyses (Figure 1 A,C). 371 

Therefore, finding a significant result for a null model that does not explicitly account for 372 

variation in species richness could mean either that species co-occur non-randomly with 373 

respect to each other, or simply that species richness is more variable between sites 374 

than has been accounted for in the model (note that these explanations are not mutually 375 

exclusive). 376 

In order to avoid this issue, one approach is to constrain the null model species 377 

richnesses to those from the observed dataset. This allows detection of non-random co-378 

occurrence within the pre-existing species richness distribution. Using this approach, I 379 

found that standardised effect size no longer correlated with variance in species 380 

richness, the proportion of significant results was lower, and the majority of those that 381 

were significant indicated that the observed dataset had a higher C-score than would be 382 

expected at random. Worryingly, of the 289 real datasets, 96 (33%) showed significant 383 

but opposing, patterns of species co-occurrence when the two different randomisation 384 

algorithms were used. For all of these, the C-score was lower than expected when 385 

using the fixed-equiprobable algorithm, and higher than expected when using the fixed-386 

fixed algorithm. This indicates that some patterns of segregation between species were 387 

previously masked by not accounting for variation in species richness, which instead 388 

resulted in reporting of patterns of species aggregation. Effectively, assuming that 389 

species occurrence probability does not differ between sites in a null model results in 390 

real high richness sites being interpreted as species aggregations, while constraining 391 

null model species richness to that observed allows for the possibility that within a 392 
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varying richness distribution, there might be some pairs of species that are segregated 393 

(or aggregated). This mechanism potentially explains previous results in which the 394 

direction of the reported species co-occurrence pattern depended on the randomisation 395 

algorithm used (Hétérier et al. 2008; Rooney 2008). My result also emphasizes the 396 

importance of specifying the null hypothesis under consideration (and hence choice of 397 

algorithm use), since the two most commonly used choices (fixed-equiprobable and 398 

fixed-fixed) give strong effects in the opposite direction for one in three datasets.  399 

Taken together, these results are a cause for concern, because they suggest that the 400 

outcome of null modelling of species co-occurrence can depend greatly on the 401 

randomisation algorithm used. The same data could hence be interpreted as indicating 402 

entirely different patterns, for example species segregation as a result of competition, 403 

rather than species aggregation as a result of facilitation. Matrices that show high 404 

variation in species richness between sites are always likely to give significant results 405 

when tested against a null model that assumes low variance in richness, regardless of 406 

the way that pairs of species co-occur. This kind of bias may also explain the high type 407 

1 error rates of algorithms that do not constrain species occurrences (73-76%; Gotelli 408 

2000), since observed matrices may have high variation in species occurrences (i.e. 409 

they have skewed relative occurrence distributions). Although I only tested these effects 410 

with the C-score metric, it is likely that these differences in richness variation between 411 

observed and simulated matrices will affect the calculation of other metrics of co-412 

occurrence. Researchers need to think carefully about how the value of their co-413 

occurrence metric of choice is likely to change when matrices are randomised. 414 

However, the possibility that variation in species richness might be generated by 415 
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species interactions should also not be discounted, and understanding the links 416 

between pairwise species interactions and larger scale community patterns is likely to a 417 

fruitful avenue of future research. Indeed, an alternative approach that avoids the 418 

problems described here is to construct a series of hypothesised mechanistic models 419 

(as well as a null model) and use the results of these models as support for presence or 420 

absence of particular species assembly rules (Fayle et al. 2015). 421 

In line with previous recommendations (Gotelli 2000; Ulrich & Gotelli 2007) researchers 422 

should have a strong rationale for using any randomisation algorithm other than one 423 

that fixes both the species richness distribution, and the number of occurrences per 424 

species. The analyses here demonstrate that use of multiple randomisation algorithms 425 

on the same datasets can be useful, if outputs are interpreted carefully. More broadly, 426 

these results illustrate how the comparison of a single alternative hypothesis to a null 427 

model is not a strong analytical strategy, since multiple mechanisms might cause 428 

deviations from the null model, including those not considered as part of the alternative 429 

hypothesis. A more powerful approach is the postulation of multiple competing 430 

alternative hypotheses, and the construction of mechanistic models of species co-431 

occurrence based on these hypotheses to allow direct comparison of their explanatory 432 

power (Gotelli & Ulrich 2012). 433 
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Figures 507 

