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Abstract

RNA splicing is an important driver of heterogeneity in single cells, and a major determi-
nant of the dynamical state of developing cells. However, the intrinsic coverage limitations of
scRNA-seq technologies make it challenging to associate specific splicing events to cell-level
phenotypes. Here, we present BRIE2, a scalable computational method that resolves these
issues by regressing single-cell transcriptomic data against cell-level features. We show on
different biological systems that BRIE2 effectively identifies differential splicing events that
are associated with disease or developmental lineages, and detects differential momentum
genes for improving RNA velocity analyses. BRIE2 therefore extends the scope of single-cell
transcriptomic experiments towards the identification of splicing phenotypes associated with
biological changes at the single-cell level.

1 Introduction

Single-cell RNA-sequencing (scRNA-seq) has rapidly become the key technology to disentangle
transcriptional heterogeneity in cell populations. Over the last five years, scRNA-seq has been
successfully applied both to identify discrete cell states or sub-populations in normal or diseased
tissues, e.g. [1, 20], and to infer continuous stages in cellular processes, e.g., pseudo-time [19]
and cell differentiation [2]. More recently, scRNA-seq has further been applied to multiple-
sample designs with different donors, tissues, diseases or treatments. These experiments enable
the discovery of cell type specific marker genes [11] or key pathways that are associated with
the meta labels [20].

Beyond gene level information, RNA processing within a gene also holds rich information
for both categorical cell states and continuous cell differentiation. A key RNA processing step
is splicing, where a precursor mRNA (pre-mRNA or unspliced RNA) is spliced by removing
intronic, non-coding regions, resulting in mature mRNA (or spliced RNA). Alternative splicing
of exons further extends the molecular feature space, greatly contributing to cellular hetero-
geneity. A variety of studies have found that the abundance of splicing isoforms enables to
identify cell states [22] or disease conditions [6]. Additionally, the intrinsic kinetics of splicing
provides a footprint of cellular dynamics during cell differentiation, which has motivated the
recent flourishing of RNA velocity studies [15, 4] and time-series scRNA-seq on metabolically
labelled nascent RNAs [5, 7, 3, 17].

Despite the fundamental role of RNA splicing, stochasticity in splicing is much less under-
stood than stochasticity in gene-level expression, primarily due to the technical difficulties in
recovering splicing information from scRNA-seq data. First, scRNA-seq data is highly sparse,
particularly for droplet based protocols including the popular 10x genomics. This high sparsity,
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along with minute initial molecule counts, leads to very high technical noise in scRNA-seq data,
hence requiring careful statistical modelling. Second, splicing adds new layers of complexity
to scRNA-seq analyses, and the requirements to quantify relative abundances of isoforms from
indirect observations of fragment counts creates considerable computational difficulties. For all
these reasons, the level of heterogeneity in splicing between different cells has been difficult to
quantify. Perhaps more importantly, the identification of single-cell level splicing phenotypes,
splicing events associated with disease or genetic changes, has been largely unfeasible, hindering
an understanding of the role of splicing changes and aberrations in cellular state.

In this work, we address these issues by directly incorporating the association of splicing
phenotypes within the splicing quantification task itself. We introduce BRIE2, a Bayesian
hierarchical model that predicts the splicing ratio (spliced vs unspliced or exon-inclusion vs
exclusion) from a set features associated with cell-type/ state, as well as with the specific splicing
event to be quantified. This enables us to robustly identify genes that are associated with each
cell level feature, while controlling and quantifying in a Bayesian manner the uncertainty from
the noise and sparsity of the data. Additionally, BRIE2 provides us with an efficient way to
select biologically relevant features for RNA-velocity analyses, which leads to more consistent
and interpretable visualisations of biological process dynamics.

