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 2 

Abstract 24 

N6-methyladenosine (m6A) is a prevalent RNA modification that plays a key role in 25 

regulating eukaryotic cellular mRNA functions. RNA m6A modification is regulated by two 26 

groups of cellular proteins, writers and erasers that add or remove m6A, respectively. HIV-1 27 

RNA contains m6A modifications that modulate viral infection and gene expression in cells. 28 

However, it remains unclear whether m6A modifications of HIV-1 RNA modulate innate 29 

immune responses in cells or HIV-1-infected individuals. Here we show that m6A modification 30 

of HIV-1 RNA suppresses the expression of antiviral cytokine type-I interferon (IFN-I) in human 31 

monocytic cells. Transfection of differentiated monocytic cells with HIV-1 RNA fragments 32 

containing a single m6A-modification significantly reduced IFN-I mRNA expression relative to 33 

their unmodified RNA counterparts. We generated HIV-1 with altered RNA m6A levels by 34 

manipulating the expression of the m6A erasers or pharmacological inhibition of m6A addition in 35 

virus-producing cells. RNA transfection and viral infection of differentiated monocytic cells 36 

demonstrated that HIV-1 RNA with decreased m6A levels enhanced IFN-I expression, whereas 37 

HIV-1 RNA with increased m6A modifications had opposite effects. Our mechanistic studies 38 

revealed that m6A of HIV-1 RNA escaped the RIG-I-mediated RNA sensing and activation of 39 

the transcription factors IRF3 and IRF7 that drive IFN-I gene expression. Moreover, RNA of 40 

peripheral blood mononuclear cells from HIV-1 viremic patients showed increased m6A levels 41 

that correlated with increased IFN-I mRNA expression compared to levels from HIV-1-42 

suppressed patients on antiretroviral therapy. Together, our results suggest that RNA m6A 43 

modifications regulate viral replication and antiviral innate immune responses in HIV-1-infected 44 

individuals.  45 
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 3 

Author Summary 46 

HIV-1 is known as a weak inducer of antiviral cytokines including IFN-I, but it is unclear 47 

how HIV-1 evades innate immunity. Different types of RNA modifications including m6A 48 

within the HIV-1 genome modulate viral replication; however, the role of m6A modifications of 49 

HIV-1 RNA in regulating innate immune responses remains elusive. In this study, we found that 50 

HIV-1 RNA modified with m6A suppresses the expression of IFN-I in differentiated monocytic 51 

cells by avoiding innate immune detection of viral RNA mediated by RIG-I, an RNA sensor in 52 

host cells. We also observed significantly increased RNA m6A modifications of peripheral blood 53 

mononuclear cells from HIV-1 viremic patients compared to virally suppressed patients on 54 

combined antiretroviral therapy, suggesting a functional link between m6A modifications and 55 

antiretroviral treatment. Investigating the functions of m6A modifications of HIV-1 RNA in 56 

regulating innate immune sensing and IFN-I induction in monocytic cells can help understand 57 

the mechanisms of HIV-1 persistence. 58 

 59 

Keywords: HIV-1, m6A RNA modification, IFN-I, RIG-I, innate immune responses. 60 

 61 

Introduction 62 

Transcriptional modification of RNA in cells plays a crucial role in its stability, 63 

transportation, processing and thus regulation of gene expression. There are more than 160 RNA 64 

modifications identified in eukaryotes [1]. Methylation at the N6 position of adenosine (m6A) is a 65 

post-transcriptional RNA modification in internal and untranslated regions (UTRs) of eukaryotic 66 

mRNAs, microRNAs, small nuclear RNAs and long noncoding RNAs, which is important for 67 

RNA localization, stability and protein translation [1-5]. This methylation is controlled by two 68 
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types of protein factors in cells, comprised of the writer complex [(methyltransferase-like 3 69 

(METTL3) and METTL14] to incorporate methylation, and the erasers [fat mass and obesity 70 

associated protein (FTO) and α-ketoglutarate dependent dioxygenase AlkB homolog 5 71 

(ALKBH5)] to remove m6A modification [6-9]. RNA m6A modification has been discovered in 72 

several RNA and DNA viruses over the past 40 years, although its effects on the viral lifecycle 73 

remain not fully understood [10-15]. Recent advancement of RNA sequencing based strategies 74 

expanded the identification and characterization of m6A to several clinically significant human 75 

pathogens [16], including HIV-1 [17-19]. Increasing evidence suggests that m6A modification 76 

plays a major role in regulation of viral replication and gene expression [16] and the immune 77 

system [20]. 78 

In the early stage of virus infections, sensing viral nucleic acids in infected cells is a 79 

critical step to induce innate immune responses that can lead to production of antiviral cytokines, 80 

including IFN-I (mainly IFN-α and IFN-β) [21]. Genomic RNA of HIV-1 and other viruses can 81 

be detected by cytosolic sensors, including retinoic acid-induced gene I (RIG-I) and melanoma 82 

differentiation-associated gene 5 (MDA5) [21]. Detection of viral RNA by these sensors triggers 83 

activation of several cellular kinases, which phosphorylate interferon regulatory factors 3 and 7 84 

(IRF3 and IRF7) to induce IFN-I expression [22, 23]. HIV-1 is a weak inducer of host innate 85 

immune responses [24, 25], and it evades immune recognition by direct targeting of immune 86 

pathways, interacting with cellular proteins, or masking the viral genome from the cytosolic 87 

sensors [24, 26, 27]. HIV-1 RNA can be sensed by both RIG-I and MDA5, whereas it has 88 

evolved multiple strategies to escape innate immune surveillance [23, 28]. A recent study 89 

showed that 2′-O-methylation in HIV-1 RNA prevents MDA5-mediated sensing in myeloid 90 
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cells, and thereby reduces IFN-I induction [29]. However, the role of m6A in regulating innate 91 

immune responses to HIV-1 RNA and the underlying mechanisms have not been defined. 92 

Our previous in vitro studies showed that HIV-1 infection or HIV-1 envelope protein 93 

treatment of CD4+ T cells significantly up-regulates m6A levels of cellular RNA independently 94 

of viral replication [30]. However, it remains unclear whether m6A levels and IFN-I expression 95 

in HIV-1-infected individuals can be altered by effective antiretroviral therapy (ART), which 96 

leads to undetectable viral load in the vast majority of treated HIV-1 patients [31]. To address 97 

these fundamental questions and to better understand the role of m6A in HIV-1 infection in vivo, 98 

we measured the levels of m6A and IFN-I expression in peripheral blood mononuclear cells 99 

(PBMCs) of healthy donors, HIV-1 viremic patients before ART, and HIV-1 patients on ART. 100 

Here we show that m6A modifications of HIV-1 RNA reduce viral RNA sensing and the 101 

induction of IFN-I in differentiated monocytic cells. We found that m6A-defective HIV-1 RNA 102 

induced IFN-I expression through RIG-I-mediated pathway, suggesting that m6A is an immune 103 

evasion strategy of HIV-1. In contrast to in vitro results, we also observed significantly increased 104 

levels of m6A RNA modifications and IFN-I expression in PBMCs from HIV-1 viremic patients 105 

compared to patients on ART. These results implicate that RNA m6A modifications can 106 

contribute to regulation of viral replication, innate immune responses, and ART in HIV-1-107 

infected individuals. 108 

 109 

Results 110 

A single m6A modification of HIV-1 RNA oligos inhibits IFN-I induction in U937 cells.  111 

