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Abstract 

Background: The identification of expression quantitative trait methylation (eQTMs), defined 

as correlations between gene expression and DNA methylation levels, might help the 

biological interpretation of epigenome-wide association studies (EWAS). We aimed to 

identify autosomal cis-eQTMs in child blood, using data from 832 children of the Human 

Early Life Exposome (HELIX) project.  

Methods: Blood DNA methylation and gene expression were measured with the Illumina 

450K and the Affymetrix HTA v2 arrays, respectively. The relationship between methylation 

levels and expression of nearby genes (transcription start site (TSS) within a window of 1 

Mb) was assessed by fitting 13.6 M linear regressions adjusting for sex, age, and cohort.  

Results: We identified 63,831 autosomal cis-eQTMs, representing 35,228 unique CpGs and 

11,071 unique transcript clusters (TCs, genes). 74.3% of these cis-eQTMs were located at 

<250 kb, 60.0% showed an inverse relationship and 23.9% had at least one genetic variant 

associated with the methylation and expression levels. They were enriched for active blood 

regulatory regions. Adjusting for cellular composition decreased the number of cis-eQTMs to 

37.7%, suggesting that some of them were cell type-specific. The overlap of child blood cis-

eQTMs with those described in adults was small, and child and adult shared cis-eQTMs 

tended to be proximal to the TSS, enriched for genetic variants and with lower cell type 

specificity. Only half of the cis-eQTMs could be captured through annotation to the closest 

gene. 

Conclusions: This catalogue of blood autosomal cis-eQTMs in children can help the 

biological interpretation of EWAS findings, and is publicly available at 

https://helixomics.isglobal.org/.  
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Abbreviations  

BivFlnx: flanking bivalent region  

CpG: cytosine nucleotide followed by a guanine nucleotide 

eQTM: expression quantitative trait methylation  

eQTL: expression quantitative trait locus 

Enh: enhancer 

EnhBiv: bivalent enhancer 

EnhG: genic enhancer 

EWAS: epigenome-wide association study 

FC: fold change 

FDR: false discovery rate 

GO: gene ontology 

GWAS: genome-wide association study 

HELIX: Human Early-Life Exposome project 
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Het: heterochromatin  

IQR: interquartile range 

meQTL: methylation quantitative trait locus 

OR: odds ratio 

Quies: quiescent region 

ReprPC: repressed Polycomb 

ReprPCWk: weak repressed polycomb 

SE: standard error 

SNP: single nucleotide polymorphism 

TC: transcript cluster 

TSS: transcription start site 

TssA: active transcription start site 

TssAFlnk: flanking active transcription start site 

TssBiv: bivalent transcription start site 

TSS200: proximal promoter, from TSS to 200 bp 

TSS1500: distal promoter, from 200 bp to 1,500 bp 

Tx: transcription region 

TxFlnk: transcription at 5’ and 3’  

TxWk: weak transcription region 

3’UTR: 3’ untranslated region 
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5’UTR: 5’ untranslated region 

ZNF.Rpts: zinc finger genes and repeats 

Background 

Cells from the same individual, although sharing the same genome sequence, differentiate 

into diverse lineages that finally give place to specific cell types with unique functions. This is 

orchestrated by the epigenome, which regulates gene expression in a cell/tissue and time-

specific manner [1–3]. Besides the central role of the epigenome in regulating embryonic 

and fetal development, X-chromosome inactivation, genomic imprinting, and silencing of 

repetitive DNA elements, it is also responsible for the plasticity and cellular memory in 

response to environmental perturbations [1–3]. When this happens during prenatal or early 

life, the re-programmed epigenome might not match the later environment, and this can lead 

to increased disease risk. This is known as the Developmental Origins of Health and 

Disease (DoHAD)[4]. In addition to the plasticity or re-programming hypothesis, 

environmental insults experienced during prenatal life may directly disrupt the correct 

development of organs without a homeostatic response, which might also have long-term 

consequences on health [4].  

Massive epigenetic alterations, caused by somatic mutations or as a result of age and/or 

injury, were initially described in cancer [3]. The paradigm of environmental factors modifying 

the epigenome and leading to increased disease risk was then extrapolated from cancer to a 

wide range of common diseases. As a consequence, a high number of epigenome-wide 

association studies (EWAS) investigating the association between prenatal and postnatal 

exposure to environmental factors and DNA methylation, and between DNA methylation and 

disease [1,3] have been performed in he recent years. EWAS have found thousands of 

associations between DNA methylation and environmental exposures or disease, which  

have been inventoried in two catalogues: the EWAS catalogue [5] and the EWAS Atlas [6]. 
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For instance, the latter includes 0.5 million associations for 498 traits from 1,216 studies, 

including 155 different cells/tissues.  

Despite the success of EWAS in identifying altered methylation patterns, the role of genetic 

background, access to the target tissue/cell, confounding, reverse causation and biological 

interpretation are still challenging issues [1,3]. Regarding the latter, most studies do not 

dispose of transcriptional data to test the consequences of DNA methylation changes in 

gene expression. When gene expression is not available, a common approach is to assume 

that CpGs affect the expression of the closest gene [7]. Although this approach is easy to 

implement, it is limited in the fact that CpGs might regulate distant genes or might not 

regulate any gene at all [1,8]. Another approach to interpreting findings is to search for 

regulated genes of candidate CpGs in expression quantitative trait methylation (eQTM) 

studies, i.e. genome-wide studies investigating the associations between DNA methylation 

levels and gene expression [9,10]. Several eQTM studies have been published in diverse 

cell types/tissues: whole blood [8,11], monocytes [11–13], lymphoblastoid cell lines, T-cells 

and fibroblasts derived from umbilical cords [14,15], fibroblasts [16], liver [17], skeletal 

muscle [18], nasal airway epithelium [19] and placenta [20]. As most of the EWAS are 

conducted in whole blood [6,21], there is a need for comprehensive eQTM studies in this 

tissue. Available whole blood eQTM studies to date only cover samples from adults [8,11] 

and their validity in children has not been assessed. Besides, they do not consider the effect 

of genetics and blood cellular composition. 

In this study, we analyzed DNA methylation and gene expression data from the Human 

Early-Life Exposome (HELIX) project to generate the first blood autosomal cis-eQTM 

catalogue in children (https://helixomics.isglobal.org/). We characterized child blood 

autosomal cis-eQTMs at the molecular level, compared them with eQTMs identified in 

adults, analyzed the proportion of cis-eQTM CpG-gene pairs captured through annotation to 

the closest gene, and assessed the influence of genetic variation and blood cell type 

specificity on the association between methylation and gene expression in eQTMs. An 
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overview of all the analyses can be found in Figure 1. This public resource will help the 

functional interpretation of EWAS findings in children.  
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Figure 1. Analysis workflow. The figure summarizes the analyses conducted in this study. The first 
step was the identification of blood autosomal cis-eQTMs (1 Mb window) in 823 European ancestry 
children from the HELIX project by running two models: the main model  adjusted for age, sex, and 
cohort (1); and an additional model further adjusted for blood cell type proportions (2). Then, we 
characterized cis-eQTMs identified in the main model by performing different enrichment analyses (3), 
analyzing their overlap with CpGs described in the literature (4), evaluating the proportion of cis-
eQTM CpG-gene pairs captured through annotation to the closest gene (5), assessing the effect of 
genetic variants (6) and age by checking the overlap with eQTMs described in adults (7). Finally, we 
used cis-eQTMs identified in the additional model to investigate blood cell type specificity (8).  

 

Results 

Study population and molecular data  

The study includes 823 children of European ancestry from the HELIX project with available 

DNA methylation and gene expression data. These children, enrolled in 6 cohorts, were 

aged between 6 and 11 years old and were sex balanced (Table 1).  

Table 1. Descriptive of the study population. 

Variable N (%) 

Cohort 

BIB 80 (9.7%) 

EDEN 80 (9.7%) 

KANC 143 (17.4%) 

MOBA 188 (22.8%) 

RHEA 154 (18.7%) 

SAB 178 (21.6%) 

Sex 

Female 372 (45.2%) 

Male 451 (54.8%) 

Variable Median (IQR) 
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Age  8.06 (6.49-8.86) 

Blood cell type proportions 

Natural Killer 0.02 (0.00-0.05) 

B-cell 0.11 (0.9-0.14) 

CD4+ T-cell 0.19 (0.15-0.23) 

CD8+ T-cell 0.13 (0.10-0.16) 

Monocytes 0.08 (0.07-0.10) 

Granulocytes 0.44 (0.37-0.52) 

IQR: interquartile range 

To initially explore methylation data, the 386,518 autosomal CpGs were classified according 

to their median methylation levels in low (0.0-0.3), medium (0.3-0.7) and high (0.7-1.0) [22]. 

Low (41.8%) and high (47.7%) methylation levels were the most abundant CpG categories. 

We also classified them as invariant (45.0%) or variant (55.0%) based on a methylation 

range threshold of 0.05 points, measured as the difference between the methylation values 

in percentile 1 and percentile 99 [23]. As expected, CpGs with medium methylation levels, 

which likely represent CpGs whose methylation status changes among blood cell types or 

which are influenced by genetic variants, showed higher variability in the population  (p-value 

< 2e-16, Figure S1).  

Gene expression data comprised 58,254 transcript clusters (TCs). Of those, 23,054 TCs 

encoded for a protein, according to the Affymetrix annotation. TCs are defined as groups of 

one or more probes covering a region of the genome, reflecting all the exonic transcription 

evidence known for the region, and corresponding to a known or putative gene.  

We paired each TC to all CpGs closer than 500 Kb from its transcription start site (TSS), 

either upstream or downstream (1 Mb window around the TSS). In total, we obtained 

13,615,882 TC-CpG pairs, 100 CpGs were not paired to any TC, and 189 TCs were not 

paired to any CpG, most of them being non-coding (92.1%). TCs were more promiscuous 
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than CpGs: each TC was paired to a median of 162 CpGs (interquartile range (IQR): 93; 

297) while each CpG was paired to a median of 30 TCs (IQR: 20; 46) (Figure S2).  

Overview of blood autosomal cis-eQTMs in children 

Identification and classification of blood autosomal cis-eQTMs 

We tested the association between DNA methylation and gene expression levels of the 13.6 

million autosomal TC-CpG pairs through linear regressions. After correcting for multiple 

testing (see Material and Methods), we identified 63,831 significant child blood autosomal 

cis-eQTMs (0.47% of total TC-CpG pairs). For simplicity, we will refer to them as eQTMs in 

the subsequent text. These eQTMs comprised 35,228 unique CpGs and 11,071 unique TCs, 

of which 7,878 were annotated as coding genes. 38,310 eQTMs (60.0%) showed inverse 

associations, meaning that higher DNA methylation was associated with lower gene 

expression. Each TC was associated with a median of 2 CpGs (IQR = 1; 6), while each CpG 

was associated with a median of 1 TC (IQR = 1; 2) (Figure S3). As expected, CpGs in 

eQTMs were enriched for CpGs variable in the population (odds ratio (OR) = 6.1, p-value < 

2.2e-16) (Figure S4) and for TCs with call rates >90% (OR = 5.4, p-value < 2.2e-16) (Figure 

S5). The complete catalogue of eQTMs can be downloaded from 

https://helixomics.isglobal.org/. 

Then, we classified the CpGs in eQTMs into 5 types following two criteria: (1) the number of 

TCs affected, distinguishing between mono-CpGs (CpGs associated with a unique TC), and 

multi-CpGs (CpGs associated with two or more TCs); and (2) the direction of the effect, 

distinguishing between CpGs in inverse eQTMs, CpGs in positive eQTMs, and bivalent-

CpGs (CpGs that exhibit inverse effects on some TCs and positive effects on others). Mono-

CpGs in inverse eQTMs were the most abundant type (35.9%) (Table 2). CpG types were 

not independent: mono-CpGs were enriched for CpGs with positive effects compared to 

multi-CpGs (OR = 1.23, p-value < 2.2e-16). 
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Table 2. Number of CpGs in child blood autosomal cis-eQTMs by type.  

 

CpGs in inverse 

eQTMs (N, %) 

CpGs in positive 

eQTMs 

(N, %) 

Bivalent-CpGs  

(N, %) 

Total  

(N, %) 

Mono-CpGs 12,637 (35.9%) 8,961 (25.4%) 0, by definition 21,598 (61.3%) 

Multi-CpGs 6,135 (17.4%) 3,530 (10.0%) 3,965 (11.3%) 13,630 (38.7%) 

Total 18,772 (53.3%) 12,491 (35.4%) 3,965 (11.3%) 35,228 (100%) 

Table percentages refer to the total number of CpGs in autosomal cis-eQTMs.  