2 Results and discussion

2.1 Model Description and Evaluation

An unavoidable difficulty in splicing quantification from short-read protocols derives from the
fundamental ambiguity of the data, as the vast majority of reads cannot be unambiguously
assigned to a single isoform. This problem is compounded in scRNA-seq by the generally low
number of reads, which frequently results in no unambiguous reads being mapped to a spe-
cific isoform. Our earlier work, BRIE [9], resolved this issue by introducing latent variables
conditioned on sequence features through a Bayesian regression approach, therefore using ge-
nomic sequence to regularise and inform splicing predictions. BRIE2 innovates over BRIE in
two important ways: first of all, it augments the set of regressor features to include cell-specific
features such as cell-type/ developmental stage (Fig. 1, Supplementary Fig. S1, and Methods).
This enables us to statistically associate cell-level features with specific splicing events, thus
defining quantitatively splicing as a single-cell level intermediate phenotype, but it considerably
increases the complexity of the model (as data from all cells needs to be analyzed jointly). To
cope with the added complexity, BRIE2 is formulated as a variational discriminative model,
thus enabling the use of advanced software (Tensorflow) and hardware (GPUs), and leading to
orders of magnitudes in computational seed-ups (>1,000 speed-ups; see Supplementary Fig. S2
and Methods).

We then validated the BRIE2 model against realistic simulated data in order to assess its
ability to accurately reconstruct splicing ratios and to detect splicing phenotypes. By comparing
to ground truth in simulations, we found BRIE2 retains high accuracy (Pearson’s R>0.95)
on splicing ratio quantification when there are more than 4 unambiguous reads, no matter
if informative prior is learned from features (Supplementary Fig. S3a-c). Importantly, the
inclusion of cell-level features enables a significant increase in accuracy for lowly covered genes
(Peason’s R increasing from 0.88 to 0.98, Supplementary Fig. S3d). Additionally, the estimated
coefficients of cell or gene features are highly correlated with the ground truth values used to
generate the data (Pearson’s R=0.93 for coefficients with FDR<0.1, Supplementary Fig. S3e-f).

To assess the quality of the variational approximation, we compared results to MCMC based
estimation on a real data set with 130 mesoderm cells [21] with 19 gene level sequence features,
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Figure 1: Illustration of BRIE2. (a) Reads are counted into isoform 1, isoform 2 or ambiguous groups according to
its alignment identity, which constitutes a cell-by-gene-by-3 tensor. (b) The posterior distribution of isoform proportion
Psi is defined by combining the likelihood from read counts and informative prior predicted by cell level covariates
and/or gene sequence features. (c) A logit-normal variational posterior and coefficients on covariates are optimised
to approximate the exact posterior, where the evidence lower bound gain (EBLO) between including and excluding a
certain cell feature set can be leveraged to select splicing phenotypes. (d) The selected differential splicing events or
differential momentum genes on RNA velocity can be used as markers for downstream analysis, and the estimated Psi
can be used for dimension reduction to enhance cell type/ state identification.

observing that the estimates by variational inference in BRIE2 are highly concordant with the
MCMC estimates both for Psi (Pearson’s R>0.99 for confident genes, Supplementary Fig. S4)
and feature coefficients (Pearson’s R=0.87).

BRIE2 can also detect genes with differential splicing ratios associated with cell level covari-
ates by performing Bayesian model selection. To do so, we run BRIE2 twice for both with and
without the candidate feature(s), and calculate the difference on the evidence lower bounds,
termed ELBO gain. The ELBO gain approximates the empirical Bayes factor and mimics the
log likelihood ratio in hypothesis tests, hence in practice it can be transformed to a p value
through a chi-square distribution (Methods). We found the transformed p values are well cal-
ibrated in the null model (Supplementary Fig. S5). Further, in detecting splicing events that
are significantly associated with cell level features, BRIE2 returns excellent performance in both
sensitivity and specificity (Supplementary Fig. S6): on cell feature with moderate correlation to
splicing ratio (Pearson’s R=0.47), BRIE2 achieves AUROC>0.986 in detecting 400 significant
events out of 2,248 splicing events. Therefore, in practice, both ELBO gain and its transformed
false discovery rate (FDR) after multiple testing correction can be used as a significance cut off.
In the rest of the manuscript, we use FDR < 0.05 as a general threshold for significance.