To examine the effect of m6A modification of HIV-1 RNA on IFN-I induction, we designed two 112 

different RNA oligos corresponding to two fragments of HIV-1 genome each with or without a 113 
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single m6A modification [32] for transfection experiments. We have reported that these two m6A 114 

modifications in the 5′ untranslated regions (UTR) of HIV-1 genome are important for HIV-1 115 

RNA binding to the m6A reader proteins (YTH domain family proteins 1-3) in vitro and viral 116 

replication in cells [32]. The m6A-modified RNA oligos 1 and 2 (both 42 mer) contained a single 117 

m6A-modified adenosine in the conserved GGACU motif of the HIV-1 (NL4-3 strain) genome 118 

[32]. The m6A modification of the oligos was confirmed by immunoblotting with equal amounts 119 

of RNAs using m6A-specific antibodies (Fig. 1A and 1D). To mimic cellular responses to viral 120 

RNA in non-dividing macrophages, we differentiated monocytic U937 cells with phorbol 12-121 

myristate 13-acetate (PMA) before transfection with the RNA oligos. Compared to unmethylated 122 

control (Ctrl) RNA, m6A-modified RNA oligo 1 induced 3- to 4-fold lower (P < 0.005) levels of 123 

IFN-α and IFN-β mRNA in transfected cells (Fig. 1B and 1C). Similar results were obtained with 124 

transfection of oligo 2, although the effects were less significant compared to oligo 1 (Fig. 1E 125 

and 1F). These results indicate that m6A modification of the 5′ UTR of HIV-1 RNA fragments 126 

inhibits IFN-I induction in differentiated U937 cells. 127 

 128 

Inhibition of m6A modifications of HIV-1 RNA by FTO increases IFN-I induction.  129 

The m6A erasers (FTO and ALKBH5) orchestrate cellular mRNA functions by removing m6A 130 

modifications on mRNA [2]. To investigate whether m6A modifications of HIV-1 genomic RNA 131 

could suppress IFN-I induction in cells, purified RNA from HIV-1 virions was demethylated 132 

with recombinant FTO in vitro, resulting in a 10-fold decrease in m6A level relative to control 133 

HIV-1 RNAs (Fig. 2A). Transfection of m6A-reduced HIV-1 RNA into U937 cells induced 3-134 

fold higher IFN-α and IFN-β expression (P < 0.0005) compared to control RNAs (Fig. 2B and 135 
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2C), suggesting that m6A modification of HIV-1 genomic RNA suppresses IFN-I induction in 136 

myeloid cells. 137 

To determine the effect of m6A of HIV-1 RNA on IFN-I induction during viral infection, 138 

HIV-1 containing lower levels of m6A in viral RNA was generated by overexpression of the 139 

eraser FTO in HIV-1-producing HEK293T cells. Compared to the vector control, FTO 140 

overexpression in HEK293T cells had no significant effect on the expression of HIV-1 Gag and 141 

capsid (CA, or p24) proteins (Fig. 2D). HIV-1 derived from FTO-overexpressed HEK293T cells 142 

(m6A-lower HIV-1) showed 10-fold lower m6A levels of viral RNA compared to viruses derived 143 

from control cells (Fig. 2E). When PMA-differentiated U937 cells were transfected with RNA of 144 

m6A-lower HIV-1, a 2-fold increase (P < 0.05) of IFN-α and IFN-β expression was observed 145 

compared to control HIV-1 RNA (Fig. 2F and 2G). As a positive control, poly(I:C) induced 146 

approximately 190-fold increases of IFN-α and IFN-β expression in transfected U937 cells (Fig. 147 

2F and 2G). Moreover, differentiated U937 cells infected with m6A-lower HIV-1 expressed 2-148 

fold higher (P < 0.05) IFN-α and IFN-β relative to control HIV-1 (Fig. 2H and 2I). Thus, HIV-1 149 

containing reduced RNA m6A modifications induces higher IFN-I expression in differentiated 150 

U937 cells. 151 

  152 

Inhibition of m6A modifications of HIV-1 RNA by ALKBH5 increases IFN-I induction. 153 

To confirm the results of FTO treatment and overexpression, we also examined the effect of 154 

another m6A eraser ALKBH5 on HIV-1 RNA-mediated IFN-I induction in PMA-differentiated 155 

U937 cells. ALKBH5 overexpression in HIV-1-producing HEK293T cells had no significant 156 

effect on the expression of HIV-1 Gag and CA (Fig. 3A). The m6A modification of HIV-1 RNA 157 

generated from ALKBH5-overexpressed HEK293T cells showed a 2-fold decrease compared to 158 
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HIV-1 RNA from control cells (Fig. 3B). IFN-α and IFN-β levels in U937 cells transfected with 159 

HIV-1 RNA from ALKBH5-overexpressed HEK293T cells were 1.8-fold higher (P < 0.05) 160 

compared to that from control cells (Fig. 3C and 3D). Furthermore, infection of U937 cells with 161 

HIV-1 from ALKBH5-overexpressed HEK293T cells induced 2-fold higher IFN-α and IFN-β 162 

expression (P < 0.0005) compared to HIV-1 from control HEK293T cells (Fig. 3E and 3F). 163 

Thus, inhibition of m6A modifications of HIV-1 RNA by eraser overexpression in virus-164 

producing cells increases IFN-I induction in differentiated U937 cells. 165 

 166 

Knockout (KO) of erasers increases m6A levels in HIV-1 RNA and reduces IFN-I 167 

induction. 168 

To validate the results from eraser overexpression, we constructed FTO-KO and ALKBH5-KO 169 

HEK293T cell lines by the CRISPR-Cas9 method. Next, these cell lines were transfected to 170 

generate HIV-1 with increased m6A of viral RNA. Western blotting results showed that FTO and 171 

ALKBH5 were completely silenced and HIV-1 Gag protein expression was not significantly 172 

affected by FTO and ALKBH5 knockout (Fig. 4A). HIV-1 RNA from FTO-KO and ALKBH5-173 

KO cells showed 7- and 25-fold higher m6A levels, respectively, relative to that from control 174 

(Con-KO) cells (Fig. 4B). Transfection of PMA-differentiated U937 cells with HIV-1 RNA 175 

derived from FTO-KO or ALKBH5-KO cells showed a 3-4-fold decrease (P < 0.05) in IFN-I 176 

expression compared to that from Con-KO cells (Fig. 4C and 4D). Moreover, infection of PMA-177 

differentiated U937 cells with HIV-1 from FTO-KO or ALKBH5-KO cells induced 178 

approximately 2-fold less IFN-I expression (P <0.005) compared to Con-KO cells (Fig. 4E and 179 

4F). Thus, increasing m6A levels in HIV-1 RNA by eraser KO in virus-producing cells reduces 180 

IFN-I induction in differentiated monocytic cells. 181 
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 182 

m6A-defective HIV-1 RNA induces IFN-I expression through IRF3 and IRF7 183 

phosphorylation. 184 

We next investigated pharmacological inhibition of m6A modification using 3-deazaadenosine 185 