CpGs in eQTMs are close to their target TC and have modest effects  

CpGs whose methylation level was associated with gene expression tended to be close to 

the TSS, being 74.3% of all eQTMs located at <250 kb (Figure 2). Globally, the median 

distance between a CpG and a TC TSS in an eQTM was 1.3 kb (IQR = -84 kb; 117 kb). The 

observed downstream shift can be explained because for each TC we chose the most 

upstream TSS, which might not represent the TSS that gives the most abundant transcript in 

the blood (Figure 2). This shift depended on the direction of the effect: median distance for 

positive and inverse eQTMs were 6.7 kb (IQR = -79 kb; 103 kb) and 0.8 kb (IQR = -93 kb; 

136 kb), respectively. A similar shift was observed for eQTLs (expression quantitative trait 

loci, i.e. single nucleotide polymorphisms (SNPs) associated with gene expression) in the 

Genotype-Tissue Expression (GTEx) project [24].  

We report the effect size of eQTMs as the log2 fold change (FC) of gene expression per 0.1 

points increase in methylation (or 10 percentile increase). In absolute terms, the median 

effect size was 0.12, being the minimum 0.002 and the maximum 16.4, and with 91.4% of 

the eQTMs with an effect size <0.5. A median effect size of 0.12 means that a change of 0.1 

points in methylation levels was associated with around a 9% increase/decrease of gene 
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expression. We did not find any association between the effect size and the CpG-TC TSS 

distance or the relative position to the TSS (upstream or downstream) (Figure S6).  

Figure 2. Distribution of the distance between CpG and TC TSS by type of CpG-TC pair. CpG-
TC pairs were classified in: non-eQTMs (CpGs not belonging to any eQTM, in black); inverse eQTMs 
(inversely associated CpG-TC pairs defined as eQTMs, in yellow); and positive eQTMs (positively 
associated CpG-TC pairs defined as eQTMs, in green). Distance between CpG and TC TSS is 
expressed in kb. 

CpGs in eQTMs are enriched for blood active chromatin states and 

medium methylation levels 

We characterized CpGs in eQTMs by evaluating their enrichment for diverse regulatory 

elements, including CpG island relative position and 15 chromatin states retrieved from 27 

blood cell types from the ROADMAP Epigenomics project [25]. CpGs in eQTMs were 

depleted for CpG islands (ORCpG-Island = 0.51, p-valueCpG-Island < 2e-16) while enriched for all 

the other positions (CpG island shores and shelves and open sea) (Figure 3A). CpGs in 

positive and inverse eQTMs showed quite similar distributions. Details on the proportion of 

eQTMs in each CpG island relative position can be seen in Figure S7A. 
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CpGs in eQTMs were enriched for several active blood chromatin states: flanking active 

TSSs (ORTssAFlnk = 1.38, p-valueTssAFlnk = 1.38e-181), weak transcription regions (ORTxWk = 

1.54, p-valueTxWk < 2e-259), enhancers (OREnh = 2.43, p-valueEnh < 2e-259), genic enhancers 

(OREnhG = 1.82, p-valueEnhG = 1.1e-259), and zinc finger genes and repeats (ORZNF.Rpts = 1.7, 

p-valueZNF.Rpts = 9.48e-58) (Figure 3B; Figure S7B for proportions). In these regions, CpGs in 

positive and inverse eQTMs presented similar enrichments, except for flanking active TSSs 

(TssAFlnk) and genic enhancers (EnhG) for which enrichment was specific to CpGs in 

inverse eQTMs. Moreover, CpGs in positive eQTMs were specifically depleted for active 

transcription start sites (ORTssA = 0.58, p-valueTssA = 1.22e-149) and transcription at 5’ and 3’ 

regions (ORTxFlnk = 0.45, p-valueTxFlnk = 2.69e-129). Regarding inactive chromatin states, we 

observed that both CpGs in positive and inverse eQTMs were enriched for quiescent regions 

(ORQuies = 1.33, p-valueQuies = 2.27e-131), while specifically CpGs in positive eQTMs were 

enriched for repressed and weak repressed Polycomb regions (ORReprPC = 1.53, p-

valueReprPC = 2.17e-114 and ORReprPCWk = 1.62, p-valueReprPCWk = 1.01e-148, respectively). 

Finally, enrichment for bivalent regions was dependent on the direction of the effect: while 

CpGs in positive eQTMs were enriched for flanking bivalent regions (ORBivFlnx = 1.34, p-

valueBivFlnx = 2.17e-38) and bivalent enhancers (OREnhBiv = 1.66, p-valueEnhBiv = 2.79e-132), 

CpGs in inverse eQTMs were depleted for bivalent TSSs (ORTssBiv = 0.85, p-valueTssBiv = 

4.0e-10). Overall, these results suggest that CpGs in eQTMs tend to be in active blood 

regulatory regions, with CpGs in inverse eQTMs specifically located in promoters 

(TssAFlnk).  

Given that methylation levels characterize regulatory elements, we also evaluated whether 

methylation levels were related to the presence of eQTMs. We found that CpGs in eQTMs 

were enriched for CpGs classified as medium methylation (ORMedium-Met = 2.62, p-valueMedium-

Met < 2e-16) and depleted for CpGs classified as low methylation (ORLow-Met = 0.61, p-

valueLow-Met < 2e-16) (Figure 3C; Figure S7C for proportions). We observed the same pattern 

for inverse and positive-CpGs. To evaluate the influence of methylation levels in the previous 
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enrichment for regulatory elements, we compared the median methylation levels between 

CpGs in eQTMs versus CpGs not being part of eQTMs, stratified by regulatory element. In 

all regulatory elements, CpGs in eQTMs tended to exhibit more intermediate methylation 

levels compared to CpGs not in eQTMs (Figure S8-S9). This was especially evident for CpG 

islands, active TSSs (TssA), and transcription at 5’ and 3’ regions (TxFlnk).  All these three 

regulatory elements were depleted among CpGs in eQTMs (Figure 3).  

Figure 3. Enrichment of CpGs in child blood autosomal cis-eQTMs for different regulatory 
elements. CpGs were classified in all CpGs in eQTMs (grey); CpGs in inverse eQTMs (yellow); and 
CpGs in positive eQTMs (green). The y-axis represents the odds ratio (OR) of the enrichment. A) 
Enrichment for CpG island relative positions: CpG island, N- and S-shore, N- and S-shelf, and open 
sea. B) Enrichment for ROADMAP blood chromatin states: active TSS (TssA), flanking active TSS  
(TssAFlnk), transcription at 5’ and 3’ (TxFlnk), transcription region (Tx), weak transcription region 
(TxWk), enhancer (Enh);  genic enhancer (EnhG), zinc finger genes and repeats (ZNF.Rpts), flanking 
bivalent region (BivFlnx), bivalent enhancer (EnhBiv), bivalent TSS (TssBiv), heterochromatin (Het), 
repressed Polycomb (ReprPC), weak repressed polycomb (ReprPCWk), and quiescent region 
(Quies). C) Enrichment for groups of CpGs with different median methylation levels: low (0-0.3), 
medium (0.3-0.7), and high (0.7-1)[22].  
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Genes in eQTMs are involved in immune system functions 

To identify which biological functions were regulated by eQTMs, we ran a gene-set 

enrichment analysis based on the genes annotated to TCs in these eQTMs. 6,675 out of the 

11,071 annotated genes in eQTMs were present in gene ontology (GO), leading to 76 

enriched GO terms (q-value < 0.001) (Table S1). As expected, due to the tissue analyzed, 

59.2% of the GO terms were related to immune responses (N = 45), followed by GO terms 

associated with cellular processes (N = 19), and metabolic processes (N = 12). Among 

immune GO terms, 20 of them were part of innate immunity, 18 of adaptive response and 7 

were general/other immune pathways.  

CpGs in eQTMs are enriched for CpGs associated with phenotypic traits 

and/or environmental exposures  

We assessed whether CpGs in eQTMs were enriched for CpGs whose methylation levels 

had been related to phenotypic traits and/or environmental exposures. To this end, we 

retrieved CpGs from EWAS performed in blood of European ancestry subjects: 143,384 

CpGs from the EWAS catalogue [5], and 54,599 CpGs from the EWAS Atlas [6]. Among 

them, 16,083 and 9,547 CpGs were part of our eQTMs, representing 45.7% and 27.1% of all 

eQTMs. We found that CpGs in eQTMs were enriched for CpGs in these EWAS databases 

in comparison to CpGs not in eQTMs (OREWAS-catalogue = 1.48; p.valueEWAS-catalogue < 2e-16; 

OREWAS-Atlas = 2.53; p-valueEWAS-Atlas < 2-16) (Figure S10). Enrichment was more pronounced 

in CpGs in inverse eQTMs than in CpGs in positive eQTMs. Of note, CpGs present in the 

EWAS catalogue and the EWAS Atlas tended to exhibit medium methylation levels 

compared to CpGs not listed in the datasets (Figure S11). Among them, CpGs in eQTMs did 

not have a different distribution of methylation levels compared to CpGs not in eQTMs.  
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Annotating CpGs to the closest gene only partially 

captures eQTMs 

A standard approach to interpret EWAS findings is to assume that CpGs regulate the 

expression of proximal genes. These proximal genes are usually identified through the 

Illumina 450K annotation [26], which annotates a CpG to a gene when the CpG maps into 

the gene body, untranslated regions, or promoter region defined as <1,500 bp upstream the 

TSS. We evaluated to which extent the Illumina 450K annotation captures the eQTMs 

identified in our catalogue.  

To do so, we subsetted 351,909 CpG-TC pairs involving 27,610 unique CpGs and 16,957 

unique genes that were present in the Illumina 450K and the Affymetrix HTA 2.0, and thus 

which could be compared (Table S2). First, we analyzed whether these CpG-TC pairs were 

more likely to be eQTMs than CpG-TC pairs not annotated to the same gene. As expected, 

since eQTMs tend to be close to the TSS, 11,675 of the 351,909 CpG-TC pairs were eQTMs 

(OR = 8.69, p-value < 2e-16). These 11,675 eQTMs represented 25.8% of eQTMs where 

CpG and TC were annotated to a comparable gene and 18% of the total number of eQTMs. 

Second, we did a similar comparison but at the CpG level. For 53.6% of the 27,610 CpGs 

annotated to genes assessed in both platforms (38.4% of the CpGs in all eQTMs), the gene 

annotated by Illumina coincided with one of the genes (TCs) associated with the CpG 

through the eQTM analysis. These results suggest that eQTM prediction based on the 

closest gene misses around one-half of the comparable methylation-expression 

associations. In other words, in one half of the eQTMs the CpG is located at >1,500 bp from 

the regulated gene, and thus not captured by the Illumina annotation. Other studies have 

also found that a substantial part of CpG-gene associations do not involve the nearest gene 

[27]. 

Among the 11,675 eQTMs where CpG-TC pairs were annotated to the same gene, we 

analyzed whether the relative position of the CpG in the genic region was related to the 
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expression of the eQTM gene. We used the 351,909 CpG-TC pairs annotated to the same 

gene as the background. CpGs in these eQTMs were enriched for 5’UTRs (OR5’UTR = 1.10, 

p-value5’UTR = 9.1e-5) and gene body positions (ORGeneBody = 1.33 p-valueGeneBody = 1.6e-55), 

while depleted for proximal promoter (ORTSS200 = 0.68, p-valueTSS200 = 2.5e-42), first exon 

(OR1stExon = 0.66, p-value1stExon = 6e-31) and 3’UTRs (OR3’UTR = 0.66, p-value3’UTR = 7.7e-17) 

(Figure S12). Interestingly, when splitting by the direction of the effect, we observed that 

CpGs in inverse and positive eQTMs had different behaviors: CpGs in inverse eQTMs were 

specifically enriched for distal promoter (TSS1500) and 5’UTR, while CpGs in positive 

eQTMs were enriched for gene body (Figure S12). These results confirm previous 

knowledge of the effect of CpG gene relative position on the positive/inverse correlations 

between methylation and gene expression [11].   

Genetic contribution to child blood autosomal cis-eQTM 

regulation 

We hypothesized that genetic variation might regulate DNA methylation and gene 

expression in a fraction of child blood autosomal cis-eQTMs. To test this, we used two 

measures of genetic influence: (1) blood methylation heritability for each CpG calculated 

from twin designs (total additive heritability) and genetic relationship matrices (SNP 

heritability) as reported by Van Dongen and colleagues [28], and (2) meQTLs (methylation 

quantitative trait loci, SNPs associated with DNA methylation levels) identified in the ARIES 

dataset [29].  

First, we found that CpGs in eQTMs had higher total additive and SNP heritabilities than 

CpGs not in eQTMs (with a median difference of 0.23 and 0.10, respectively, and a p-value 

< 2e-16 for both) (Figure 4A and 4B). Moreover, heritabilities were higher in CpGs with a 

higher number of associated TCs (for each associated TC, total additive and SNP 

heritabilities increased 0.025 and 0.026 points, respectively, with a p-value < 2e-16 for both). 
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These results suggest that CpGs that regulate the expression of several genes, master 

regulators, are more prone to be themselves regulated by genetic variation.  