2.2 BRIE2 discovers hundreds of differential splicing events associated with
multiple sclerosis

Next, we applied BRIE2 to analyse alternative splicing in multiple sclerosis, a neurological
autoimmune disease. Falcão et al have generated 2,208 mouse cells using the SMART-seq2
protocol, with equal number of cases and controls [6]. Here, we analysed 3780 exon-skipping
events that satisfied the quality control, e.g., more than 30 cells with unique reads (Methods),
resulting in 1,876 cells that have more than 3,000 total reads on the above genes.

We first applied BRIE2 to quantify Psi by regressing on an intercept term, i.e., a constant
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Figure 2: Differential splicing events on multiple sclerosis. (a) Umap visualization of gene level expression,
annotated with cell types and EAE state. (b) Umap coloured by the first principle component based on Psi matrix,
which suggests that Psi PC has a global impact on cell types. (c) Volcano plot between -log10(FDR) and effect size
on logit(Psi) for detecting differential splicing between EAE and control cells by BRIE2. (d) Violin plot on example
gene Mbp (the exon3) for estimated Psi between EAE and control in each cell type. Psi values in panel (b) and (d) are
quantified by only using unity cell feature for aggregation, but not EAE state label. EAE: Experimental Autoimmune
Encephalomyelitis.

cell feature. In other words, a prior is learned by aggregating all cells, which reflects an average-
based imputation. Based on the Psi matrix, we performed a principal component analysis and
found that the Psi principal component has strong cell type specificity (see Fig. 2a-b for the
first PCs). By comparing clusters identified with gene expression and Psi PCs, we found that
top 20 Psi PCs can accurately predict the cell clusters (overall AUC = 0.97, Supplementary
Fig. S7).

Furthermore, by incorporating disease state and strain labels as cell covariates, BRIE2
detects 368 differential splicing events across 348 genes with FDR<0.05 that are associated
with disease condition (Fig. 2c, Supplementary Fig. S8). Particularly, the myelin genes Mbp
(FDR=1e-28; Fig. 2d) and Pdgfa (FDR=1e-5) are both identified as differential splicing events,
which was highlighted in the original study [6] by using BRIE1. In addition, when leveraging
these 368 MS-related splicing events, we found their Psi principal components can predict the
disease state on MOL, the largest cell type with well balance, at moderate level (AUC=0.76),
and can enhance disease state predictions, as compared with using gene expression alone (AUC
from 0.954 to 0.968, Supplementary Fig. S9).

2.3 Differential momentum genes improve RNA velocity analyses

Global RNA-processing efficiency has recently been used to define the concept of RNA velocity
associated with an individual cell [15, 4], which is rapidly becoming a major tool to study the
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Figure 3: Differential momentum genes for RNA velocity. (a-b) Cell differentiation in neurogenesis inferred from
RNA velocity by scVelo with different gene sets: (a) scVelo detected gene set requiring positive correlation between
unlicensed and spliced RNAs; and (b) BRIE2 detected gene set that have differential spliced ratio in one cell type vs all
others, which are termed as differential momentum genes. (c-d) State transitions of excitatory neurons inferred from
RNA velocity with different methods: (c) Dynamo using metabolic labelling information measured by scNT-seq. (d)
scVelo using total RNAs on 20 differential momentum genes detected by BRIE2. The colour denotes the time since
stimulations: 0 (blue), 15 (orange), 30 (green), 60 (red) and 120 (purple) minutes.

dynamics of cellular processes at the single-cell level. The concept of RNA velocity is based on
treating spliced and unspliced RNAs as two different isoforms, associating to each gene in each
cell an RNA-processing speed which is then combined (and projected using any visualisation
tool) to quantitate the dynamics of cellular processes at the molecular level.

Standard RNA velocity analyses are fully unsupervised, thus discarding available annota-
tions during the (frequently crucial) step of selecting genes for velocity estimates. Instead,
we propose to us BRIE2 to detect genes that have differential splicing ratios associated with
cell-level covariates, thus providing a biologically informed approach to selecting features to
compute RNA velocities associated with cell transitions. We term these genes as differential
momentum genes (DMG), as the differential splicing ratio implies a departure from equilibrium
between splicing and degradation rates, likely due to changes on synthesis rate associated with
changes in cell type.