(DAA), an inhibitor of S-Adenosylhomocysteine (SAH) hydrolase that can catalyze the 186 

reversible hydrolysis of SAH to adenosine and homocysteine [33]. DAA causes SAH 187 

accumulation thereby elevating the ratio of SAH to S-adenosylmethionine (SAM), a substrate of 188 

m6A modification, and subsequent inhibition of SAM-dependent methyltransferases [33]. DAA-189 

treatment of HEK293T cells did not affect HIV-1 production and release, but reduced m6A level 190 

in HIV-1 RNA 7-fold compared to control cells (Fig. 5A and 5B). Transfection of PMA-191 

differentiated U937 cells with purified RNA from HIV-1 produced from DAA-treated HEK293T 192 

cells (DAA-HIV-1) induced 15-fold and 2.3-fold higher IFN-α and IFN-β expression (P < 193 

0.0005), respectively (Fig. 5C and 5D). Moreover, infection of PMA-differentiated U937 cells 194 

with DAA- HIV-1 induced a 2-3-fold increase in IFN-I expression (P < 0.0005) compared to 195 

viruses from control HEK293T cells (Fig. 5E and 5F). These data further validate that m6A of 196 

HIV-1 RNA suppresses IFN-I induction in differentiated monocytic cells. 197 

Because IFN-I expression is predominately driven by IRF3 and IRF7 after their 198 

activation by phosphorylation upon virus infections [21, 34], we tested whether DAA-HIV 199 

affected phosphorylation of IRF3 and IRF7. Compared to mock-infected U937 cells, control 200 

HIV-1 and DAA-HIV-1 induced strong phosphorylation of IRF3 and IRF7 in differentiated 201 

U937 cells at 4 h post-infection (Fig. 5G). Notably, phosphorylation of IRF3 and IRF7 was 1.7-202 

fold and 1.2-fold higher in U937 cells infected with DAA-HIV-1 relative to control HIV-1, 203 

respectively (Fig. 5G). These results suggest that inhibition of HIV-1 RNA m6A modification 204 
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 10 

triggers innate immune responses by inducing IRF3/7-mediated IFN-I expression in myeloid 205 

cells. 206 

 207 

RIG-I, but not MDA5, contributes to m6A modification of HIV-1 RNA induced IFN-I 208 

expression. 209 

To characterize the cellular sensing mechanisms of m6A-defective HIV-1 RNA, RIG-I and 210 

MDA5 in U937 cells were silenced by KO and shRNA, respectively. RIG-I-KO U937 cells were 211 

constructed and undetectable RIG-I expression was confirmed (Fig. 6A). To test whether these 212 

cells responded to RNA stimulation, poly(I:C) was transfected into cells and IFN-I expression 213 

was measured. Compared to untransfected cells (mock), poly(I:C) transfection induced high 214 

levels of IFN-I expression in RIG-I-KO and control U937 cells (Fig. 6B). As expected, the 215 

induction of IFN-I by poly(I:C) was significantly reduced by 2-fold in RIG-I-KO U937 cells (P 216 

< 0.005) compared to control cells (Fig. 6B), confirming that RIG-I acted as an RNA sensor to 217 

induce IFN-I expression in these cells. In control U937 cells, transfection of single m6A-218 

modified HIV-1 RNA oligos induced lower IFN-I expression (P < 0.0001) compared to 219 

unmethylated RNA oligo counterparts (Fig. 6C and 6D). However, in RIG-I-silenced U937 cells, 220 

transfection of m6A-modified HIV-1 RNA oligos had no effect on IFN-I expression relative to 221 

unmethylated control oligos (Fig. 6C and 6D), suggesting a pivotal role of RIG-I in sensing 222 

m6A-defective HIV-1 RNA. 223 

Furthermore, we examined the potential role of MDA5 in sensing m6A-defective HIV-1 224 

RNA in monocytic cells. MDA5 expression was substantially reduced in differentiated U937 225 

cells with MDA5 knockdown (shMDA5) compared to vector control (shCon) cells (Fig. 7A). As 226 

a positive control, poly(I:C) transfection induced high levels of IFN-I expression in both shCon 227 
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and shMDA5 U937 cells. As expected, poly(I:C) transfection into shMDA5 U937 cells 228 

significantly decreased IFN-I levels relative to shCon cells (Fig. 7B). These cells were then 229 

examined for their ability to induce IFN-I expression by HIV-1 5′ UTR RNA oligos with or 230 

without single m6A modification [32]. Compared to unmethylated HIV-1 RNA oligos, 231 

transfection of m6A-modified HIV-1 RNA oligos reduced IFN-I expression in both shCon and 232 

shMDA5 U937 cells (Fig. 7C and 7D), suggesting that MDA5 is not a specific cellular sensor to 233 

detect m6A-defective HIV-1 RNA in differentiated monocytic cells. 234 

 235 

HIV-1 infected patients have higher level of m6A modification in the RNA of PBMCs. 236 

To explore the significance of m6A modifications in HIV-1-infected individuals and investigate 237 

the effect of ART on m6A levels, we measured the levels of m6A and IFN-I mRNA in immune 238 

cells from HIV-1 viremic patients in comparison with healthy control donors and HIV-1 patients 239 

on ART. We obtained PBMCs from healthy control donors (n=9), HIV-1 viremic patients (n=6) 240 

with different viral load pre-therapy, and HIV-1-infected individuals on ART (n=16) whose viral 241 

load was undetectable for a minimum of 6 months (<20 copies/mL) (supplemental Table S1). 242 

The average m6A level in total RNA of PBMCs from HIV-1 viremic patients was significantly 243 

higher (P < 0.005) compared to that from patients on ART (Fig. 8A and Supplemental Fig. S1A), 244 

suggesting an inverse correlation between viral load and m6A level of patient PBMCs. A visible, 245 

but not statistically significant increase (P = 0.27) in cellular RNA m6A level was observed in 246 

viremic patients compared to healthy individuals (Fig. 8A and Fig. S1A). This observation is 247 

also consistent with our previous results showing that HIV-1 infection or treatment of cells with 248 

HIV-1 envelope proteins (Env) upregulated m6A levels in primary CD4+ T-cells in vitro [30]. It 249 
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is possible that Env shedding from HIV-1 viremic patients could upregulate m6A levels in 250 

PBMCs. 251 

Next, the levels of IFN-I mRNA in PMBCs were measured to analyze potential 252 

correlations with the RNA m6A levels. Compared to PBMCs from healthy donors, there was a 253 

trend of increase in IFN-α expression, and a significant increase in IFN-β expression in PBMCs 254 

from the viremic patients (Fig. 8B and 8C). Compared to PBMCs from the viremic patients, a 255 

significant decrease in both IFN-α and IFN-β expression (P < 0.005) was observed in patients on 256 

ART (Fig. 7B and 7C), suggesting that HIV-1 suppression by ART reduces innate immune 257 

responses to viral infection. Consistent with our results, a previous study [35] also reported 258 

similar results of decreased IFN-α expression in HIV-1 patients on ART compared to patients 259 

without ART. 260 

Enhanced m6A levels in viremic patients could not be attributed to inherent differences in 261 

the levels of m6A writers and erasers, because there was no significant change in the expression 262 

of METTL3, FTO and ALKBH5 in PBMCs from the three groups (Fig. 8D and Fig. S1B). 263 