 

Figure 4. Genetic contribution to child blood autosomal cis-eQTMs. CpGs were grouped by the 
number of TCs they were associated with, where 0 means that a CpG was not associated with any 
TC (non-eQTMs). A) Total additive heritability as inferred by Van Dongen and colleagues [28], by 
each group of CpGs associated with a given number of TCs. B) SNP heritability as inferred by Van 
Dongen and colleagues [28], by each group of CpGs associated with a given number of TCs. C) 
Proportion of CpGs having a meQTL (methylation quantitative trait locus), by each group of CpGs 
associated with a given number of TCs.  

Second, we studied whether CpGs in eQTMs were enriched for meQTLs, either cis or trans. 

We restricted our analysis to 2,820,145 meQTLs identified in blood samples of children aged 

7 years in the ARIES dataset and replicated in HELIX (see Material and Methods). These 

2,820,145 SNP-CpG pairs comprised 36,671 CpGs, of which 10,570 were in eQTMs (30.0% 

of the CpGs in eQTMs) (ORmeQTL = 5.35, p-valuemeQTL < 2e-16). CpGs regulated by SNPs 

(meQTLs) accounted for 32.4% of all eQTMs (20,672 eQTMs). While CpGs not in eQTMs 

were associated with a median of 32 SNPs (IQR = 10; 78), CpGs in eQTMs were associated 

with a median of 69 (IQR = 24; 156). Moreover, CpGs associated with several TCs (multi-

CpGs) were more likely to have a meQTL (ORmeQTL = 6.54, p-valuemeQTL < 2e-16) than CpGs 

associated with one meQTL (mono-CpGs) (ORmeQTL = 4.67, p-valuemeQTL < 2e-16, Figure 
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4C). Overall, we found that a substantial fraction of CpGs associated with gene expression 

tended to be under genetic control. 

Given these findings, we then determined whether SNPs in meQTLs were also eQTLs for 

the genes of the eQTMs. After multiple-testing correction, we identified 1,305,417 SNP-CpG-

TC trios with consistent direction of effect. These trios comprised 15,261 eQTMs (23.9% of 

total eQTMs), 8,159 unique CpGs (23.2% of CpGs in eQTMs), and 4,247 unique TCs 

(38.4% of TCs in eQTMs) of which 3,275 were coding (41.6% of coding TCs in eQTMs). In 

these trios, TCs were associated with a median of 2 CpGs (IQR = 1; 4) and 62 SNPs (IQR = 

19; 145), while CpGs were associated with a median of 1 TC (IQR = 1; 2) and 51 SNPs (IQR 

= 17; 122). Both CpGs and TCs were associated with a considerable number of SNPs, likely 

due to the linkage disequilibrium. One example of such a SNP-CpG-TC trio is formed by 

rs11585123-cg15580684-TC01000080.hg.1 (AJAP1), in chromosome 10 (Figure S13).  

Next, we run a gene-set enrichment analysis with the 2,738 genes involved in these trios. 

We identified 26 significant GO terms (q-value < 0.001), of which 12 were related to 

metabolic processes, 8 with immunity (6 innate, 1 adaptive immunity, and 1 general/other), 

and 6 with cellular processes (Table S3). In contrast to the gene-set analysis performed with 

genes of all eQTMs, genes of eQTMs under genetic control seem to be deflected to 

metabolic processes (46.2% vs. 15.8%) rather than to immunity pathways (30.8% vs. 57.9%) 

(Table S4).  

Effect of blood cellular composition on child autosomal 

cis-eQTMs 

Blood is composed of different cell types that may exhibit different DNA methylation and 

gene expression patterns. To identify potential cell type-specific eQTMs, we repeated the 

analyses additionally adjusting for the proportions of the six main blood cell types estimated 

from the methylation data. We hypothesized that methylation, expression, and cell type 
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proportions will be correlated in cell type-specific eQTMs, but not in eQTMs shared among 

cell types, and therefore eQTMs significant in the main model but not in the adjusted model 

would be potential cell type-specific eQTMs (Figure S14).  

After adjusting for blood cellular composition, the number of eQTMs decreased from 63,831 

to 39,749 (37.7% reduction) (Table 3). Most of these 39,749 eQTMs were already detected 

in the main model unadjusted for cell type proportions, with only 17.9% being novel eQTMs. 

Moreover, in the model adjusted for cellular composition, the number of unique CpGs in 

eQTMs was also reduced substantially (37.6%), while this reduction was less dramatic for 

TCs (19.7%). Thus, while CpGs were associated with a similar number of TCs in both 

models, TCs were associated with a lower number of CpGs after adjustment for cell type 

composition, indicating a loss in the transcriptional complexity (Figure S15).  

Table 3. Comparison of the number of child blood autosomal cis-eQTMs between the 

main model and the model additionally adjusted for cellular composition.  

 

Main model 

(unadjusted for 

cellular 

composition)  

Additional 

model 

(adjusted for 

cellular 

composition) 

Shared 

between 

models 

Specific to main 

model 

(unadjusted for 

cellular 

composition) 

Specific to 

additional 

model 

(adjusted for 

cellular 

composition) 

Autosomal  

cis-eQTMs 63,831 39,749 32,625 31,206 (48.9%) 7,124 (17.9%) 

TCs 11,071 8,886 7,880 3,191 (28.8%) 1,006 (11.3%) 

Coding TCs 7,874 6,288 5,698 2,176 (27.6%) 590 (9.4%) 
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CpGs 35,228 21,966 18,529 16,699 (47.4%) 3,437 (15.6%) 

Percentages are referred to the total number of eQTMs, TCs or CpGs for a given model. 

We compared the effect estimates of eQTMs between the two models. For eQTMs 

significant in both models (model-shared eQTMs, N = 32,625), Pearson’s correlation of the 

effect sizes was very high (r = 0.97, p-value < 2e-16) (Figure 5A). Pearson’s correlation for 

eQTMs significant only after adjusting for cellular composition (adjusted cell-specific eQTMs, 

N = 7,124) was lower (r = 0.8, p-value < 2e-16), but the estimates were still comparable, and 

they were marginally significant in the other model (Figure 5B). In contrast, Pearson’s 

correlation for eQTMs uniquely found in the main model (unadjusted cell-specific eQTMs, N 

= 31,206) was much lower (r = 0.54, p-value < 2e-16) with many eQTMs with effect sizes 

close to zero in the adjusted model (Figure 5B). 

Figure 5. Effect of blood cellular composition on child autosomal cis-eQTMs: comparison 
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between main model and model additionally adjusted for cellular composition. eQTMs were 
classified in: model-shared eQTMs (eQTMs identified in both models, in light blue); unadjusted cell-
specific eQTMs (eQTMs only identified in the main model unadjusted for cellular composition, in 
orange); and adjusted cell-specific eQTMs (eQTMs only identified in the model adjusted for cellular 
composition, in dark blue). A) Comparison of effect estimates. Dots represent the effect size of 
eQTMs, while dashed black line represents a theoretical regression line if estimates from both models 
were identical. B) Comparison of -log10 p-values. Dots represent the -log10 p-values of eQTMs, while 
dashed black line represents a theoretical regression line if -log10 p-values from both models were 
identical.  

Subsequently, we compared the characteristics of model-shared versus unadjusted cell-

specific eQTMs. CpGs in model-shared eQTMs were more proximal to the TC TSSs than 

CpGs in unadjusted cell-specific eQTMs (median distancemodel-shared = 1.1 kb (IQR: -30; 62), 

median distanceunadj. cell-specific = 2.7 kb (IQR: -193; 206), p-value < 2e-16) (Figure S16). As 

model-shared eQTMs were closer to the TSS, in 24.4% of them (N = 7,948) the Illumina 

annotated gene matched the Affymetrix gene, while this was reduced to 11.9% in unadjusted 

cell-specific eQTMs (N = 3,727). We also compared whether CpGs in model-shared and 

unadjusted cell-specific eQTMs were enriched for different ROADMAP regulatory regions 

(Figure S17). Compared to CpGs not in eQTMs, both CpGs in model-shared and unadjusted 

cell-specific eQTMs were enriched for enhancers (OREnh (model-shared) = 2.62, p-valueEnh (model-

shared) < 2e-16; OREnh (unadj. cell-specific) = 2.11, p-valueEnh (unadj. cell-specific) < 2e-16; OREnhG (model-shared) 

= 1.63, p-valueEnhG (model-shared) < 2e-16; OREnhG (unadj. cell-specific) = 2.23, p-valueEnhG (unadj. cell-specific) 

< 2e-16). In contrast, CpGs in model-shared eQTMs, which were closer to the TSS, were 

enriched for active states around the promoter (ORTssA = 1.14, p-valueTssA < 2e-16; ORTssAFlnk 

= 1.93, p-valueTssAFlnk < 2e-16), zinc finger genes and repeats (ORZNF.Rpts = 2.44, p-

valueZNF.Rpts < 2e-16) and three bivalent regions; while CpGs in unadjusted cell-specific 

eQTMs were depleted for these same regions (ORTssA = 0.44, p-valueTssA < 2e-16; ORTssAFlnk 

= 0.95, p-valueTssAFlnk = 1.31e-3; ORZNF.Rpts = 0.94, p-valueZNF.Rpts = 0.32). Finally, unadjusted 

cell-specific eQTMs were uniquely enriched for transcription regions (ORTx = 1.20, p-valueTx 

< 2e-16) and repressed regions (ORRprPCWk = 1.60, p-valueRprPCWk < 2e-16; ORQuies = 1.62, p-

valueQuies < 2e-16). The proportions of CpGs in model-shared and unadjusted cell-specific 

eQTMs annotated to the different ROADMAP chromatin states can be found in Figure S18.  
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Finally, we checked our hypothesis that CpGs and TCs in eQTMs uniquely identified in the 

main model (unadjusted cell-specific eQTMs) are blood cell type-specific by contrasting 

them with data from sorted blood cell types. For this, we retrieved DNA methylation levels 

from six sorted blood cell types by Reinius and colleagues [30] and gene expression levels 

from twelve sorted blood cell types from the Blueprint project [31]. We used the log10 of the 

F-statistic of a linear regression (see Material and Methods) as a measure of cell type 

specificity (higher F-statistic, higher specificity), as described elsewhere [32]. CpGs in 

unadjusted cell-specific eQTMs had higher F-statistics than CpGs in model-shared eQTMs 

(mean change in log10 F-statistic = 0.42, p-value < 2e-16) (Figure S19A). Similarly, genes in 

unadjusted cell-specific eQTMs (N = 2,278) had higher F-statistics than genes in model-

shared eQTMs (N = 5,648) (mean change in log10 F-statistic = 0.10, p-value = 4.57e-11) 

(Figure S19B). This suggests that unadjusted cell-specific eQTMs, eQTMs uniquely found in 

the unadjusted model, likely represent blood cell type-specific CpG-TC associations. 

Influence of age on child blood autosomal cis-eQTMs  

To understand the association between methylation and gene expression throughout life, we 

evaluated whether child blood autosomal cis-eQTMs were enriched for CpGs with variable 

blood methylation levels during childhood/adolescence. To this end, we used two databases: 

14,150 CpGs from the MeDALL project whose methylation levels varied between 0 and 8 

years (9,647 CpGs with increased and 4,503 CpGs with decreased methylation) [33]; and 

244,283 CpGs from the Epidelta project with variable methylation levels between 0 and 17 

years (168,314 with increased and 75,969 with decreased methylation) [34]. Of notice, 90% 

of the CpGs identified in MeDALL were also reported in the Epidelta project. CpGs in eQTMs 

were enriched for age variable CpGs in both databases (ORMeDALL = 3.69, p-valueMeDALL < 2e-

16; and OREpidelta = 2.08, p-valueEpidelta < 2e-16), both for CpGs with increased methylation 

over age (ORMeDALL = 3.30, p-valueMeDALL < 2e-16; OREpidelta = 1.48, p-valueEpidelta < 2e-16), as 

well as decreased (ORMeDALL =  3.72, p-valueMeDALL < 2e-16; OREpidelta = 1.61, p-valueEpidelta < 
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2e-16) (Figure 6A). CpGs positively associated with gene expression tended to encompass 

CpGs showing increased methylation over age in both databases, and vice-versa. This 

suggests that the change in DNA methylation levels in age variable CpGs, either increase or 

decrease, is related to activation of expression of genes, rather than to repression. For these 

CpGs, we did not observe different distributions of median methylation levels between CpGs 

in eQTMs and CpGs not in eQTMs (Figure S20).  