To see the impact of using DMGs in RNA-velocity analyses, we re-analyzed the neurogenesis
data set in [4], which well illustrates the impact of gene selection on cell transition inference.
We used BRIE2 to detect cell type specific DMGs by using each cell type as the testing covari-
ate, and accounted for differences in coverage between cells by using gene detection rate as an
additional cell-level covariate. We therefore examine the effect of using BRIE2 as a pre-selection
step in velocity analyses, applying the same downstream modelling to DMGs and default genes
selected by the package scVelo [4]. The stochastic model is used here for illustrating that the
differentiation direction can be corrected by using informative genes. In Fig. 3, we compare
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the cell differentiation paths inferred from RNA velocity based on the 634 genes selected by the
package scVelo [4] and the 335 DMGs selected by BRIE2 (FDR < 0.05 in any cell type), both se-
lected out of the initial 3,000 quality-pass genes (see read counts for top genes in Supplementary
Fig. S10).

While the overall picture is broadly in agreement, DMGs obtained from BRIE2 highlighted
a more obvious direction from oligodendrocyte precursor cells (OPCs) to myelinating oligoden-
drocytes (OLs) compared to scVelo, both using the stochastic model (Fig. 3a-b) and dynamical
model (Fig. 2 in [4]) approaches of scVelo. Observing more in detail this biological transition
(Supp. Fig. S11-12), we see that scVelo directions are inconsistent on a subgroup of OPCs, while
DMGs at different FDR consistently estimate the correct transition direction from OPC to OL.
These observations highlight the importance of feature selection when visualising cell transi-
tions: in this light, DMGs detected by BRIE2 are likely to return more biologically informative
angles, thanks to the use of annotations.

Furthermore, we examined how selection of DMGs improve the inference of cell state tran-
sition in time-series of neuronal scRNA-seq data generated by scNT-seq [17]. scNT-seq is a
recently proposed technique where nascent RNAs are metabolically labelled, effectively pro-
viding a measurement of the age of a transcript. Using the information of metabolic labelling
provides an effective ground truth and enables a consistent visualisation where cell transitions
are strongly aligned with the time direction [18] (Fig. 3c). In the original paper, it was observed
that such transitions are difficult to obtain only using the total RNAs; our own experimentations
confirm that scVelo struggles to identify the right direction in the early stage of stimulation (i.e.,
0 to 15 or 30min; Supplementary Fig. S13). Applying BRIE2 to detect DMGs by using the
stimulation time as testing covariate, we found 280 DMGs significantly associated with time
(FDR<0.01; Supplementary Fig. S14-S15), with 141 genes overlapped with the top 2,000 highly
variable genes selected by scVelo. By projecting the RNA velocity on these 141 DMGs, the cell
transitions are largely corrected to the expected direction along the time (Fig. 3d). This pattern
remains even if varying the cut-off at FDR<0.001 for 89 more stringent DMGs or FDR<0.05 for
165 more lenient DMGs (Supplementary Fig. S16). Taken together, these results demonstrate
that BRIE2 is an effective tool to select informative genes underlying dynamical processes.

3 Discussion

Splicing is a fundamental step in gene expression in higher eukaryotes, and has the potential to
represent an important intermediate phenotype in single cell experiments. BRIE2 provides an
effective and computationally efficient approach to link such intermediate phenotypes to cell-
level covariates. Our results showed that BRIE2 identifies hundreds of splicing events linked to
multiple sclerosis, and that inclusion of splicing events leads to improved cell-type classification
on this translationally relevant data set.