However, a slight increased level of METTL14 expression was observed in PBMCs from 264 

patients with ART compared to viremic patients (Fig. 8D and Fig. S1B). Together, these results 265 

suggest that HIV-1 infection upregulates the m6A level of cellular RNA in PBMCs from viremic 266 

patients without altering the expression of the writers and erasers. 267 

 268 

Discussion 269 

HIV-1 genomic RNA contains 10-14 sites of m6A modifications in the 5′-, 3′-UTR and 270 

several coding regions [17-19]. Recent studies indicate that m6A modification has important 271 

effects on HIV-1 replication, gene expression, and host responses to viral infection [30, 32, 36]. 272 
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It has been shown that cellular enzymes involved in RNA m6A modifications negatively regulate 273 

the innate immune response to infection of human cytomegalovirus, influenza A virus, 274 

adenovirus, or vesicular stomatitis virus by targeting the IFN-I pathway [37, 38]. A recent study 275 

showed that m6A modifications of human metapneumovirus RNA mimic the host RNA to avoid 276 

RIG-I-mediated innate immune sensing, and thereby reduce the production of IFN-I and enhance 277 

viral replication [39]. However, it remains unknown whether m6A modifications of HIV-1 RNA 278 

have any impact on innate immune responses. 279 

In this study, we show that m6A modifications of HIV-1 RNA act as a negative regulator 280 

of IFN-I induction by avoiding RIG-I-mediated RNA sensing in PMA-differentiated U937 cells. 281 

We observed that two different HIV-1 RNA oligos of the HIV-1 5′-UTR containing a single 282 

m6A-modification significantly reduced IFN-I induction relative to their unmodified RNA 283 

counterparts. The different inhibitory effects on IFN-I induction by two m6A-modified RNA 284 

oligos compared to their unmodified counterparts might be due to different sequences or 285 

conformation of the RNA fragments [32]. We also demonstrated that HIV-1 RNA with 286 

decreased m6A levels enhanced IFN-I expression, but HIV-1 RNA with increased m6A 287 

modifications had opposite effects. Our results suggest that HIV-1 genomic RNA and viral 288 

transcripts are masked by m6A modifications to avoid RIG-I-mediated sensing and IFN-I 289 

induction during viral infection. Thus, HIV-1 has likely evolved an immune evasion strategy 290 

through m6A modification of viral RNA (Fig. S2). 291 

Several RNA modifications, such as N-1-methylpseudouridine, 5-methylcytidine (m5C), 292 

5-hydroxymethylcytidine, 5-methoxycytidine, and 2′ fluoro-deoxyribose, have significant impact 293 

on RIG-I- and MDA5-mediated RNA sensing [40]. In addition to m6A modification, HIV-1 294 

genomic RNA contains eight types of epitranscriptomic modifications that are higher than the 295 
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average cellular mRNA, with m5C and 2′-O-methyl modifications being most prevalent [41]. It is 296 

possible that HIV-1 RNA exploits multiple epitranscriptomic modifications to avoid innate 297 

sensing as mechanisms of immune evasion. This possibility may explain how HIV-1 is able to 298 

avoid innate immune responses to establish persistent and latent infection even in patients on 299 

combined ART [31]. 300 

The IFN-I gene itself is m6A-modified and targets its destabilization for the maintenance 301 

of homeostatic state in mouse and humans [38]. Rubio et al. showed that, following human 302 

cytomegalovirus infection, depletion of METTL14 or increase in ALKBH5 proteins leads to 303 

decrease level of m6A in IFN-β gene and stabilizes and elevates the IFN-I response [37]. In this 304 

study, we observed increased m6A levels in cellular RNA of PBMCs from HIV-1 viremic 305 

patients compared to HIV-1 suppressed patients on ART. However, we did not observe 306 

significant changes in the levels of m6A writers and erasers in PMBCs from healthy donor, HIV-307 

1 viremic patients, and HIV-1 patients on ART. These results are consistent with our previous 308 

data showing increased m6A levels in HIV-1 infected primary CD4+ T-cells in the absence of 309 

altered expression of m6A writers or erasers [30]. It is possible that HIV-1 may modulate the 310 

activity or localization of writers or eraser, thereby upregulating m6A levels in HIV-1 infected 311 

cells. It remains to be established whether m6A modification of HIV-1 RNA regulate innate 312 

immune responses in primary CD4+ T-cells or macrophages. 313 

We found that m6A-modified HIV-1 reduces the activation of IRF3 and IRF7 through 314 

RIG-I-mediated signaling to suppress IFN-I induction. However, it remains unclear how m6A 315 

modifications of HIV-1 RNA reduces phosphorylation of IRF3 and IRF7 during early stage of 316 

HIV-1 infection. Previous studies suggest that HIV-1 proteins can target several cellular RNA 317 

and DNA sensors including RIG-I to surpass the IFN-I response [42-45]. Moreover, HIV-1 can 318 
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also target downstream proteins in the IFN-I pathway including IRF3 and IRF7 to contribute to 319 

chronic and persistent infection [46-50]. For example, HIV-1 Vpr protein mediates degradation 320 

of IRF3 to avoid the innate antiviral immune response [51].  321 

Durbin et al. showed that a RIG-I-activating RNA ligand, the 106-nucleotide polyU/UC 322 

sequence derived from the 3′ UTR of hepatitis C virus with m6A modification bound RIG-I with 323 

low affinity and did not trigger the conversion to the activated RIG-I conformer and thus has an 324 

immunosuppressive potential [40]. Our data indicated that m6A-defective HIV-1 RNA enhanced 325 

RIG-I-mediated RNA sensing and IFN-I induction in cells. Further studies are needed to 326 

examine whether the m6A-modified HIV-1 RNA binds RIG-I with a low affinity, which might 327 

be the possible cause of reduced IFN-I induction during viral infection. 328 

In summary, our study uncovered a previously unidentified strategy of how HIV-1 RNA 329 

escapes the host antiviral innate immune system through m6A modifications of its RNA genome. 330 

HIV-1 RNA m6A modifications can act as an immune suppressor of RIG-I-mediated viral RNA 331 

sensing. Our findings suggest that pharmacological reduction in m6A modification of HIV-1 332 

RNA may enhance IFN-I-mediated innate antiviral immune responses, thereby inhibiting viral 333 

replication. 334 

 335 

Materials and Methods 336 

Cell culture. HEK293T cell line was a kind gift from Vineet KewalRamani (National Cancer 337 