 

Figure 6. Influence of age on child blood autosomal cis-eQTMs. A) Enrichment of CpGs in child 
blood autosomal cis-eQTMs for CpGs with variable methylation levels. CpGs in eQTMs were 
classified in all CpGs in eQTMs (grey); CpGs in inverse eQTMs (yellow); and CpGs in positive eQTMs 
(green). Age variable CpGs were retrieved from the MeDALL project (from birth to childhood [33]) and 
the Epidelta project (from birth to adolescence [34]), and they were classified in: variable (CpGs 
whose methylation change over time); decreased (CpGs whose methylation decreases over time); 
and increased (CpGs whose methylation increases over time). The y-axis represents the odds ratio 
(OR) of the enrichment. B) Overlap between autosomal cis-eQTMs identified in adults (GTP: whole 
blood; MESA: monocytes)[11] with eQTMs identified in children (HELIX). All CpG-gene pairs reported 
at p-value < 1e-5 in GTP or MESA that could be compared with pairs in HELIX are shown. C) Overlap 
between blood autosomal cis-eQTMs identified in children (HELIX) with eQTMs identified in adults 
(GTP: whole blood; MESA: monocytes)[11]. All CpG-gene pairs in HELIX that could be compared with 
pairs in GTP or MESA are shown. Note: The comparison has been split into two plots because one 
TC in HELIX can be mapped to different expression probes in GTP and MESA and vice-versa. Only 
comparable CpG-TC pairs are shown (see Material and Methods). 
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Subsequently, we evaluated whether child blood autosomal cis-eQTMs were consistent 

along the life-course. For this, we used data from the adult blood eQTM catalogue of 

Kennedy and colleagues [11], which, similar to ours and in contrast to the catalogue of 

Bonder and colleagues [8], includes eQTMs with underlying genetic variation. The catalogue 

of Kennedy and colleagues contains the summary statistics of all autosomal cis and trans 

CpG-gene pairs at p-value <1e-05, although only CpG-gene associations at p-value <1e-11 

are considered significant eQTMs in their manuscript. For the comparison with our findings 

we mapped TCs to gene symbols and split the catalogue of Kennedy and colleagues in two, 

each one representing the findings in one of the adult study populations: (1) GTP (whole 

blood, 333 samples, 67,606 CpG-gene pairs with p-value < 1e-5 and 2,466 with p-value < 

1e-11); and (2) MESA (monocytes, 1,202 samples, 327,049 CpG-gene pairs with p-value < 

1e-5 and 34,518 with p-value < 1e-11).  

The GTP catalogue contains 2,699 CpG-gene pairs that were also tested in HELIX, and thus 

comparable. Of those, 1,581 were eQTMs in HELIX (58.6% of all comparable pairs) (Figure 

6B). Their effect sizes were correlated (r = 0.37, p-value = 1.59e-52) and 95.6% of them had 

consistent direction of the effect. When restricting the comparison to eQTMs (CpG-gene 

pairs with p-value < 1e-11), we obtained similar results: their effect sizes were correlated (r = 

0.42, p-value = 1.15e-24) and 94.1% of them showed consistent direction of the effect. On 

the other hand, 1,118 CpG-gene pairs present in GTP catalogue were not eQTMs in HELIX 

(41.4%). Their effect sizes showed weaker correlation (r = 0.14, p-value = 2.28e-6) and only 

70.4% of them had consistent direction of effect. 

The MESA catalogue has 15,628 CpG-gene pairs also analyzed in HELIX. Of those, 5,313 

were reported as eQTMs in HELIX (34.0% of all comparable pairs) (Figure 6B), which had 

correlated effect size (r = 0.31, p-value = 9.47e-116) and for 93.0% of them the direction of 

the effect was consistent. The weaker correlation of the effect sizes can be explained by 

cellular composition (monocytes in MESA vs. whole blood in HELIX). Again, these values 

were similar when restricting the comparison to eQTMs in MESA (r = 0.28, p-value = 5.06e-
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24, 93.6% CpG-gene pairs with consistent direction of the effect). Finally, 10,315 CpG-gene 

pairs present in MESA catalogue were not eQTMs in HELIX (66.0% of all comparable pairs). 

As in GTP catalogue, their effect sizes showed lower correlation (r = 0.18, p-value = 4.42e-

78) and a lower proportion of CpG-gene pairs had a consistent direction of the effect 

(72.1%).   

Only 5,323 (8.3%) of the eQTMs identified in HELIX children were reported in GTP or MESA 

catalogues (Figure 6C). We explored whether blood eQTMs identified in adults and children 

(age-shared eQTMs) had different characteristics compared to blood eQTMs only found in 

HELIX children (child-specific eQTMs). Age-shared eQTMs involved 4,239 unique CpGs and 

1,681 unique TCs, while child-specific eQTMs involved 32,996 unique CpGs and 10,716 

unique TCs. 2,007 and 1,326 of those CpGs and TCs, respectively, were part of both types 

of eQTMs. CpGs in age-shared eQTMs were closer to the TSS compared to child-specific 

eQTMs (median distanceage-shared = 1.17 kb (IQR = -1.85; 33.9), median  distancechild-specific = 

1.38 kb (IQR = -99.2; 129.4), p-value < 2e-16)(Figure S21). Also, we observed that CpGs in 

child-specific eQTMs had higher blood cell type specificity compared to age-shared eQTMs 

(p-value < 2e-16, Figure S22A), but no major differences were observed at the gene 

expression level (p-value = 0.039, Figure S22B). Both types of eQTMs were enriched for 

meQTLs, but enrichment was stronger for CpGs in age-shared eQTMs (ORmeQTLs (age-shared) = 

19.22, p-valuemeQTLs (age-shared) < 2e-16 and ORmeQTLs (child-specific) = 4.99, p-valuemeQTLs (child-specific) 

< 2e-16). The enrichment for ROADMAP blood chromatin states was quite similar between 

the two groups (Figure S23), except for CpGs in age-shared eQTMs which were specifically 

enriched for active promoter states (ORTssA = 1.34, p-valueTssA < 2e-16) and flanking 

transcription (ORTssAFlnk = 2.73, p-valueTssAFlnk < 2e-16); while child-specific eQTMs were 

specifically enriched for repressed (ORReprPC = 1.29, p-valueReprPC < 2e-16) and quiescent 

regions (ORQuies = 1.33, p-valueQuies < 2e-16). Proportions of CpGs in each ROADMAP state 

can be found in Figure S24. Finally, both types of CpGs were enriched in CpGs variable 

from birth to childhood/adolescence.  
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Overall, we found that CpGs in eQTMs were enriched for CpGs whose methylation levels 

changed from birth to adolescence. Moreover, the overlap between child and adult eQTMs 

was small: only around 8% of HELIX eQTMs were also described in adults. Child and adult 

(age-shared) eQTMs tended to be proximal to the TSS, and thus enriched for promoter 

chromatin states, under the control of genetic variation and common to different blood cells. 

In contrast, child-specific eQTMs were located at longer distances from the TSS, enriched 

for repressed regions, and with higher cell type specificity.  

Discussion 

In this work, we present the first blood autosomal cis-eQTM catalogue in children. We 

identified 63,831 eQTMs, representing 35,228 unique CpGs and 11,071 unique TCs. A 

substantial fraction of these eQTMs was influenced by genetic variation and cellular 

composition, and the overlap with eQTMs reported in adults was small, indicating that 

genetics, cellular composition, and age are main factors to be considered in EWAS studies. 

The characteristics of the child blood autosomal cis-eQTMs were highly consistent with 

patterns previously described in other studies. Most of the eQTMs tended to be proximal to 

the TSS of the gene they were associated with [11,18], but the magnitude of the effect was 

independent of the distance between the CpG and the TC TSS. Although higher methylation 

is sometimes assumed to lead to lower expression, we found that around 40% of eQTMs 

were positively associated with gene expression, a percentage in line with previous results in 

whole blood (31% [9] and 30% [15]), monocytes (47%)[15], T-cells (31%), lymphoblastoid 

cell lines (43%) and fibroblasts (49%) from umbilical cord blood [14,15]. CpGs in inverse and 

positive eQTMs tended to be localized in blood enhancers and other active regulatory 

regions and not in CpG islands, a pattern also previously reported [9,15]. Despite these 

common locations, CpGs in inverse eQTMs were specifically found around active TSSs, 

including the distal promoter and the 5’UTR, while positive-CpGs were localized in gene 
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body regions. These results highlight the importance of the genomic context to infer the 

direction of the association of DNA methylation and gene expression. Further studies would 

be needed to investigate the combined effect of several CpGs located in different genomic 

regions on the expression of each gene. We note, however, that the causal relationship 

between DNA methylation and gene expression cannot be ruled out from our study. There is 

some evidence suggesting that DNA methylation could be a consequence of gene 

expression, as opposed to the often assumed regulation of gene expression by DNA 

methylation [14,35].  

It has been previously reported that a substantial part of eQTMs is influenced by genetic 

variation. In HELIX, CpGs in eQTMs showed higher heritabilities, especially if they were 

linked to several TCs, and 32.4% of the eQTMs involved CpGs for which at least one 

meQTL was found. Given that genetic variation could be the underlying causal explanation 

of the association between DNA methylation and gene expression, we searched for SNPs 

simultaneously associated with DNA methylation and gene expression in our data. We 

identified 1.3 M SNP-CpG-TC trios with consistent direction of the effect. These SNP-CpG-

TC trios are robust as meQTLs were derived the from ARIES database and validated in 

HELIX, but at the same time this strategy might have missed SNPs less well represented in 

ARIES or SNPs with stronger effects on gene expression than on DNA methylation. 

Interestingly, while eQTMs were mostly enriched for immune functions, and to less extent for 

metabolic and cellular processes, eQTMs under genetic control showed an inverted pattern. 

This may suggest that the influence of environmental factors is more relevant for immune 

pathways, while genetic factors might be more determinant in regulating metabolic and 

cellular processes in blood cells. Given the not negligible effect of genetics in eQTMs, we 

would advise studying the effect modification of genetic variants on the association between 

environmental factors and DNA methylation. 

DNA methylation and gene expression are cell type-specific [25,30,31,36]. To explore this in 

our bulk data, we hypothesized that causally related CpG-TC pairs would not be affected by 
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adjustment for cellular composition if their association takes place across cell types, while if 

it was cell type-specific, it would be attenuated. In consequence, the comparison between 

unadjusted and adjusted models for cellular composition can provide information about 

potential cell type-specific eQTMs. Our results seem to support our hypothesis, as eQTMs 

exclusive to the main unadjusted model, and thus potential cell type-specific, were 

composed by CpGs and TC with higher cell type specificity (higher F-statistic) in blood cell 

methylation and expression sorted studies [30,31]. Of note, a high F-statistic can either 

mean high methylation/expression differences in one particular blood cell type or 

intermediate methylation/expression differences across several cell types. Besides that, 

complexity in the transcriptional regulation, assessed as the number of CpGs per TC, was 

decreased after eliminating the effect of cellular composition. Also, potential cell type-specific 

eQTMs were located at farther distances from the TSS compared to potential cell shared 

eQTMs, which were predominantly found in the promoter region. Our findings are consistent 

with previous literature that describes that promoters act as common regulatory regions 

across tissues, while enhancers, more distal to the TSS, further tune the expression levels to 

the needs of each tissue providing additional regulation complexity [37,38]. They are also in 

line with findings on the regulation of gene expression by genetics, where tissue-shared and 

tissue-specific eQTLs are enriched for promoters and enhancers, respectively [39]. 

Nonetheless, additional studies at the single cell level should be performed to further 

differentiate between shared and cell type-specific eQTMs.  

In order to know how eQTMs behave along life-course, we compared blood autosomal cis-

eQTMs identified in HELIX children with eQTMs reported by Kennedy and colleagues in 

whole blood and monocytes from adults [11]. We discarded performing the comparison with 

the blood eQTMs identified by Bonder and colleagues [8], as their approach has many 

methodological differences compared to ours, most notably the elimination of the effect of 

genetic variation on the association of DNA methylation and gene expression. We found that 

only 8.3% of the child blood eQTMs were also reported in adults. Similarly, a high proportion 
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of adult blood eQTMs was neither present in children (41% in GTP and 64% in MESA). This 

small overlap between adult and child eQTMs has different explanations. Methodological 

issues such as gene expression platforms with low overlap, statistical methods, and 

statistical power might have limited the comparison between adults and children in a 

comprehensive manner. Also, factors other than age, such as cohort-specific environmental 

exposures or cellular composition might explain the low concordance. Unsurprisingly, HELIX 

and MESA presented the highest divergence, as HELIX used whole blood and MESA 

monocytes. Although both HELIX and GTP used whole blood, we cannot discard that 

differences in eQTMs are a consequence of cell type dynamics over life-course [40]. Despite 

the effect of these methodological and confounding factors, it is known that DNA methylation 

and gene expression changes with age [33,34,36], consequently, we expect partial overlap 

between adult and child eQTMs. The short list of age-shared eQTMs tended to encompass 

CpGs located in promoters, with lower cell type specificity and highly regulated by genetic 

variants. Beyond the differences between age groups at the eQTM level, the overall pattern 

in regulatory elements was similar between adults and children [9,15]. Finally, we also 

observed that regulatory CpGs in children (CpGs in eQTMs) usually involved CpGs whose 

methylation varied between birth and childhood/adolescence and that they tended to activate 

rather than inactivate transcription over this period. They were also enriched for CpGs found 

to be related to environmental factors and phenotypic traits. 