While quantification of splicing events is certainly biologically important, it is likely to only
be possible using technologies that sample evenly the transcriptome. Recent years, instead, have
seen an increasing popularity of technologies which can upscale the number of cells assayed by
sequencing only parts of the transcriptome (typically, the regions immediately preceding the
polyA tail). Despite this enrichment, many such data sets still present a substantial number of
intronic reads (presumably due to the abundance of repetitive A sequences within introns) which
can be used to measure changes in RNA kinetics (so called RNA velocity) and therefore provide
a more accurate description of transitional cell states in large data sets. Our results showed
that, in the presence of cell annotations, BRIE2 can be a useful tool to select relevant genes
(differential momentum genes) which provide a smoother and more interpretable description of
cell transitions within RNA velocity studies.
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4 Methods

4.1 Modelling of splicing isoform abundance

In this study, we jointly analyse N splicing genes (i.e., segments) across M cells, and we focus
on two-isoform splicing events, for example exon-skipping (SE) and intron retention (IR). For a
splicing gene i in a cell j, we use ψi,j to denote the fraction of a certain isoform; for conventional
reason, it refers to isoform with exon-inclusion in SE event. Without losing generality, we define
the BRIE2 model on SE event here but it is applicable to any other two-isoform event.

In order to scale up the analysis across a large number of cells, reads aligned to a splicing
gene are not modelled individually but rather aggregated into three groups depending on their
isoform identity:

• group1: reads from isoform1 explicitly, e.g., on the junction between exon1 and exon2;

• group2: reads from isoform2 explicitly, e.g., on the junction between exon1 and exon3;

• group3: reads with ambiguous identity e.g., within exon3.

Thus, from the aligned reads file we could extract the count vector si,j = [si,j,1, si,j,2, si,j,3] for
these three groups, with ni,j =

∑
k∈1,2,3 si,j,k as the total count. In addition, for each gene i

we can pre-define the effective length li,h,k, i.e., the (effective or corrected) number of positions
in isoform h that can generate read being located in the region of read group k. This gene
specific 2-by-3 length matrix Li can be defined from the exon structures encoded in the gene
annotation, and the read counts are proportional to the effective lengths.

Given the total read counts ni,j and its according effective length matrix Li, we could have
the base likelihood of ψi,j (or equivalently its transformation zi,j := logit(ψi,j)) for observing
the three-group reads counts si,j by a multinomial distribution, whose proportion vector ρi,j is
coded by ψi,j and the effective length matrix Li as follows,

p(si,j |zi,j) = p(si,j |ni,j , ψi,j , Li) = Multinomial(si,j |ni,j ,ρi,j)

ρi,j,k =
ψi,jli,1,k + (1− ψi,j)li,2,k∑

t∈1,2,3 ψi,jli,1,t + (1− ψi,j)li,2,t
, k ∈ 1, 2, 3.

(1)

By definition, we have li,1,2 = li,2,1 = 0 for all genes. Taking the assumption of conditional
independence, we could have the joint likelihood for all N splicing genes in M cells by taking
their product as follows,

p(S|Z) =
N∏
i=1

M∏
j=1

p(si,j |zi,j).

4.2 Bayesian regression on splicing

In BRIE2 model (see graphical representation in Supplementary Fig. S2), we aim to identify
the regulatory factors on splicing from both gene level features x (e.g., splice site motif) and /
or cell level features y (e.g., cell type) via a generalised linear model. Specifically, we assume
that the logit of the fraction of isoform1 zi,j is linear prediction of x and y as follows,

zi,j = x>
i αj + β>

i yj + εi,j , (2)

where we could use a deterministic way by taking εi,j := 0, and assume the uncertainty only
comes from the regression weights. On the other hand, we could introduce εi,j ∼ N (0, σi) to
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account for gene specific over dispersion, which is particularly important for the phenomenon
of mono-isoform in single cells.

With considering the over dispersion by adding a gene specific σi, we could have a predicted
distribution with zi,j

p(zi,j |αj ,βi, σi) = N (zi,j |x>
i αj + β>

i yj , σ
2
i ), (3)

which can be treated as an informative prior on z (and according logit-normal distribution for
ψ).