Institute, USA) and maintained in complete Dulbecco’s modified Eagle’s medium (DMEM) as 338 

described [32]. U937 cell line was obtained from the American Type Culture Collection (ATCC) 339 

and maintained in complete RPMI-1640 medium as described [52]. All the cell lines were 340 
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maintained at 37 °C in 5% CO2 and tested negative for mycoplasma contamination using a 341 

universal mycoplasma detection kit (ATCC 30-1012K) as described [53]. 342 

 343 

Plasmids and HIV-1 RNA oligos. The HIV-1 proviral DNA construct pNL4-3 was used to 344 

generate viral stocks as described [19]. For over-expression of the m6A erasers, the 345 

corresponding control vectors, pCMV6-FTO, pCMV-ALKBH5 were described [9, 54]. For 346 

knockout of eraser genes, CRISPR-Cas9 vectors containing sgControl, sgFTO, and sgALKBH5 347 

were used as described [38]. For RIG-I knockout, pCR-BluntII-Topo-sgRIGI-1 and 2 vectors 348 

were described [55], which were kindly provided by Dr. Stacy Horner (Duke University, USA), 349 

and the plasmid hCas9 (catalog no. 41815, Addgene) was described [56]. For MDA5 and RIG-I 350 

knockdown, shControl, shMDA5 and shRIG-I plasmids [29] were kindly provided by Dr. 351 

Yamina Bennasser (Université de Montpellier, France). Four RNA oligo sequences are from the 352 

5′ UTR of HIV-1 genomic RNA (NL4-3 strain) with or without a single m6A site [32], which 353 

were commercially synthesized (Integrated DNA Technologies). The sequences and the location 354 

of the m6A sites in the conserved GGACU motifs of the HIV-1 genome were described [32] and 355 

are listed below: RNA oligo 1 (nt. 235-281, the m6A-modified adenosine is nt. 241):  356 

5′-CGCAGGACUCGGCUUGCUGGAGACGGCAAGAGGCGAGGGGCG-3′. 357 

To eliminate RNA dimerization in our previous RNA binding assays [32], the original dimer 358 

initiation sequence of HIV-1 (AAGCGCGC) in oligo 1 was replaced with the underlined 359 

nucleotides GAG. RNA oligo 2 (nt. 176-217, the m6A-modified adenosine is nt. 197): 360 

5′-AGCAGUGGCGCCCGAACAGGGACUUGAAAGCGAAAGUAAAGC-3′. 361 

 362 
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Generation of U937 cells with MDA5 knockdown or RIG-I knockout, and HEK293T cells 363 

with FTO or ALKBH5 knockout. For MDA5 knockdown U937 cell line construction, 364 

HEK293T cells were transfected with shControl or shMDA5, together with pMD2.G and 365 

psPAX2 plasmids by polyethyleneimine (PEI) [53]. At 48 h post-transfection, lentiviruses were 366 

harvested and purified to infect U937 cells for 48 h and then the U937 cells were selected in 367 

RPMI-1640 media with 1 μg/mL puromycin. To generate RIG-I knockout cells, pCR-BluntII-368 

Topo-sgRIGI-I or pCR-BluntII-ToposgRIGI-2, along with hCas9, which has neomycin (G148) 369 

resistance, were transfected into U937 cells by TransIT mRNA transfection kit (mirus, USA) for 370 

48 h according to the manufacturer’s protocol. Then, G418 (1 mg/mL) was added to transfected 371 

cells for 8 days to select RIG-I knockout U937 cells, which were confirmed by Western blotting. 372 

For Control, FTO, and ALKBH5 knockout HEK293T cell generation, HEK293T cells were 373 

transfected with corresponding single guide RNAs (sgRNAs), together with pMD2.G and 374 

psPAX2 plasmids. At 48 h post-transfection, lentiviruses were collected to infect fresh 375 

HEK293T cells for 48 h. Then, the single clones were selected by 1 μg/mL puromycin in 96 well 376 

plates. The KO cells were confirmed by DNA sequencing and for specific protein expression by 377 

Western blotting. 378 

 379 

Dot immunoblotting of m6A modification in RNA. RNA was extracted from purified and 380 

concentrated HIV-1 stocks by using TRIzol (Invitrogen) or RNA purification kit (Qiagen). The 381 

synthesized RNA oligos were directly used for dot-blot assays as described [30]. Briefly, HIV-1 382 

RNA or RNA oligos (diluted to 100 μL using 1 mM EDTA) were mixed with 60 μL of 20× 383 

saline-sodium citrate (SSC) buffer (3 M NaCl, 0.3 M trisodium citrate) and 40 μL of 37% 384 

formaldehyde (Invitrogen) and incubated at 65 °C for 30 min. Nitrocellulose membrane (162-385 
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0115, Bio-Rad) or nylon membranes (11209299001, Roche) were pre-soaked with 10X SSC for 386 

5 min and assembled in dot-blot apparatus (Bio-Rad) with vacuum-on. Equal amounts of RNA 387 

were transferred to nitrocellulose or nylon membranes, then membranes were washed twice with 388 

200 μL of 10× SSC buffer. Nylon membranes were washed once with TBST buffer (20 mM Tris, 389 

0.9% NaCl, and 0.05% Tween 20) for 5 min and stained with methylene blue staining (MB119, 390 

Molecular Research Center) for 2-5 sec followed by two or three washes with ddH2O. 391 

Nitrocellulose membranes were blocked with 5% milk in TBST buffer and used to detect m6A 392 

levels by probing with m6A specific antibodies (Synaptic Systems; 202 003). Images were taken 393 

by Amersham Biosciences Imager 600 (GE Healthcare) and analyzed by ImageJ software 394 

(National Institutes of Health). Densitometry quantification of relative RNA m6A levels was 395 

normalized to MB staining as described [30]. 396 

 397 

In vitro FTO demethylation of HIV-1 RNA m6A. Demethylation of HIV-1 RNA m6A was 398 

performed with recombinant FTO treatment of purified HIV-1 RNA. Briefly, 500 ng HIV-1 399 

RNA were used for FTO in vitro treatment in 100 μL reaction buffer containing 50 mM HEPES 400 

buffer (pH7.0), 75 μM (NH4)2Fe (SO4)2•6H2O, 2 mM L-ascorbic acid, 300 μM L-ascorbic acid, 401 

200U RNAsin, 5 μg/mL BSA, and 0.2 nmol FTO protein. The reaction was performed at 37 °C 402 

for 1 hr and then stopped by adding 5 mM EDTA. Finally, RNA samples were denatured at 403 

70 °C for 2 min and quickly put into ice for m6A detection. 404 

 405 

HIV-1 production, p24 quantification, U937 cells transfection and HIV-1 infection assays. 406 

HIV-1 stocks were generated by transfection of HEK293T cells with the proviral DNA pNL4-3 407 

using PEI as described [53]. Cell culture medium was exchanged at 6-8 h post-transfection with 408 
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supernatants and was harvested at 48 h. The cell culture media containing viruses were filtered 409 

(0.45 μm) and purified by 25% sucrose using an SW28 rotor (Beckman Coulter) at 141,000g for 410 

90 min. The pellet was resuspended with PBS and digested with DNase I (Turbo, Invitrogen) for 411 

30 min at 37 °C. To extract HIV-1 genome RNA, concentrated HIV-1 virions were lysed by 412 

Trizol (Invitrogen) and RNA was purified by phenolic-chloroform sedimentation and 413 

isopropanol precipitation. For transfection, cells were treated with 100 ng/mL phorbol 12-414 

myristate 13-acetate (PMA) for 24 h and changed with fresh RPMI-1640 media for another 24 h. 415 

PMA-differentiated U937 cells were then transfected with TransIT mRNA transfection kits 416 

(Mirus) according to the manufacturer protocol. At 16 h post-transfection, cells were harvest for 417 