Our catalogue of child blood autosomal cis-eQTMs is meant to improve the biological 

interpretation of EWAS conducted in children. It has several strengths compared to previous 

eQTM studies. First, we reported all CpG-TC pairs we tested in our analysis, as opposed to 

existing blood eQTM catalogues which only reported pairs passing a p-value threshold 

[8,11]. Reporting all pairs has several advantages: (1) we do not rely on an arbitrary p-value 

threshold; (2) pairs without association in our study are available for replication and meta-

analysis studies, reducing publication bias; (3) researchers can consider pairs not significant 

in our dataset but with relevant fold change estimates. Second, we reported which eQTMs 
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are influenced by genetic variation, and thus researchers can take this into account when 

exploring the relationship between methylation and expression in their data. In contrast, 

Kennedy and colleagues did not consider genetic variation as a potential explanatory factor 

for the eQTMs they described [11], while Bonder and colleagues only reported the 

association of CpGs with gene expression after removing the effect of genetic variation [8]. 

Third, the catalogue includes both unadjusted and adjusted models for cellular composition, 

which might help to identify cell type-specific eQTMs. Overall, and after demonstrating that 

only half of the CpG-gene relationships are captured through annotation to the closest gene, 

our eQTM catalogue becomes an essential and powerful tool to help researchers interpret 

their EWAS studies, with a particular focus on childhood. 

The catalogue also has some limitations. First, it only covers a fraction of all CpG-TC pairs, 

as both the methylation and gene expression arrays have limited resolution. For instance, 

the methylation array only covers 1-2% of all CpGs in the genome; and the gene expression 

array although includes >60,000 TCs, coding and non-coding, which is not comparable to 

untargeted measurements through RNA-seq, at least for not low abundant transcripts. 

Second, the catalogue does not include sex chromosomes which require more complex 

analyses to address X-inactivation and sex-specific effects. Third, due to statistical power 

limitations, only cis effects were tested. Fourth, effect sizes should be considered with 

caution as the association between DNA methylation and gene expression might be non-

linear [41] and effects might be affected by cellular composition. Finally, we have to 

acknowledge that the catalogue will be useful for biological interpretation of EWAS, if DNA 

methylation is not a mere mark of cell memory to past exposures without or with time-limited 

transcriptional consequences [42]. 

In summary, besides characterizing child blood autosomal cis-eQTMs and how they are 

affected by genetics, age, and cellular composition, we provide a unique public resource: a 

catalogue with the association of 13.6 M CpG-gene pairs, with and without adjustment for 
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cellular composition, and of 1.3 M SNP-CpG-gene trios (https://helixomics.isglobal.org/). 

This information will improve the biological interpretation of EWAS findings. 

Methods 

Sample of the study 

The Human Early Life Exposome (HELIX) study is a collaborative project across 6 

established and on-going longitudinal population-based birth cohort studies in Europe [43]: 

the Born in Bradford (BiB) study in the UK [44], the Étude des Déterminants pré et 

postnatals du développement et de la santé de l’Enfant (EDEN) study in France [45], the 

INfancia y Medio Ambiente (INMA) cohort in Spain [46], the Kaunus cohort (KANC) in 

Lithuania [47], the Norwegian Mother, Father and Child Cohort Study (MoBa)[48] and the 

RHEA Mother Child Cohort study in Crete, Greece [49]. All participants in the study signed 

an ethical consent and the study was approved by the ethical committees of each study area 

[43]. 

In the present study, we selected a total of 832 children of European ancestry that had both 

DNA methylation and gene expression data. Ancestry was determined with cohort-specific 

self-reported questionnaires. 

Biological samples 

DNA was obtained from buffy coat collected in EDTA tubes at mean age 8.1 years old. 

Briefly, DNA was extracted using the Chemagen kit (Perkin Elmer) in batches of 12 samples. 

Samples were extracted by cohort. DNA concentration was determined in a NanoDrop 1000 

UV-Vis Spectrophotometer (Thermo Fisher Scientific) and with Quant-iT™ PicoGreen® 

dsDNA Assay Kit (Life Technologies). 
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RNA was extracted from whole blood samples collected in Tempus tubes (Applied 

Biosystems) using the MagMAX for Stabilized Blood Tubes RNA Isolation Kit (Thermo 

Fisher Scientific). RNA extraction was performed in batches of 12-24 samples and by cohort. 

The quality of RNA was evaluated with a 2100 Bioanalyzer (Agilent) and the concentration 

with a NanoDrop 1000 UV-Vis Spectrophotometer (Thermo Fisher Scientific). Samples 

classified as good RNA quality had a RNA Integrity Number (RIN) > 5, a similar RNA 

integrity pattern at visual inspection, and a concentration >10 ng/ul. Mean values for the RIN, 

concentration (ng/ul) and Nanodrop 260/230 ratio were: 7.05, 109.07 and 2.15. 

DNA methylation assessment 

DNA methylation was assessed with the Infinium HumanMethylation450K BeadChip 

(Illumina), following manufacturer’s protocol at the National Spanish Genotyping Centre 

(CEGEN), Spain. Briefly, 700 ng of DNA were bisulfite-converted using the EZ 96-DNA 

methylation kit following the manufacturer’s standard protocol, and DNA methylation 

measured using the Infinium protocol. A HapMap sample was included in each plate. In 

addition, 24 HELIX inter-plate duplicates were included. Samples were randomized 

considering cohort, sex, and panel. Samples from the panel study (samples from the same 

subject collected at different time points) were processed in the same array. Two samples 

were repeated due to their overall low quality. 

DNA methylation data was pre-processed using minfi R package [50]. We increased the 

stringency of the detection p-value threshold to <1e-16, and probes not reaching a 98% call 

rate were excluded [51]. Two samples were filtered due to overall quality: one had a call rate 

<98% and the other did not pass quality control parameters of the MethylAid R package [52]. 

Then, data was normalized with the functional normalization method with Noob background 

subtraction and dye-bias correction [53]. Then, we checked sex consistency using the 

shinyMethyl R package [54], genetic consistency of technical duplicates, panel samples, and 

other samples making use of the genotype probes included in the Infinium 
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HumanMethylation450K BeadChip and the genome-wide genotyping data when available. In 

total four samples were excluded, two with discordant sex and two with discordant 

genotypes. Batch effect (slide) was corrected using the ComBat R package [55]. Duplicated 

samples, one of the samples from the panel study and HapMap samples were removed as 

well as control probes,  probes in sexual chromosomes, probes designed to detect Single 

Nucleotide Polymorphisms (SNPs) and probes to measure methylation levels at non-CpG 

sites, giving a final number of 386,518 probes. 

CpG annotation was conducted with the IlluminaHumanMethylation450kanno.ilmn-12.hg19 

R package [26]. Briefly, this package annotates CpGs to promoter (up to 1500 bp from TSS), 

5'UTR, first exon, gene body, and 3'UTR. CpGs farther than 1,500 bp from the TSS were not 

annotated to any gene and the promoter region was divided in proximal promoter (200 bp 

upstream the TSS (TSS200)) and distant promoter (from 200 to 1,500 bp upstream the TSS 

(TSS1500)). Relative position to CpG islands (island, shelve, shore and open sea) was also 

provided by the same R package. 

Annotation of CpGs to 15 chromatin states was retrieved from the Roadmap Epigenomics 

Project web portal (https://egg2.wustl.edu/roadmap/web_portal/). Each CpG in the array was 

annotated to one or several chromatin states by taking a state as present in that locus if it 

was described in at least 1 of the 27 blood-related cell types. 

Gene expression assessment 

Gene expression, including coding and non-coding transcripts, was assessed with the 

Human Transcriptome Array 2.0 ST arrays (HTA 2.0) (Affymetrix) at the University of 

Santiago de Compostela (USC), Spain. Amplified and biotinylated sense-strand DNA targets 

were generated from total RNA. Affymetrix HTA 2.0 arrays were hybridized according to 

Affymetrix recommendations using the Manual Target preparation for GeneChip Whole 

Transcript (WT) expression arrays and the labeling and hybridization kits. In each round, 
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several batches of 24-48 samples were processed. Samples were randomized within each 

batch considering sex and cohort. Samples from the same subject (panel study) were 

processed in the same batch. Two different types of control RNA samples (HeLa or 

FirstChoice® Human Brain Reference RNA) were included in each batch, but they were 

hybridized only in the first batches. Raw data were extracted with the AGCC software 

(Affymetrix) and stored into CEL files. Ten samples failed during the laboratory process (7 

did not have enough cRNA or ss-cDNA, 2 had low fluorescence, and 1 presented an artifact 

in the CEL file). 

Data was normalized with the GCCN (SST-RMA) algorithm at the gene level. Annotation of 

transcript clusters (TCs) was done with the ExpressionConsole software using the HTA-2.0 

Transcript Cluster Annotations Release na36 annotation file from Affymetrix. A TC is defined 

as a group of one or more probes covering a region of the genome reflecting all the exonic 

transcription evidence known for the region and corresponding to a known or putative gene. 

After normalization, several quality control checks were performed and four samples with 

discordant sex and two with low call rates were excluded [56]. One of the samples from the 

panel study was also eliminated for this analysis. Control probes and probes in sexual 

chromosomes or probes without chromosome information were excluded. Probes with a 

DABG (Detected Above Background) p-value <0.05 were considered to have an expression 

level different from the background, and they were defined as detected. Probes with a call 

rate <1% were excluded from the analysis. The final dataset consisted of 58,254 TCs. 

Gene expression values were log2 transformed and batch effect controlled by residualizing 

the effect of surrogate variables calculated with the sva method [57] while protecting for main 

variables in the study (cohort, age, sex, and blood cellular composition). 

Blood cellular composition  
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Main blood cell type proportions (CD4+ and CD8+ T-cells, natural killer cells, monocytes, 

eosinophils, neutrophils, and B-cells) were estimated using the Houseman algorithm [58] 

and the Reinius reference panel [30] from raw methylation data. 

Genome-wide genotyping  

Genome-wide genotyping was performed using the Infinium Global Screening Array (GSA) 

MD version 1 (Illumina), which contains 692,367 variants, at the Human Genomics Facility 

(HuGe-F), Erasmus MC, The Netherlands. Genotype calling was done using the 

GenTrain2.0 algorithm based on a custom cluster file implemented in the GenomeStudio 

software. Annotation was done with the GSAMD-24v1-0_20011747_A4 manifest. Samples 

were genotyped in two rounds, and 10 duplicates were included which confirmed high inter-

round consistency.  

Quality control was performed with the PLINK program following standard recommendations 

[59,60]. We applied the following sample quality controls: sample call rate <97% (N 

filtered=43), sex concordance (N=8), heterozygosity (N=0), relatedness (N=10, including 

potential DNA contamination), duplicates (N=19). Then we used the peddy python script to 

predict ancestry from GWAS data [61]. To do so, 6,642 genetic variants, highly polymorphic 

among populations, and data from the 1000G project were used [62]. We contrasted 

ancestry predicted from GWAS with ancestry recorded in the questionnaires. Twelve 

samples were excluded due to discordances between the two variables. Overall, 93 (6.7%) 

samples, including the duplicates, were filtered out. The variant quality control included the 

following steps: variant call rate <95% (N filtered=4,046), non-canonical PAR (N=47), minor 

allele frequency (MAF) <1% (N=178,017), Hardy-Weinberg equilibrium (HWE) p-value <1E-

06 (N=913). Note that the QC of sexual chromosomes considered individuals' sex. Some 

other SNPs were filtered out during the matching between data and reference panel before 

imputation (N=14,436). 
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Imputation of the GWAS data was performed with the Imputation Michigan server [63] using 

the Haplotype Reference Consortium (HRC) cosmopolitan panel, Version r1.1 2016 [64]. 

Before imputation, PLINK GWAS data was converted into VCF format and variants were 

aligned with the reference genome. The phasing of the haplotypes was done with Eagle v2.4 

[65] and the imputation with minimac4 [66], both implemented in the code of the Imputation 

Michigan server. In total, we retrieved 40,405,505 variants after imputation. Then, we applied 

the following QC criteria to the imputed dataset: imputation accuracy (R2) >0.9, MAF >1%, 

HWE p-value >1E-06; and genotype probabilities were converted to genotypes using the 

best guest approach. The final post-imputation quality-controlled dataset consisted of 1,304 

samples and 6,143,757 variants (PLINK format, Genome build: GRCh37/hg19, + strand).  

Identification of child blood autosomal cis-eQTMs 

To test associations between DNA methylation levels and gene expression levels in cis (cis-

eQTMs), we paired each TC to all CpGs closer than 500 Kb from its TSS, either upstream or 

downstream. In the main analysis, we fitted for each CpG-TC pair a linear regression model 

between gene expression and methylation levels adjusted for age, sex, and cohort. A 

second model was run additionally adjusted for blood cellular composition, estimated from 

DNA methylation data, as described above.  