4.3 Bayesian Inference in BRIE2

Besides estimating the parameters for regression model in Eq.(3), it is often of high interest to
approximate the posterior distribution of the isoform abundance Ψ or its logit transformation Z.
Therefore, it is crucial to keep Z as auxiliary variable instead of marginalizing out. By taking the
product of the base distribution defined in Eq.(1), and the predicted prior in Eq.(3), we could
have the joint distribution to which the posterior distribution p(Z|S,A,B,σ) is proportional as
follows,

p(Z|S,A,B,σ) ∝ p(Z, S,A,B,σ)

= p(S|Z)p(Z|A,B, σ).
(4)

This posterior is intractable and it also has parameters to optimize. In the BRIE v1, we used
an approximate algorithm to alternately optimize the parameters and sampling the posterior
with Metropolis-Hastings algorithm [9]. Here, instead we are using a variational inference to
approximate the posterior. Namely, we introduce a fully factorized distribution (mean-field)
as a variational posterior, and we assume it is Gaussian, the same form as the predicted prior
distribution in Eq.(3):

q(Z|µ, δ) =
N∏
i=1

M∏
j=1

N (zi,j |µi,j , δ2i,j) (5)

Then the inference becomes an optimisation problem for minimising the Kullback–Leibler
(KL) divergence between the exact Eq.(4) and variational posteriors Eq.(5),

KL(q(Z|µ, δ)||p(Z|S,A,B,σ)) = E[log q(Z|µ, δ)]− E[log p(Z|S,A,B,σ)]

= E[log q(Z|µ, δ)]− E[log p(Z|A,B,σ)]− E[log p(S|Z)] + log p(S).
(6)

As the log p(S) is a constant term, minimizing the KL divergence is equivalent to maximizing
the evidence lower bounder (ELBO)

ELBO(q) = −E[log q(Z|µ, δ)] + E[log p(Z|A,B,σ)] + E[log p(S|Z)]

= −KL(q(Z|µ, δ)||p(Z|A,B,σ)) + E[log p(S|Z)],
(7)

where E[·] denotes expectation over variational distribution q(Z|µ, δ) as a shortcut. The first
part in ELBO is the KL divergence between the posterior and prior distribution on Z, which could
be calculated analytically. The second term E[log p(S|Z)] in ELBO (Eq. (7)) is difficulty to
calculate due to the intrinsic mixture of two isoforms in the base likelihood Eq (1). Therefore,
a cheap Monte Carlo exception [14] is introduced by sampling R samples on Z following its
posterior distribution q(Z):

Eq(Z)[log p(S|Z)] =
1

R

R∑
r=1

log p(S|Z(r)) =
1

R

R∑
r=1

N∑
i=1

M∑
j=1

log p(si,j |z(r)i,j ). (8)
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In practice, R = 3 samples are sufficient to give good approximate and are used by default.
Given the expression of ELBO, we could use a (stochastic) gradient descent algorithm, e.g.,
Adam by default [13], to achieve the maximum of ELBO. Here, we use TensorFlow platform
to obtain an automated derivation of the gradient. Also, the re-parametrization trick [14] for
gradient is fully supported for Gaussian distribution in TensorFlow.

4.4 Detecting differential splicing events

BRIE2 allows to detect genes (i.e., splicing events) that are significantly associated with one
or multiple cell level covariates. This is equivalently to select Model 1 (M1) with none-zero
coefficient versus Model 0 (M0) with zero coefficient for given cell feature(s) on a per gene basis.
Therefore, BRIE2 will be run twice for both M1 with all provided cell features and M0 with
leaving the candidate feature(s) out.

Then we compare the relevant evidence lower bounds EBLO1 and EBLO0, and obtain an
ELBO gain = ELBO1 − ELBO0, which approximates the empirical Bayes factor. As the weights
of cell features are fitted as a point estimate by maximizing the ELBO between the exact and
variational posteriors, the ELBO gain also mimics the log likelihood ratio in hypothesis test way,
hence in practice one can transform the ELBO gain to a p value through chi-square distribution
with the degree of freedom equal to the number of testing features.

When testing events with alternative splicing associated with multiple sclerosis, we used
the mouse strain, EAE state and intercept as covariates in M1 and left EAE state out in M0.
When testing genes with spliced ratio associated cell type, each time we include proportion of
detected genes, intercept, and one of 14 cell types as covariates inM1 and left the cell type out
in M0. This tests have been repeated 14 times for all cell types.