RT-qPCR analysis. For infection assays, HIV-1 p24 levels were quantified by an enzyme-linked 418 

immunosorbent assay (ELISA) using anti-p24-coated plates (The AIDS and Cancer Virus 419 

Program, NCI-Frederick, MD) as described [30]. PMA-differentiated U937 cells were infected 420 

by equal amounts of HIV-1 (250 pg of p24) for 16 h and then cells were collected for Western 421 

blotting or RT-qPCR analysis. 422 

 423 

Antibodies and immunoblotting. The antibodies used in this study were: anti-GAPDH 424 

(AHP1628, Bio-Rad), anti-FLAG (F1804, Sigma-Aldrich), anti-METTL3 (15073-1-AP, 425 

Proteintech Group), anti-METTL14 (HPA038002, Sigma-Aldrich), anti-FTO (ab124892, 426 

Abcam), anti-ALKBH5 (HPA007196, Sigma-Aldrich), anti-MDA5 (D74E4, Cell signaling), 427 

anti-RIG-I (D14G6, Cell signaling), anti-HIV-1 Gag (clone #24-2, the NIH AIDS Reagent 428 

Program), anti-IRF3 (124399, Abcam), anti-phospho-IRF3 (49475, Cell Signaling), anti-IRF7 429 

(SC-9083, Santa Cruz), anti-phospho-IRF7 (5184, Cell Signaling) and anti-m6A polyclonal 430 

rabbit Ab (202003, Synaptic Systems). Cells were harvested and lysed in cell lysis buffer (Cell 431 
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Signaling) supplemented with protease inhibitor cocktails (Sigma-Aldrich). Immunoblotting was 432 

performed as described [30]. Detection of GAPDH expression was used as a loading control. 433 

 434 

Quantitative RT-PCR. Real-time quantitative RT-PCR (qRT-PCR) was performed as described 435 

[53] to assess the relative levels of IFN-α and IFN-β mRNA expression in cells induced by HIV-436 

1 RNA transfection or HIV-1 infection. Following primers (IDT) were used:  437 

IFN-α, F 5'-GTACTGCAGAATCTCTCCTTTCTCCT-3’ 438 

IFN-α, R 5'-GTGTCTAGATCTGACAACCTCCCAGG-3' 439 

IFN-β, F 5'-AACTTTGACATCCCTGAGGAGATTAAGC-3' 440 

IFN-β, R 5'-GACTATGGTCCAGGCACAGTGACTGTAC-3' 441 

GAPDH, F 5'-GGAAGGTGAAGGTCGGAGTCAACGG-3' 442 

GAPDH, R 5'-CTGTTGTCATACTTCTCATGGTTCAC-3' 443 

 444 

Ethics statement. The study using human PBMCs from healthy control subjects and HIV-445 

positive individuals has been approved by the Institutional Review Board of the University of 446 

Iowa. The study was conducted according to the Declaration of Helsinki guidelines. 447 

 448 

PBMCs from healthy donors and HIV-1 patients. Healthy control subjects and HIV-positive 449 

individuals attending the University of Iowa HIV Clinic who were receiving ART and had HIV-450 

1 viral load levels below the limit of detection (< 20 copies/mL) for over 6 months were invited 451 

to participate in these studies, and all provided written informed consent. HIV-1 viral load was 452 

determined using the COBAS® AmpliPrep/COBAS® TaqMan HIV-1 test (Roche). PBMCs 453 

were purified using BD Vacutainer® CPT™ Mononuclear cell preparation tubes (BD 454 
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Biosciences) as recommended by the manufacturer. Cells were stored in 92% fetal calf serum, 455 

DMSO in liquid nitrogen until use. PBMCs were obtained with 9 healthy donors, 6 HIV-1 456 

viremic patients, and 16 HIV-1 patients treated with ART (Supplemental Table 1). Both viral 457 

RNA and protein were isolated from these PBMCs at the same day using Ambion Paris RNA 458 

and protein extraction kit (ThermoFisher Scientific) and stored in -80 °C until use. The RNA was 459 

quantitated using the NanoDrop spectrophotometer (ThermoFisher Scientific) and was used for 460 

m6A dot-blot detection (200 ng) and IFN-α and IFN-β mRNA analyses as described [53]. The 461 

protein was quantitated using Pierce BCA reagent (ThermoFisher Scientific) and subjected to 462 

Western blot analysis of the m6A writers and erasers. 463 

 464 

Statistical analyses. Data were analyzed using either Mann-Whitney’s t-test or the one-way 465 

analysis of variance (ANOVA) with Prism software and statistical significance was defined as P 466 

< 0.05. All experiments were repeated at least three times. 467 
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 694 

Figure legends (8 main figures and 2 supplemental figures) 695 

 696 

Fig. 1. A single m6A modification of HIV-1 RNA oligos inhibits IFN-I induction in 697 

differentiated U937 cells. (A) HIV-1 5′ UTR (nt. 235–281) RNA oligo 1 (50 ng) with (m6A) or 698 

without (control, Ctrl) m6A modification were subjected to m6A dot-blot analysis. MB, 699 

methylene blue staining (an RNA loading control). (B) and (C) RNA oligo 1 (250 ng) were 700 

transfected into PMA-differentiated U937 cells. After 16 h, IFN-α and IFN-β mRNA levels were 701 

measured by RT-qPCR. Data shown are means ± S.D. of three independent experiments. Mann-702 

Whitney t-test was used for statistical analysis. (D) HIV-1 5′ UTR (nt. 176–217) RNA oligo 2 703 

(200 ng) with (m6A) or without (Ctrl) m6A modification were subjected to m6A dot-blot analysis. 704 

(E) and (F) RNA oligo 2 (250 ng) were transfected into PMA-differentiated U937 cells. After 16 705 

h, IFN-α and IFN-β mRNA levels were measured by RT-qPCR. Data shown are means ± S.D. of 706 

three independent experiments. Un-paired t-test was used for statistical analysis. ** P < 0.005, 707 

compared with Ctrl samples. 708 

 709 

Fig. 2. Inhibition of m6A modifications of HIV-1 RNA by FTO increases IFN-I induction. 710 

(A) m6A levels of HIV-1 genomic RNA were reduced by treatment with demethylase FTO and 711 

50 ng of RNAs were used to confirm the m6A levels by the dot-blot assay. (B) and (C) 250 ng of 712 
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the above RNAs were transfected in PMA-differentiated U937 cells. After 16 h, IFN-α and IFN-713 

β mRNA levels were measured by RT-qPCR. The results are shown as means ± S.D. of three 714 

independent experiments. Mann-Whitney t-test was used for statistical analysis. *** P < 0.0005, 715 

compared with control samples. (D) HEK293T cells were transfected with vector control (Vec) 716 

or an FTO-expressing plasmid (FTO). After 24 h, HIV-1 proviral DNA clone (pNL4-3) was 717 

transfected for 48 h. Then, cell lysates were collected, and Western blotting was performed using 718 

indicated antibodies. (E) the m6A levels in HIV-1 genomic RNA were determined by the dot-719 

blot assay using 100 ng purified viral RNA derived from Vec or FTO-expressing HEK293T 720 

cells. (F) and (G) PMA-differentiated U937 cells were transfected with 500 ng of HIV-1 RNA or 721 