To ensure that CpGs paired to a higher number of TCs do not have higher chances of being 

part of an eQTM, multiple-testing was controlled at the CpG level, following a procedure 

previously applied by Bonder and colleagues [8]. To this end, we generated 100 permuted 

gene expression datasets and ran our previous linear regression models obtaining 100 

permuted p-values for each CpG-TC pair. Then, for each CpG, we selected among all CpG-

TC pairs the minimum p-value in each permutation and fitted a beta distribution. Next, for 

each CpG, we took the minimum p-value observed in the real data and used the beta 

distribution to compute the probability of observing a smaller p-value. This probability was 

the adjusted p-value at the CpG level. Finally, we considered as significant those CpGs with 
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empirical p-values significant at 5% false discovery rate (FDR), based on Benjamini-

Hochberg. Finally, in order to define significant CpG-TC pairs, we selected the CpG with the 

maximum p-value which was considered as significant and used this adjusted p-value as the 

significance threshold. Then, we went back to the beta distributions at the CpG level and 

selected any CpG-TC pair whose p-value was smaller than the significance threshold. We 

applied the same process for the model adjusted for cellular composition.  

Characterization of the child blood autosomal cis-eQTM 

catalogue 

We used different statistical methods to characterize CpGs and TCs of the eQTM catalogue. 

A linear regression was run to compare the methylation range vs. methylation levels 

categories (low, medium, high). Enrichment of CpGs/TCs for regulatory elements were 

tested using Chi-square tests with CpGs/TCs not in eQTMs as reference, unless otherwise 

stated. Results with a p-value < 0.05 were considered as significant. Annotation of CpGs to 

regulatory elements is described in the section “DNA methylation assessment”. 

We explored the enrichment of CpGs in eQTMs for phenotypic traits and/or environmental 

exposures using the EWAS catalogue [5] and the EWAS Atlas [6]. We used version 03-07-

2019 of the EWAS catalogue and selected those studies conducted in whole or peripheral 

blood of European ancestry individuals. We downloaded EWAS Atlas data on 27-11-2019 

and selected those studies performed in whole blood or peripheral blood of European 

ancestry individuals or with unreported ancestry. For both catalogues, we considered all 

associations from selected studies. 

We used results from the MeDALL and the Epidelta projects to test whether CpGs in eQTMs 

were enriched for CpGs variable from birth to childhood or adolescence, respectively. For 

MeDALL we downloaded data from supplementary material of the following manuscript [33]. 

For Epidelta, we downloaded the full catalogue (version 2020-07-17) from their website 
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(http://epidelta.mrcieu.ac.uk/). We considered a CpG as variable if its p-value from model 1 

(variable M1.change.p) was <1e-7 (Bonferroni threshold as suggested in their manuscript). 

Variable CpGs were classified as increased methylation if their change estimate (variable 

M1.change.estimate) was >0, and as decreased methylation otherwise. 

We also tested whether genes in eQTMs were enriched for specific GO terms using the 

topGO R package [67]. We analyzed GO terms in the biological processes’ ontology using 

the weight01 algorithm, which considers GO terms hierarchy for p-values computation. GO 

terms with q-value < 0.001 were considered as significant. 

Comparison with annotation to close gene 

We evaluated whether using annotation of CpGs to the closest gene (Illumina annotation) 

captured eQTM associations. CpGs were annotated to Gene Symbol using the 

IlluminaHumanMethylation450kanno.ilmn-12.hg19 R package [26], while TCs were 

annotated to Gene Symbol using the HTA-2.0 Transcript Cluster Annotations Release na36 

annotation file from Affymetrix. Given that CpGs and TCs could be annotated to several 

genes, we considered that a CpG-TC pair was annotated to a comparable gene if at least 

one of the genes annotated to the CpG matched at least one of the genes annotated to the 

TC. In total, we identified 351,909 comparable CpG-TC pairs. Then, a Chi-square test was 

run to compute whether these 351,909 comparable CpG-TC pairs were enriched for CpG-

TC pairs being eQTMs.  

Next, we evaluated whether the relative position of the CpG in the genic region was related 

to the expression of the eQTM-linked gene. To do so, the comparable 351,909 CpG-TC 

pairs were expanded to 411,900 entries. Each entry represented a CpG-TC pair annotated 

to a unique different gene, thus, for instance a CpG-TC pair annotated to two different 

genes, was included as two entries. In this expanded CpG-TC pair set, Chi-square tests 

were run to test the enrichment of CpGs in eQTMs for relative gene positions. 
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Evaluation of the genetic contribution on child blood autosomal 

cis-eQTMs 

We used two approaches to evaluate the influence of genetic effects in child blood 

autosomal cis-eQTMs. First, we used heritability estimates of CpGs computed by Van 

Dongen and colleagues [28]. Median total additive and SNP-heritability was compared 

between CpGs in eQTMs and CpGs not in eQTMs, using a Wilcoxon test. For CpGs in 

eQTMs, linear regressions between heritability measures (total additive and SNP 

heritabilities) and the number of TCs associated with each CpG were run. 

Second, we tested whether CpGs in eQTMs were more likely regulated by SNPs, thus they 

were enriched for meQTL. In order to define meQTLs in HELIX, we selected 9.9 M cis and 

trans SNP-CpG pairs with a p-value < 1e-7 in the ARIES dataset consisting of data from 

children of 7 years old [29]. In this subset of 9.9 M cis and trans-CpG pairs, we run meQTL 

analyses using MatrixEQTL R package [68], adjusting for cohort, sex, age, blood cellular 

composition (similar to ARIES) and the first 20 principal components (PCs) calculated from 

genome-wide genetic data of the GWAS variability. We considered as significant meQTLs 

the SNP-CpG pairs reaching a p-value < 1e-7 also in HELIX. Enrichment of CpGs in eQTMs 

for CpGs with meQTLs was computed using a Chi-square test. 

Finally, we tested whether meQTLs were also eQTLs for the gene in the eQTM. To this end, 

we run eQTL analyses with MatrixEQTL adjusting for cohort, sex, age, blood cellular 

composition and the first 20 GWAS PCs in HELIX. We considered as significant eQTLs the 

SNP-TC pairs with p-value < 1e-7 and with the direction of the effect consistent with the 

direction of the meQTL and the eQTM. 
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Evaluation of the effect of cellular composition on child blood 

autosomal cis-eQTMs 

We compared the results obtained in the main model and in the model additionally adjusted 

for cellular composition. eQTMs were classified in three groups: eQTMs significant in both 

models (model-shared eQTMs), eQTMs only significant in the main model (unadjusted cell-

specific eQTMs) and eQTMs only significant in the cell adjusted model (adj. cell-specific 

eQTMs). For each group of eQTMs, fold changes (FC) obtained with each model were 

compared using a Pearson correlation.  

To test if eQTMs were cell type-specific, we used as a proxy of cell type specificity the F-

statistic of a linear regression between gene expression/CpG methylation levels in sorted 

blood cell types (outcome) vs. cell type (predictor), as described before [30]. Higher F-

statistics are assumed to be indicative of higher cell type specificity. DNA methylation and 

gene expression in sorted blood cell types were retrieved from [30] and the Blueprint project 

[31] (https://blueprint.haem.cam.ac.uk/bloodatlas/), respectively. Once gene/CpG cell type 

specificity was calculated and log10 transformed (log10 F-statistic), we tested its association 

with the eQTM category (model-shared or unadjusted cell-specific eQTMs) by fitting linear 

regressions.  

Comparison with adult blood eQTM catalogues: GTP and 

MESA  

We compared our list of child blood autosomal cis-eQTMs obtained in HELIX with the 

eQTMs described in blood of two adult cohorts: GTP and MESA [11]. DNA methylation was 

assessed with the Infinium HumanMethylation450K BeadChip (Illumina) in the 3 cohorts 

(HELIX, GTP and MESA). In HELIX, gene expression was assessed with the Human 
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Transcriptome Array 2.0 ST arrays (HTA 2.0) (Affymetrix), and in GTP and MESA with the 

HumanHT-12 v3.0 and v4.0 Expression BeadChip (Illumina).  

In order to compare eQTMs, the comparison was done at the gene symbol level. In HELIX, 

we selected the gene symbol of the most likely mRNA mapped to the transcript cluster (TC). 

In GTP and MESA, we used the gene symbol annotation provided by the authors. As a 

result of this process, different TCs or expression probes were mapped to the same gene 

symbol. Thus, a CpG-TC pair in HELIX was mapped to multiple CpG-pairs in GTP and 

MESA and vice-versa. To handle this issue, we split our comparison in two pairs. First, we 

checked whether CpG-gene pairs in GTP and MESA were eQTMs in HELIX. When a CpG-

gene pair in GTP or MESA mapped to multiple CpG-gene pairs in HELIX, we only 

considered the CpG-gene pairs with the smallest p-value in HELIX. For the common pairs, 

Pearson correlations between the effect sizes were computed. Second, we compared those 

eQTMs in HELIX present in GTP or MESA catalogues with those eQTMs absent in the 

catalogues. Effect sizes were compared using a Wilcoxon test. 

Author contributions 

CR-A and MB designed the study. MV is coordinator of the HELIX project. DM, SC, MC, SA, 

KBG, MV, JW, JL, RG, LCh recruited participants and obtained biological samples. AC, IQ 

and MB obtained DNA methylation data; MV-U, EM, XE and MB gene expression data; and 

GE, KBG and MB genome-wide genotypic data. CR-A, CH-F and GE performed the QC of 

the omics data. CR-A and SM, under the supervision of MB and JRG, performed the 

statistical and bioinformatics analyses. CR-A and MB wrote the manuscript and all others 

approved it. 

Competing interests 

The authors declare that they have no competing interests. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 5, 2020. ; https://doi.org/10.1101/2020.11.05.368076doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.05.368076
http://creativecommons.org/licenses/by-nc-nd/4.0/


44 

Acknowledgments 

The authors acknowledge the contribution of all the HELIX children and their families. 

Funding 

The study has received funding from the European Community’s Seventh Framework 

Programme (FP7/2007-206) under grant agreement no 308333 (HELIX project); the H2020-

EU.3.1.2. - Preventing Disease Programme under grant agreement no 874583 (ATHLETE 

project); from the European Union’s Horizon 2020 research and innovation programme 

under grant agreement no 733206 (LIFECYCLE project), and from the European Joint 

Programming Initiative “A Healthy Diet for a Healthy Life” (JPI HDHL and  Instituto de Salud 

Carlos III) under the grant agreement no AC18/00006 (NutriPROGRAM project). The 

genotyping was supported by the project PI17/01225, funded by the Instituto de Salud 

Carlos III and co-funded by European Union (ERDF, “A way to make Europe”) and the 

Centro Nacional de Genotipado-CEGEN (PRB2-ISCIII).  

BiB received core infrastructure funding from the Wellcome Trust (WT101597MA) and a joint 

grant from the UK Medical Research Council (MRC) and Economic and Social Science 

Research Council (ESRC) (MR/N024397/1). INMA data collections were supported by 

grants from the Instituto de Salud Carlos III, CIBERESP, and the Generalitat de Catalunya-

CIRIT. KANC was funded by the grant of the Lithuanian Agency for Science Innovation and 

Technology (6-04-2014_31V-66). The Norwegian Mother, Father and Child Cohort Study is 

supported by the Norwegian Ministry of Health and Care Services and the Ministry of 

Education and Research. The Rhea project was financially supported by European projects 

(EU FP6-2003-Food-3-NewGeneris, EU FP6. STREP Hiwate, EU FP7 ENV.2007.1.2.2.2. 

Project No 211250 Escape, EU FP7-2008-ENV-1.2.1.4 Envirogenomarkers, EU FP7-

HEALTH-2009- single stage CHICOS, EU FP7 ENV.2008.1.2.1.6. Proposal No 226285 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 5, 2020. ; https://doi.org/10.1101/2020.11.05.368076doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.05.368076
http://creativecommons.org/licenses/by-nc-nd/4.0/


45 

ENRIECO, EU- FP7- HEALTH-2012 Proposal No 308333 HELIX), and the Greek Ministry of 

Health (Program of Prevention of obesity and neurodevelopmental disorders in preschool 

children, in Heraklion district, Crete, Greece: 2011-2014; “Rhea Plus”: Primary Prevention 

Program of Environmental Risk Factors for Reproductive Health, and Child Health: 2012-15). 

We acknowledge support from the Spanish Ministry of Science and Innovation through the 

“Centro de Excelencia Severo Ochoa 2019-2023” Program (CEX2018-000806-S), and 

support from the Generalitat de Catalunya through the CERCA Program.  

MV-U and CR-A were supported by a FI fellowship from the Catalan Government (FI-DGR 

2015 and #016FI_B 00272). MC received funding from Instituto Carlos III (Ministry of 

Economy and Competitiveness) (CD12/00563 and MS16/00128). 