 508 

Figure 1. Relationship between variability in species richness and deviation from 509 

random species assembly when observed variation in species richness is not accounted 510 

for in the null model. (A) With increasing variability in species richness between 511 

locations within a site (Mean Absolute Deviation, MAD), the detected strength of 512 

deviation from random species assembly in real matrices increases when this variation 513 
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in species richness is not included in the model (fixed-equiprobable randomisation 514 

algorithm). Red points denote statistically significant deviations from random species 515 

assembly. (B) This is still the case when the effects of number of sites, number of 516 

species and matrix fill are taken into account (partial regression plot). (C) When the 517 

species richness and number of sites are fixed to those from the 289 real matrices, but 518 

with species being placed at random to each other to create datasets, the same 519 

negative relationship between MAD and SES is observed. (D) Partial regression plot 520 

displaying this pattern. 521 

  522 
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 523 

Figure 2. Relationship between variability in species richness and deviation from 524 

random species assembly when observed variation in species richness is accounted for 525 

in the null model. (A) When variation in species richness is included explicitly in the 526 

model of species co-occurrence (fixed-fixed randomisation algorithm) then for real 527 

matrices there is no relationship between variability in species richness between 528 

locations and the detected strength of deviation from random species assembly. (B) 529 
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There is also no relationship when the effects of number of sites, number of species and 530 

matrix fill are taken into account (partial regression plot). (C) This is also true for the 531 

datasets for which the species richness and number of sites were fixed to those from 532 

the 289 observed matrices, but with species being placed at random to each other. (D) 533 

Partial regression plot displaying this pattern. Note that p-values are calculated from the 534 

raw null distribution, while standardised effect sizes are calculated from the variance in 535 

the null distribution. This means that occasionally some data points with more extreme 536 

SES values may be non-significant, while those with less extreme values are significant 537 

(e.g. in panel A). 538 

  539 
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 540 

Figure 3. A demonstration for some small hypothetical datasets of the impact of 541 

variation in species richness on the possible number of checkerboard units. Assume 542 

that we have eight species distributed across four sites, and that each species always 543 

occurs at only two sites. Variation in site species richness can vary to give a range of 544 
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values of mean absolute deviation (MAD), from zero to four. For both completely 545 

segregated matrices and randomised matrices the number of checkerboard units 546 

decreased with increasing variation in species richness. Note that median numbers of 547 

checkerboard units for 10,000 replications are plotted for randomised matrices, while 548 

only single example randomised matrices are plotted above. 549 

  550 
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 551 

Figure 4. Impacts of randomisation on C-scores for real datasets for three algorithms. 552 

Relationship between C-scores for real datasets and single randomisations carried out 553 

using the two fixed-fixed algorithms quasiswap (A) and curveball (B), and the fixed-554 

equiprobable algorithm c0 (C). Lines denote the scenario in which randomisation does 555 

not affect the C-score. Note the large proportion of points above the line when datasets 556 

are randomised using the c0 algorithm. 557 
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Table 1. Influence of restricting randomisation algorithm to observed species richness 559 

across sites on significance and direction of results from null models of co-occurrence. 560 

The effects of including species richness in a null model of species co-occurrence 561 

(fixed-fixed randomisation algorithm) or not (fixed-equiprobable algorithm) on 562 

frequencies of significant test results for real datasets. Where the observed C-score is 563 

significantly higher than the null distribution of C-scores (Cobs>Cnull), then there is more 564 

segregation between species than expected at random, and vice versa for Cobs<Cnull. 565 

 
Species richness included in null model 
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(P<0.05) 

2 107 96 205 

P>0.05 0 58 13 71 
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(P<0.05) 
0 11 2 13 

Totals 2 176 111 289 
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