250 ng of poly(I:C) for 16 h and analyzed for IFN-α and IFN-β mRNA levels by RT-qPCR. The 722 

results are shown as means ± S.D. of three independent assays. Un-paired t-test was used for 723 

statistical analysis. * P < 0.05, ** P <0.005, compared between FTO and Vec samples. (H) and 724 

(I) PMA-differentiated U937 cells were infected by HIV-1 (250 pg of p24) from Vec or FTO-725 

expressing HEK293T cells for 16 h, and IFN-α and IFN-β mRNA levels were quantified by RT-726 

qPCR. The results are shown as means ± S.D. of three independent assays. Un-paired t-test was 727 

used for statistical analysis. * P < 0.05, ** P <0.005, Vec samples were normalized with non-728 

infection samples.  729 

 730 

Fig. 3. Inhibition of m6A modifications of HIV-1 RNA by ALKBH5 increases IFN-I 731 

induction. (A) HEK293T cells were transfected with a vector control (Vec) or an ALKBH5-732 

expressing plasmid (ALKBH5). After 24 h, pNL4-3 was transfected into these cells for 48 h. 733 

Western blotting of cell lysates was performed using specific antibodies. (B) HIV-1 genomic 734 

RNA m6A levels were determined by the dot-blot assay using 100 ng viral RNA from Vec or 735 
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ALKBH5-expressing HEK293T cells. (C) and (D) PMA-differentiated U937 cells were 736 

transfected with 500 ng of the indicated HIV-1 RNAs. At 16 h post-transfection, cells were 737 

collected for the analysis of IFN-α and IFN-β mRNA levels by RT-qPCR. The results are shown 738 

as means ± S.D. of three repeated assays. * P < 0.05, **** P <0.0001. (E) and (F) PMA-739 

differentiated U937 cells were infected with HIV-1 (250 pg of p24) from Vec or ALKBH5-740 

expressing HEK293T cells for 16 h, and IFN-α and IFN-β mRNA levels were quantified by RT-741 

qPCR. The results are shown as means ± S.D. of three repeated experiments. Vec samples were 742 

normalized with non-infection samples. Un-paired t-test was used for statistical analysis. *** P < 743 

0.0005, **** P <0.0001. Vec samples were normalized with non-infection samples. Un-paired t-744 

test was used for statistical analysis. 745 

 746 

Fig. 4. Knockout of erasers increases m6A levels in HIV-1 RNA and reduces IFN-I 747 

induction. (A) A single clone-derived control, FTO or ALKBH5 knockout (KO) HEK293T cells 748 

were transfected with pNL4-3 HIV proviral DNA. After 48 h, cells were collected for Western 749 

blotting analysis. (B) HIV-1 from the KO cells were collected and viral genomic RNA m6A level 750 

was determined by the dot-blot assay using 200 ng viral RNA. (C) and (D) HIV-1 RNA (250 ng) 751 

from KO cells were transfected into PMA-differentiated U937 cells. After 16 h, cells were 752 

collected for the analysis of IFN-α and IFN-β mRNA levels by RT-qPCR. The results are shown 753 

as means ± S.D. of three repeats with similar result. * P < 0.05, *** P < 0.0005. Un-paired t-test 754 

was used for statistical analysis. (E) and (F) HIV-1 (250 pg of p24) from KO cells were used to 755 

infect PMA-differentiated U937 cells for 16 h, and cells were collected for the analysis of IFN-α 756 

and IFN-β mRNA levels by RT-qPCR. The results are shown as means ± S.D. of three repeats 757 

with similar result. ** P <0.005. Un-paired t-test was used for statistical analysis. 758 
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 759 

Fig. 5. DAA-treatment reduces m6A modifications of HIV-1 RNA and increases IFN-I 760 

induction through IRF3 and IRF7 phosphorylation.  HEK293T cells were treated with 761 

solvent (Ctrl, PBS) or DAA (50 µM) for 3 h and then transfected with the HIV-1 proviral DNA 762 

pNL4-3. HIV-1 in the supernatants was collected after 48 h. (A) HIV-1 p24 levels in the 763 

supernatants were measured by ELISA. (B) RNA (100 ng) from these viruses used for the m6A 764 

dot-blot assay. (C) and (D) HIV-1 RNA (250 ng) from Ctrl and DAA-treated samples were 765 

transfected into PMA-differentiated U937 cells. After 16 h, cells were collected for the analysis 766 

of IFN-α and IFN-β mRNA levels by RT-qPCR. The results are shown as means ± S.D. of three 767 

independent experiments. *** P < 0.0005, **** P < 0.0001. Un-paired t-test was used for 768 

statistical analysis. (E) and (F) HIV-1 (250 pg of p24) from HEK293T cells was used to infect 769 

PMA-differentiated U937 cells for 16 h. After 16 h, U937 cells were collected for the analysis of 770 

IFN-I mRNA levels by RT-qPCR. The results are shown as means ± S.D. of three independent 771 

experiments. *** P < 0.0005, **** P < 0.0001, Ctrl samples were normalized with non-infection 772 

samples. Un-paired t-test was used for statistical analysis. (G) PMA-differentiated U937 cells 773 

were infected with HIV-1 (250 pg of p24) derived from DAA-treated or control HEK293T cells 774 

for 4 h, and U937 cell lysates (50 µg proteins/sample) were used for the analysis of the indicated 775 

proteins by Western blotting. GAPDH is used as a loading control. The p-IRF3 and p-IRF7 776 

indicate phosphorylated IRF3 and IRF7, respectively. 777 

 778 

Fig. 6. RIG-I senses m6A modification of HIV-1 RNA to induce IFN-I expression. (A) RIG-I 779 

expression levels in control (Con) and RIG-I knockout (sgRIG-I) U937 cells were measured by 780 

Western blotting. (B) Con and RIG-I KO U937 cells were transfected with 250 ng of poly(I:C). 781 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 4, 2020. ; https://doi.org/10.1101/2020.11.04.368712doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.04.368712
http://creativecommons.org/licenses/by-nc-nd/4.0/


 33 

At 16 h post-transfection, cells were collected for the analysis of IFN-α and IFN-β mRNA levels 782 

by RT-qPCR. The results are shown as means ± S.D. of three repeats with similar result. ** P < 783 

0.005, **** P < 0.0001. (C) and (D) PMA-differentiated Con and RIG-I KO U937 cells were 784 

transfected with 250 ng of RNA oligo 1 (C) or oligo 2 (D). After 16 h, cells were collected for 785 

the analysis of IFN-α and IFN-β mRNA levels by RT-qPCR. The results are shown as means ± 786 

S.D. of three repeated experiments. * P < 0.05, ** P < 0.005, **** P < 0.0001. Un-paired t-test 787 

was used for statistical analysis. ns, not significant. 788 

 789 

Fig. 7. MDA5 has no specific role in m6A modification of HIV-1 RNA to induce IFN-I 790 

expression. (A) MDA5 expression levels were measured by Western blotting using control 791 