References 

1. Lappalainen T, Greally JM. Associating cellular epigenetic models with human 

phenotypes. Nat. Rev. Genet. Nature Publishing Group; 2017. p. 441–51.  

2. Cavalli G, Heard E. Advances in epigenetics link genetics to the environment and disease 

[Internet]. Nature. Nature Publishing Group; 2019 [cited 2020 Oct 28]. p. 489–99. Available 

from: https://pubmed.ncbi.nlm.nih.gov/31341302/ 

3. Feinberg AP. The Key Role of Epigenetics in Human Disease Prevention and Mitigation. 

N Engl J Med [Internet]. New England Journal of Medicine (NEJM/MMS); 2018 [cited 2020 

Oct 28];378:1323–34. Available from: https://pubmed.ncbi.nlm.nih.gov/29617578/ 

4. Hanson MA, Gluckman PD. Early developmental conditioning of later health and disease: 

physiology or pathophysiology? [Internet]. Physiol. Rev. Physiol Rev; 2014 [cited 2020 Oct 

28]. p. 1027–76. Available from: https://pubmed.ncbi.nlm.nih.gov/25287859/ 

5. MRC-IEU EWAS Catalog [Internet]. [cited 2020 Oct 28]. Available from: 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 5, 2020. ; https://doi.org/10.1101/2020.11.05.368076doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.05.368076
http://creativecommons.org/licenses/by-nc-nd/4.0/


46 

http://www.ewascatalog.org/ 

6. Li M, Zou D, Li Z, Gao R, Sang J, Zhang Y, et al. EWAS Atlas: A curated knowledgebase 

of epigenome-wide association studies. Nucleic Acids Res [Internet]. Oxford University 

Press; 2019 [cited 2020 Oct 28];47:D983–8. Available from: 

https://pubmed.ncbi.nlm.nih.gov/30364969/ 

7. Sharp GC, Salas LA, Monnereau C, Allard C, Yousefi P, Everson TM, et al. Maternal BMI 

at the start of pregnancy and offspring epigenome-wide DNA methylation: Findings from the 

pregnancy and childhood epigenetics (PACE) consortium. Hum Mol Genet [Internet]. Oxford 

University Press; 2017 [cited 2020 Oct 28];26:4067–85. Available from: 

https://pubmed.ncbi.nlm.nih.gov/29016858/ 

8. Bonder MJ, Luijk R, Zhernakova D V, Moed M, Deelen P, Vermaat M, et al. Disease 

variants alter transcription factor levels and methylation of their binding sites. Nat Genet 

[Internet]. 2017 [cited 2017 Nov 2];49:131–8. Available from: 

http://www.ncbi.nlm.nih.gov/pubmed/27918535 

9. Küpers LK, Monnereau C, Sharp GC, Yousefi P, Salas LA, Ghantous A, et al. Meta-

analysis of epigenome-wide association studies in neonates reveals widespread differential 

DNA methylation associated with birthweight. Nat Commun [Internet]. Nature Publishing 

Group; 2019 [cited 2020 Oct 28];10. Available from: 

https://pubmed.ncbi.nlm.nih.gov/31015461/ 

10. Gondalia R, Baldassari A, Holliday KM, Justice AE, Méndez-Giráldez R, Stewart JD, et 

al. Methylome-wide association study provides evidence of particulate matter air pollution-

associated DNA methylation. Environ Int [Internet]. Elsevier Ltd; 2019 [cited 2020 Oct 

28];132. Available from: https://pubmed.ncbi.nlm.nih.gov/31208937/ 

11. Kennedy EM, Goehring GN, Nichols MH, Robins C, Mehta D, Klengel T, et al. An 

integrated -omics analysis of the epigenetic landscape of gene expression in human blood 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 5, 2020. ; https://doi.org/10.1101/2020.11.05.368076doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.05.368076
http://creativecommons.org/licenses/by-nc-nd/4.0/


47 

cells. BMC Genomics [Internet]. BioMed Central Ltd.; 2018 [cited 2020 Oct 28];19. Available 

from: https://pubmed.ncbi.nlm.nih.gov/29914364/ 

12. Liu Y, Ding J, Reynolds LM, Lohman K, Register TC, De la Fuente A, et al. Methylomics 

of gene expression in human monocytes. Hum Mol Genet [Internet]. Hum Mol Genet; 2013 

[cited 2020 Oct 28];22:5065–74. Available from: https://pubmed.ncbi.nlm.nih.gov/23900078/ 

13. Husquin LT, Rotival M, Fagny M, Quach H, Zidane N, McEwen LM, et al. Exploring the 

genetic basis of human population differences in DNA methylation and their causal impact 

on immune gene regulation 06 Biological Sciences 0604 Genetics. Genome Biol [Internet]. 

BioMed Central Ltd.; 2018 [cited 2020 Oct 28];19. Available from: 

https://pubmed.ncbi.nlm.nih.gov/30563547/ 

14. Gutierrez-Arcelus M, Lappalainen T, Montgomery SB, Buil A, Ongen H, Yurovsky A, et 

al. Passive and active DNA methylation and the interplay with genetic variation in gene 

regulation. Elife [Internet]. 2013 [cited 2018 Oct 1];2. Available from: 

https://elifesciences.org/articles/00523 

15. Gutierrez-Arcelus M, Ongen H, Lappalainen T, Montgomery SB, Buil A, Yurovsky A, et 

al. Tissue-Specific Effects of Genetic and Epigenetic Variation on Gene Regulation and 

Splicing. PLoS Genet [Internet]. Public Library of Science; 2015 [cited 2020 Oct 28];11. 

Available from: https://pubmed.ncbi.nlm.nih.gov/25634236/ 

16. Wagner JR, Busche S, Ge B, Kwan T, Pastinen T, Blanchette M. The relationship 

between DNA methylation, genetic and expression inter-individual variation in untransformed 

human fibroblasts. Genome Biol [Internet]. BioMed Central Ltd.; 2014 [cited 2020 Oct 28];15. 

Available from: https://pubmed.ncbi.nlm.nih.gov/24555846/ 

17. Bonder MJ a., Kasela S, Kals M, Tamm R, Lokk K, Barragan I, et al. Genetic and 

epigenetic regulation of gene expression in fetal and adult human livers. BMC Genomics. 

2014;  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 5, 2020. ; https://doi.org/10.1101/2020.11.05.368076doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.05.368076
http://creativecommons.org/licenses/by-nc-nd/4.0/


48 

18. Leland Taylor D, Jackson AU, Narisu N, Hemani G, Erdos MR, Chines PS, et al. 

Integrative analysis of gene expression, DNA methylation, physiological traits, and genetic 

variation in human skeletal muscle. Proc Natl Acad Sci U S A [Internet]. National Academy 

of Sciences; 2019 [cited 2020 Oct 28];166:10883–8. Available from: 

https://pubmed.ncbi.nlm.nih.gov/31076557/ 

19. Kim S, Forno E, Zhang R, Park HJ, Xu Z, Yan Q, et al. Expression Quantitative Trait 

Methylation Analysis Reveals Methylomic Associations With Gene Expression in Childhood 

Asthma. Chest [Internet]. Elsevier BV; 2020 [cited 2020 Oct 29]; Available from: 

https://pubmed.ncbi.nlm.nih.gov/32569636/ 

20. Delahaye F, Do C, Kong Y, Ashkar R, Salas M, Tycko B, et al. Genetic variants influence 

on the placenta regulatory landscape. PLoS Genet [Internet]. Public Library of Science; 2018 

[cited 2020 Oct 29];14. Available from: https://pubmed.ncbi.nlm.nih.gov/30452450/ 

21. Felix JF, Joubert BR, Baccarelli AA, Sharp GC, Almqvist C, Annesi-Maesano I, et al. 

Cohort profile: Pregnancy and childhood epigenetics (PACE) consortium. Int J Epidemiol 

[Internet]. Oxford University Press; 2018 [cited 2020 Oct 29];47:22-23u. Available from: 

https://pubmed.ncbi.nlm.nih.gov/29025028/ 

22. Huse SM, Gruppuso PA, Boekelheide K, Sanders JA. Patterns of gene expression and 

DNA methylation in human fetal and adult liver. BMC Genomics [Internet]. BioMed Central 

Ltd.; 2015 [cited 2020 Oct 29];16:981. Available from: 

https://pubmed.ncbi.nlm.nih.gov/26589361/ 

23. Lin X, Teh AL, Chen L, Lim IY, Tan PF, MacIsaac JL, et al. Choice of surrogate tissue 

influences neonatal EWAS findings. BMC Med [Internet]. BioMed Central Ltd.; 2017 [cited 

2020 Nov 2];15. Available from: https://pubmed.ncbi.nlm.nih.gov/29202839/ 

24. Gamazon ER, Segrè A V., Van De Bunt M, Wen X, Xi HS, Hormozdiari F, et al. Using an 

atlas of gene regulation across 44 human tissues to inform complex disease- and trait-

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 5, 2020. ; https://doi.org/10.1101/2020.11.05.368076doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.05.368076
http://creativecommons.org/licenses/by-nc-nd/4.0/


49 

associated variation. Nat Genet [Internet]. Nature Publishing Group; 2018 [cited 2020 Oct 

29];50:956–67. Available from: https://pubmed.ncbi.nlm.nih.gov/29955180/ 

25. Roadmap Epigenomics Consortium RE, Kundaje A, Meuleman W, Ernst J, Bilenky M, 

Yen A, et al. Integrative analysis of 111 reference human epigenomes. Nature [Internet]. NIH 

Public Access; 2015 [cited 2018 Feb 21];518:317–30. Available from: 

http://www.ncbi.nlm.nih.gov/pubmed/25693563 

26. Hansen K. IlluminaHumanMethylation450kanno.ilmn12.hg19: Annotation for Illumina’s 

450k methylation arrays. [Internet]. Available from: 

https://bioconductor.org/packages/release/data/annotation/html/IlluminaHumanMethylation4

50kanno.ilmn12.hg19.html 

27. Wu Y, Zeng J, Zhang F, Zhu Z, Qi T, Zheng Z, et al. Integrative analysis of omics 

summary data reveals putative mechanisms underlying complex traits. Nat Commun 

[Internet]. Nature Publishing Group; 2018 [cited 2020 Oct 29];9. Available from: 

https://pubmed.ncbi.nlm.nih.gov/29500431/ 

28. van Dongen J, Nivard MG, Willemsen G, Hottenga J-J, Helmer Q, Dolan C V., et al. 

Genetic and environmental influences interact with age and sex in shaping the human 

methylome. Nat Commun [Internet]. Nature Publishing Group; 2016;7:11115. Available from: 

http://www.nature.com/doifinder/10.1038/ncomms11115 

29. Gaunt TR, Shihab HA, Hemani G, Min JL, Woodward G, Lyttleton O, et al. Systematic 

identification of genetic influences on methylation across the human life course. Genome 

Biol [Internet]. Genome Biol; 2016 [cited 2020 Oct 29];17:61. Available from: 

https://pubmed.ncbi.nlm.nih.gov/27036880/ 

30. Reinius LE, Acevedo N, Joerink M, Pershagen G, Dahlén SE, Greco D, et al. Differential 

DNA methylation in purified human blood cells: Implications for cell lineage and studies on 

disease susceptibility. Ting AH, editor. PLoS One [Internet]. PLoS One; 2012 [cited 2020 Oct 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 5, 2020. ; https://doi.org/10.1101/2020.11.05.368076doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.05.368076
http://creativecommons.org/licenses/by-nc-nd/4.0/


50 

29];7:e41361. Available from: https://pubmed.ncbi.nlm.nih.gov/22848472/ 

31. Grassi L, Izuogu OG, Jorge NAN, Seyres D, Bustamante M, Burden F, et al. Cell type 

specific novel lncRNAs and circRNAs in the BLUEPRINT haematopoietic transcriptomes 

atlas. Haematologica [Internet]. Ferrata Storti Foundation (Haematologica); 2020 [cited 2020 

Oct 29];haematol.2019.238147. Available from: https://pubmed.ncbi.nlm.nih.gov/32703790/ 

32. Jaffe AE, Irizarry RA. Accounting for cellular heterogeneity is critical in epigenome-wide 

association studies. Genome Biol [Internet]. BioMed Central Ltd.; 2014 [cited 2020 Oct 

29];15. Available from: https://pubmed.ncbi.nlm.nih.gov/24495553/ 

33. Xu C-J, Bonder MJ, Söderhäll C, Bustamante M, Baïz N, Gehring U, et al. The emerging 

landscape of dynamic DNA methylation in early childhood. BMC Genomics [Internet]. 