4.5 Simulations

Simulations were performed to evaluate the quantification of ψ, feature coefficients α,β (Sup-
plementary Fig. S3), and detection of genes significantly associated with cell level features
(Supplementary Fig. S6). In both situations, we used an experimental data set with 130 cells
and 2,248 splicing events from [21] as seed data. Here, we kept the same total read count of
each event and cell as the seed data, and generate the isoform-specific count vectors with three
read categories via a multinomial distribution parametrised by pre-defined ψ and fixed effective
lengths L as in Eq.(1).

The core simulation is to sample ψi,j from a logit-normal distribution LN(µi,j , σ
2), where µi,j

is determined by cell features with noises and σ is set to 3 by default. In Supplementary Fig. S3,
we took the mean µi,j as a product of five principle components calculated from gene expression
and their according coefficients that are estimated from the seed data. In Supplementary Fig.
S6, we independently sampled all µi,j , and a cell feature vector x = {x1, ...x130} across 130
cells from a Gaussian distribution N (0, 32). We then randomly picked 400 genes as significant
genes by replacing the mean vector µj by this cell features x. Here, we varied the σ among
1, 3 and 5 to mimic different levels of correlation between cell feature and splicing ratio ψ for
systematically evaluating BRIE2’s performance in detecting differential splicing events.

4.6 Data processing and gene filtering

For benchmarking BRIE2, we used 130 mouse embryonic cells at day 6.5 (80 cells) and day 7.75
(50 cells) that were generated by [21] with SMART-seq2 protocol [16]. This data set has also
been used as an illustration data set in BRIE1 [10]. Here, we used HISAT v2.2.0 [12] to align
the reads to mouse genome GRCm38.p6, combined with ERCC92 spike RNAs. Then brie-count
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command line in BRIE v2.0.3 with all default parameters was used to count the reads aligned
to each of the 8,253 alternative splicing events, which was extracted from GENCODE vM24 by
using briekit at lenient thresholds.

The same processing except removing ERCC92 reference was applied to another SMART-
seq2 data set on 2,208 mouse cells in the topic of multiple sclerosis [6], where BRIE2 was used
to detect differential alternative splicing between disease and control cells. Here and in general,
where detecting differential splicing and only cell level features are applicable, we filtered out
clearly less informative genes. By default in brie-quant, we filter out events with 1) less than
50 total reads or 10 unique reads across all cells, or 2) less than 30 cells with unique reads, or
3) the fraction of unique reads on minor isoform less than 0.001.

For RNA velocity analysis, a data set on dentate gyrus development was used, which was
generated by [8] with droplet protocol with 10x Genomics platform. The cell type annotation,
UMAP visualization coordinates, and processed count matrices for both spliced and unspliced
RNAs across 2,930 cells and 13,913 genes were downloaded from the tutorial in scVelo [4]. Only
the top 3,000 highly variable genes with minimum 30 shared counts were used as suggested by
scVelo. For detecting differential momentum genes, we only kept genes that were detected with
at least one read in >15% of the cells. ScVelo v0.2.1 downloaded from PyPI is in use.

Additionally, an scNT-seq data set on excitatory neurons were obtained from original paper
[17]. This processed data set has 3,066 quality controlled cells and 44,021 genes. It also has
UMAP visualization coordinates, time annotation and layers of spliced, unspliced, and new
RNAs. Therefore, no any pre-processing is needed on this data set. The RNA velocity inference
by Dynamo (v0.95.2.dev142+9c30240) is based the same scripts provided on the original paper
[17]. When running scVelo dynamical model, we select genes with at least 30 shared counts and
either top 2,000 highly variable genes (Fig. 3b, Supplementary Fig. S13a, S14) or top 8,000
highly variable genes though with only 4880 genes pass the requirement (Supplementary Fig.
S13b).

4.7 Code availability

BRIE2 is an open-source Python package available at https://pypi.org/project/brie/. All
the analysis notebooks and the processed data sets can be found at https://github.com/

huangyh09/brie-tutorials.
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Elisa M Floriddia, Darya P Vanichkina, Anna Williams, André Ortlieb Guerreiro-Cacais, et al. Disease-
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