(shCon) and stable MDA5 knockdown (shMDA5) U937 cells. (B) shCon and shMDA5 U937 792 

cells were transfected with poly(I:C). At 16 h post-transfection, cells were collected for the 793 

analysis of IFN-α and IFN-β mRNA levels by RT-qPCR. The results are shown as means ± S.D. 794 

of three repeats with similar result. * P < 0.05, ** P < 0.005. (C) and (D) PMA-differentiated 795 

shCon and shMDA5 U937 cells were transfected with 250 ng of RNA oligo 1 (C) or oligo 2 (D). 796 

At 16 h post-transfection, cells were collected for the analysis of IFN-α and IFN-β mRNA levels 797 

by RT-qPCR. The results are shown as means ± S.D. of three repeated experiments. 798 

 799 

Fig. 8. Increased m6A levels in total RNA of PBMCs from HIV-1 viremic patients. (A) Total 800 

cellular RNA was isolated from the PBMCs of uninfected healthy individuals (control), HIV-1 801 

infected individuals without ART (viremic), and HIV-1 infected individuals on ART (ART) 802 

were subjected to m6A dot-blot analysis (200 ng RNA). The dots were quantified and normalized 803 

to the respective methylene blue control. The m6A level of first control sample (C1) was set as 1. 804 
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Each symbol within the column represents each individual’s data point. (B) and (C) The isolated 805 

RNA from the PBMCs of the above described three groups of patients were subjected to RT-806 

qPCR for measuring IFN-α and IFN-β mRNA expression. The values were normalized to their 807 

respective internal control (GAPDH). Each symbol represents the data from each individual. (D) 808 

Cell lysates of PBMCs of each group were subjected to Western blotting for m6A writers 809 

(METTL3 and METTL14) and erasers (ALKBH5 and FTO). The bands were quantified using 810 

Image J software and normalized to GAPDH control before plotting into this graphical 811 

representation. n, the number of healthy donors or patients. Five samples (C6-C9 and V6) were 812 

not included in the Western blot analysis due to the lack of sufficient cell lysates. * P < 0.05, ** 813 

P < 0.005. The one-way analysis of variance (ANOVA) nonparametric was used for statistical 814 

analysis.  815 
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Supplemental Fig. S1-S2 legends 816 

 817 

Fig. S1. Detection of RNA m6A modification and writer and eraser proteins in PBMCs 818 

from healthy donors and HIV-1 patients. (A) Total cellular RNA was isolated from the 819 

PBMCs of three groups; uninfected healthy control individuals (C1-C9), HIV-1 infected 820 

individuals without ART (V1-V6) and with ART (A1-A16) were subjected to m6A dot-blot 821 

analysis (200 ng RNA/sample). Methylene blue (MB) staining serves as a loading control. Here 822 

every blot represents one patient with the code as referred in Supplemental Table 1. (B) Cell 823 

lysates of PBMCs of each group uninfected healthy individuals (C1-C5), HIV-1 infected 824 

individuals without ART (V1-V5) and with ART (A1-A16) were subjected to Western blot 825 

analysis. Five samples (C6-C9 and V6) were not included in the Western blot analysis due to the 826 

lack of sufficient cell lysates. Equal amount of proteins (10 µg) of whole cell lysate was 827 

immunoblotted for m6A writers (METTL3 and METTL14) and erasers (ALKBH5 and FTO) 828 

using specific antibodies. GAPDH serves as a loading control. For the densitometry quantitation 829 

of METTL3 levels, only one band at an approximate molecular weight of 70 kDa was used. 830 

 831 

Fig. S2. HIV-1 RNA escapes from innate immune surveillance. In HIV-1 producer cells, 832 

writers add and erasers remove internal m6A modifications (blue dots) of viral RNA, 833 

respectively. HIV-1 with m6A-modificed RNA avoids innate sensing in infected myeloid cells, 834 

thereby escaping immune surveillance. Overexpression (O/E) of erasers or inhibiting m6A 835 

addition with DAA in HIV-1 producer cells generates viruses with m6A-defective viral RNA. 836 

When HIV-1 with m6A-defective RNA infects macrophage-like cells, the cytoplasmic RNA 837 

sensor RIG-I recognizes unmodified HIV-1 RNA and triggers phosphorylation (indicated by the 838 
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letter P) of the transcription factors IRF3 and IRF7. Phosphorylation of IRF3/7 leads to IFN-α/β 839 

expression and generates antiviral innate immune responses in HIV-1-infected macrophage-like 840 

cells. However, it remains to be established whether m6A-defective HIV-1 RNA enhances 841 

binding to RIG-I, thereby inducing IRF3/7 activation and IFN-I expression in cells.  842 
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Supplemental Table 1. Details of PBMC samples from healthy control donors (C1-C9), 843 

HIV-1 viremic patients (V1-V6), and HIV-1 patients on ART (A1-A16) 844 

 845 

Sample 
code 

Donor 
gender 

Infection status HIV-1 viral load 
(copies/mL) 

Therapy regimen 

C1 Male (M) Uninfected 0 No therapy 
C2 M Uninfected 0 No therapy 
C3 M Uninfected 0 No therapy 
C4 M Uninfected 0 No therapy 
C5 M Uninfected 0 No therapy 
C6 M Uninfected 0 No therapy 
C7 M Uninfected 0 No therapy 
C8 M Uninfected 0 No therapy 
C9 M Uninfected 0 No therapy 

V1 M HIV+Viremic 120,000 Pre-therapy 

V2 M HIV+Viremic 34,000 Pre-therapy 

V3 M HIV+Viremic 1,318,000 Pre-therapy 

V4 M HIV+Viremic 35,000 Pre-therapy 

V5 M HIV+Viremic 16,000 Pre-therapy 

V6 M HIV+Viremic 22,909 Pre-therapy 

A1 M HIV+Suppressed ND (non-detectable) Abacavir, Lamivudine, 
Efavirenz 

A2 M HIV+Suppressed ND Tenofovir, 
emtricitabine, 
dolutegravir 

A3 M HIV+Suppressed ND Abacavir, Lamivudine, 
dolutegravir 

A4 M HIV+Suppressed ND Tenofovir, 
emtricitabine, 
dolutegravir 

A5 M HIV+Suppressed ND Abacavir, Lamivudine, 
dolutegravir 
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A6 M HIV+Suppressed ND Tenofovir, 
emtricitabine, Efavirenz 

A7 M HIV+Suppressed ND Tenofovir, 
emtricitabine, 
dolutegravir 

A8 M HIV+Suppressed ND Tenofovir, 
emtricitabine, 
dolutegravir 

A9 M HIV+Suppressed ND Tenofovir, 
emtricitabine, Efavirenz 

A10 M HIV+Suppressed ND Abacavir, Lamivudine, 
dolutegravir 

A11 M HIV+Suppressed ND Abacavir, Lamivudine, 
dolutegravir 

A12 M HIV+Suppressed ND Abacavir, Lamivudine, 
Efavirenz 

A13 M HIV+Suppressed ND Tenofovir, 
emtricitabine, 

elvitegravir, cobicistat 
A14 M HIV+Suppressed ND Abacavir, Lamivudine, 

dolutegravir 
A15 M HIV+Suppressed ND Abacavir, Lamivudine, 

dolutegravir 
A16 M HIV+Suppressed ND Abacavir, Lamivudine, 

dolutegravir 
 846 
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Fig. 7
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Supplemental Fig. S1
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