BioMed Central; 2017 [cited 2017 Aug 3];18:25. Available from: 

http://www.ncbi.nlm.nih.gov/pubmed/28056824 

34. Mulder R, Neumann A, Cecil C, Walton E, Houtepen L, Simpkin A, et al. Epigenome-

wide change and variation in DNA methylation from birth to late adolescence. bioRxiv 

[Internet]. Cold Spring Harbor Laboratory; 2020 [cited 2020 Oct 29];2020.06.09.142620. 

Available from: https://doi.org/10.1101/2020.06.09.142620 

35. Jones PA. Functions of DNA methylation: Islands, start sites, gene bodies and beyond 

[Internet]. Nat. Rev. Genet. Nat Rev Genet; 2012 [cited 2020 Oct 29]. p. 484–92. Available 

from: https://pubmed.ncbi.nlm.nih.gov/22641018/ 

36. Melé M, Ferreira PG, Reverter F, DeLuca DS, Monlong J, Sammeth M, et al. The human 

transcriptome across tissues and individuals. Science (80- ) [Internet]. American Association 

for the Advancement of Science; 2015 [cited 2020 Oct 29];348:660–5. Available from: 

https://pubmed.ncbi.nlm.nih.gov/25954002/ 

37. Heinz S, Romanoski CE, Benner C, Glass CK. The selection and function of cell type-

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 5, 2020. ; https://doi.org/10.1101/2020.11.05.368076doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.05.368076
http://creativecommons.org/licenses/by-nc-nd/4.0/


51 

specific enhancers [Internet]. Nat. Rev. Mol. Cell Biol. Nature Publishing Group; 2015 [cited 

2020 Oct 29]. p. 144–54. Available from: https://pubmed.ncbi.nlm.nih.gov/25650801/ 

38. Ko JY, Oh S, Yoo KH. Functional enhancers as master regulators of Tissue-Specific 

gene regulation and cancer development [Internet]. Mol. Cells. Korean Society for Molecular 

and Cellular Biology; 2017 [cited 2020 Oct 29]. p. 169–77. Available from: 

https://pubmed.ncbi.nlm.nih.gov/28359147/ 

39. Aguet F, Brown AA, Castel SE, Davis JR, He Y, Jo B, et al. Genetic effects on gene 

expression across human tissues. Nature. Nature Publishing Group; 2017;550:204–13.  

40. Valiathan R, Ashman M, Asthana D. Effects of Ageing on the Immune System: Infants to 

Elderly. Scand J Immunol [Internet]. Blackwell Publishing Ltd; 2016 [cited 2020 Oct 

29];83:255–66. Available from: https://pubmed.ncbi.nlm.nih.gov/26808160/ 

41. Johnson ND, Wiener HW, Smith AK, Nishitani S, Absher DM, Arnett DK, et al. Non-linear 

patterns in age-related DNA methylation may reflect CD4+ T cell differentiation. Epigenetics 

[Internet]. Taylor and Francis Inc.; 2017 [cited 2020 Oct 29];12:492–503. Available from: 

https://pubmed.ncbi.nlm.nih.gov/28387568/ 

42. Tsai PC, Glastonbury CA, Eliot MN, Bollepalli S, Yet I, Castillo-Fernandez JE, et al. 

Smoking induces coordinated DNA methylation and gene expression changes in adipose 

tissue with consequences for metabolic health 06 Biological Sciences 0604 Genetics. Clin 

Epigenetics [Internet]. BioMed Central Ltd.; 2018 [cited 2020 Oct 29];10. Available from: 

https://pubmed.ncbi.nlm.nih.gov/30342560/ 

43. Maitre L, De Bont J, Casas M, Robinson O, Aasvang GM, Agier L, et al. Human Early 

Life Exposome (HELIX) study: A European population-based exposome cohort. BMJ Open 

[Internet]. BMJ Publishing Group; 2018 [cited 2020 Oct 30];8. Available from: 

https://pubmed.ncbi.nlm.nih.gov/30206078/ 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 5, 2020. ; https://doi.org/10.1101/2020.11.05.368076doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.05.368076
http://creativecommons.org/licenses/by-nc-nd/4.0/


52 

44. Wright J, Small N, Raynor P, Tuffnell D, Bhopal R, Cameron N, et al. Cohort profile: The 

born in bradford multi-ethnic family cohort study. Int J Epidemiol [Internet]. Int J Epidemiol; 

2013 [cited 2020 Oct 30];42:978–91. Available from: 

https://pubmed.ncbi.nlm.nih.gov/23064411/ 

45. Heude B, Forhan A, Slama R, Douhaud L, Bedel S, Saurel-Cubizolles M-JJ, et al. Cohort 

Profile: The EDEN mother-child cohort on the prenatal and early postnatal determinants of 

child health and development. Int J Epidemiol [Internet]. Oxford University Press; 2016 [cited 

2020 Oct 30];45:353–63. Available from: https://pubmed.ncbi.nlm.nih.gov/26283636/ 

46. Guxens M, Ballester F, Espada M, Fernández MF, Grimalt JO, Ibarluzea J, et al. Cohort 

Profile: the INMA--INfancia y Medio Ambiente--(Environment and Childhood) Project. Int J 

Epidemiol [Internet]. 2012 [cited 2015 Apr 27];41:930–40. Available from: 

http://ije.oxfordjournals.org/content/41/4/930.long 

47. Grazuleviciene R, Danileviciute A, Nadisauskiene R, Vencloviene J. Maternal smoking, 

GSTM1 and GSTT1 polymorphism and susceptibility to adverse pregnancy outcomes. Int J 

Environ Res Public Health [Internet]. Int J Environ Res Public Health; 2009 [cited 2020 Oct 

30];6:1282–97. Available from: https://pubmed.ncbi.nlm.nih.gov/19440446/ 

48. Magnus P, Birke C, Vejrup K, Haugan A, Alsaker E, Daltveit AK, et al. Cohort Profile 

Update: The Norwegian Mother and Child Cohort Study (MoBa). Int J Epidemiol [Internet]. 

Oxford University Press; 2016 [cited 2020 Oct 30];45:382–8. Available from: 

https://pubmed.ncbi.nlm.nih.gov/27063603/ 

49. Chatzi L, Leventakou V, Vafeiadi M, Koutra K, Roumeliotaki T, Chalkiadaki G, et al. 

Cohort Profile: The Mother-Child Cohort in Crete, Greece (Rhea Study). Int J Epidemiol; 

2017 [cited 2020 Oct 30];46:1392-1393k. Available from: 

https://pubmed.ncbi.nlm.nih.gov/29040580/ 

50. Aryee MJ, Jaffe AE, Corrada-Bravo H, Ladd-Acosta C, Feinberg AP, Hansen KD, et al. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 5, 2020. ; https://doi.org/10.1101/2020.11.05.368076doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.05.368076
http://creativecommons.org/licenses/by-nc-nd/4.0/


53 

Minfi: a flexible and comprehensive Bioconductor package for the analysis of Infinium DNA 

methylation microarrays. Bioinformatics [Internet]. 2014 [cited 2015 Jan 9];30:1363–9. 

Available from: http://bioinformatics.oxfordjournals.org/content/30/10/1363 

51. Lehne B, Drong AW, Loh M, Zhang W, Scott WR, Tan S-T, et al. A coherent approach 

for analysis of the Illumina HumanMethylation450 BeadChip improves data quality and 

performance in epigenome-wide association studies. Genome Biol. 2015;16:37.  

52. van Iterson M, Tobi EW, Slieker RC, den Hollander W, Luijk R, Slagboom PE, et al. 

MethylAid: Visual and interactive quality control of large Illumina 450k data sets. 

Bioinformatics [Internet]. 2014 [cited 2015 Oct 7];30:3435–7. Available from: 

http://www.ncbi.nlm.nih.gov/pubmed/25147358 

53. Fortin JP, Labbe A, Lemire M, Zanke BW, Hudson TJ, Fertig EJ, et al. Functional 

normalization of 450k methylation array data improves replication in large cancer studies. 

Genome Biol [Internet]. BioMed Central Ltd.; 2014 [cited 2020 Oct 30];15. Available from: 

https://pubmed.ncbi.nlm.nih.gov/25599564/ 

54. Fortin J-P, Fertig E, Hansen K. shinyMethyl: interactive quality control of Illumina 450k 

DNA methylation arrays in R. F1000Research [Internet]. 2014 [cited 2015 Oct 7];3:175. 

Available from: 

http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4176427&tool=pmcentrez&render

type=abstract 

55. Johnson WE, Li C, Rabinovic A. Adjusting batch effects in microarray expression data 

using empirical Bayes methods. Biostatistics [Internet]. 2007 [cited 2014 Jul 10];8:118–27. 

Available from: http://biostatistics.oxfordjournals.org/content/8/1/118.abstract 

56. Buckberry S, Bent SJ, Bianco-Miotto T, Roberts CT. MassiR: A method for predicting the 

sex of samples in gene expression microarray datasets. Bioinformatics [Internet]. Oxford 

University Press; 2014 [cited 2020 Oct 30];30:2084–5. Available from: 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 5, 2020. ; https://doi.org/10.1101/2020.11.05.368076doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.05.368076
http://creativecommons.org/licenses/by-nc-nd/4.0/


54 

https://pubmed.ncbi.nlm.nih.gov/24659105/ 

57. Leek JT, Storey JD. Capturing heterogeneity in gene expression studies by surrogate 

variable analysis. PLoS Genet [Internet]. PLoS Genet; 2007 [cited 2020 Oct 30];3:1724–35. 

Available from: https://pubmed.ncbi.nlm.nih.gov/17907809/ 

58. Houseman EAE, Accomando WP, Koestler DDC, Christensen BBC, Marsit CCJ, Nelson 

HH, et al. DNA methylation arrays as surrogate measures of cell mixture distribution. BMC 

Bioinformatics [Internet]. 2012 [cited 2015 May 12];13:86. Available from: 

http://www.biomedcentral.com/1471-2105/13/86 

59. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, et al. PLINK: A 

Tool Set for Whole-Genome Association and Population-Based Linkage Analyses. Am J 

Hum Genet [Internet]. 2007 [cited 2017 Oct 20];81:559–75. Available from: 

http://www.ncbi.nlm.nih.gov/pubmed/17701901 

60. Chang CC, Chow CC, Tellier LC, Vattikuti S, Purcell SM, Lee JJ. Second-generation 

PLINK: rising to the challenge of larger and richer datasets. Gigascience [Internet]. 2015 

[cited 2018 Feb 23];4:7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25722852 

61. Pedersen BS, Quinlan AR. Who’s Who? Detecting and Resolving Sample Anomalies in 

Human DNA Sequencing Studies with Peddy. Am J Hum Genet [Internet]. Elsevier; 2017 

[cited 2018 Feb 2];100:406–13. Available from: 

http://www.ncbi.nlm.nih.gov/pubmed/28190455 

62. Auton A, Abecasis GR, Altshuler DM, Durbin RM, Abecasis GR, Bentley DR, et al. A 

global reference for human genetic variation. Nature [Internet]. 2015 [cited 2017 Sep 

26];526:68–74. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26432245 

63. Das S, Forer L, Schönherr S, Sidore C, Locke AE, Kwong A, et al. Next-generation 

genotype imputation service and methods. Nat Genet [Internet]. 2016 [cited 2017 May 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 5, 2020. ; https://doi.org/10.1101/2020.11.05.368076doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.05.368076
http://creativecommons.org/licenses/by-nc-nd/4.0/


55 

29];48:1284–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27571263 

64. McCarthy S, Das S, Kretzschmar W, Delaneau O, Wood AR, Teumer A, et al. A 

reference panel of 64,976 haplotypes for genotype imputation. Nat Genet [Internet]. 2016 

[cited 2017 May 29];48:1279–83. Available from: 

http://www.ncbi.nlm.nih.gov/pubmed/27548312 

65. Loh PR, Danecek P, Palamara PF, Fuchsberger C, Reshef YA, Finucane HK, et al. 

Reference-based phasing using the Haplotype Reference Consortium panel. Nat Genet 

[Internet]. Nature Publishing Group; 2016 [cited 2020 Oct 30];48:1443–8. Available from: 

https://pubmed.ncbi.nlm.nih.gov/27694958/ 

66. Fuchsberger C, Abecasis GR, Hinds DA. Minimac2: Faster genotype imputation. 

Bioinformatics [Internet]. Oxford University Press; 2015 [cited 2020 Oct 30];31:782–4. 

Available from: https://pubmed.ncbi.nlm.nih.gov/25338720/ 

67. J AA and R. topGO: topGO: Enrichment analysis for Gene Ontology. No Title. 2010. p. R 

package version 2.22.0.  

68. Shabalin AA. Matrix eQTL: Ultra fast eQTL analysis via large matrix operations. 

Bioinformatics [Internet]. Bioinformatics; 2012 [cited 2020 Nov 2];28:1353–8. Available from: 

https://pubmed.ncbi.nlm.nih.gov/22492648/ 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 5, 2020. ; https://doi.org/10.1101/2020.11.05.368076doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.05.368076
http://creativecommons.org/licenses/by-nc-nd/4.0/

