1 GAK and PRKCD are positive regulators of PRKN-independent

mitophagy

- 3 Michael J. Munson^{1,2*}, Benan J. Mathai^{1,2}, Laura Trachsel^{1,2}, Matthew Yoke Wui Ng^{1,2}, Laura
- 4 Rodriguez de la Ballina^{1,2}, Sebastian W. Schultz^{2,3}, Yahyah Aman⁴, Alf H. Lystad^{1,2}, Sakshi
- 5 Singh^{1,2}, Sachin Singh^{2,3}, Jørgen Wesche^{2,3}, Evandro F. Fang⁴, Anne Simonsen^{1,2*}

6 ¹Division of Biochemistry, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo

- 7 ²Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, N-0316, Oslo, Norway.
- 8 ³Department of Molecular Cell Biology, The Norwegian Radium Hospital Montebello, N-0379, Oslo, Norway
- 9 ⁴Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, 1478 Lørenskog, Norway
- 10

2

- 11 Keywords: GAK, Cyclin G Associated Kinase, PRKCD, Protein Kinase C Delta, Mitophagy, DFP,
- 12 DMOG, PRKN
- 13
- 14 *Corresponding Authors:
- 15 michael.munson@astrazeneca.com
- 16 anne.simonsen@medisin.uio.no
- 17

18 ABSTRACT

19	The mechanisms involved in programmed or damage-induced removal of mitochondria by mitophagy
20	in response to different stimuli remains elusive. Here, we have screened for regulators of
21	PRKN-independent mitophagy using an siRNA library targeting 197 proteins containing lipid
22	interacting domains. We identify Cyclin G-associated kinase (GAK) and Protein Kinase C Delta
23	(PRKCD) as novel regulators of PRKN-independent mitophagy, with both being dispensable for
24	PRKN-dependent mitophagy and starvation-induced autophagy. We demonstrate that the kinase
25	activity of both GAK and PRKCD are required for efficient mitophagy in vitro, that PRKCD is present
26	on mitochondria, and that PRKCD is required for ULK1/ATG13 recruitment to early autophagic
27	structures. Importantly, we demonstrate in vivo relevance for both kinases in the regulation of basal
28	mitophagy. Knockdown of GAK homologue (gakh-1) in <i>C.elegans</i> or PRKCD homologues in zebrafish
29	led to significant inhibition of basal mitophagy, highlighting the evolutionary relevance of these
30	kinases in mitophagy.

31

32 INTRODUCTION

33 The selective degradation of mitochondria by autophagy (mitophagy) is important for cellular 34 homeostasis and disease prevention. Defective clearance of damaged mitochondria is linked to the 35 development of neurodegenerative diseases such as Parkinson's disease (PD) and has also been 36 linked to cancer¹. Damaged mitochondria have the potential to leak dangerous reactive oxygen 37 species causing cell damage and ultimately death, so their rapid clearance is favoured. Mitophagy 38 involves the sequestration of mitochondria into double-membrane structures termed autophagosomes that transport and deliver material to the lysosome for degradation². Elucidation of 39 40 the molecular mechanisms of mitophagy has largely focused upon hereditary forms of PD and the 41 role of the genetic risk genes PINK1 and Parkin (PRKN) in mediating mitophagy in response to mitochondrial depolarisation ³. Such studies have shown that selective recognition of damaged 42 43 mitochondria involves PINK1-mediated phosphorylation of ubiguitin and PRKN. This further 44 ubiquitinates outer mitochondrial membrane proteins that are recognised by specific 45 ubiquitin-binding autophagy receptors that interact with LC3 and GABARAP proteins in the 46 autophagy membrane to facilitate mitophagosome formation. The relative importance of this 47 pathway in vivo is however not clear, as the vast majority of basal mitophagy occurring in vivo seems largely independent of PINK1/PRKN, as demonstrated in both mice and fly models ^{4,5}. Consequently, 48 49 further characterisation of the mechanisms involved in PRKN-independent basal mitophagy 50 pathways is needed to understand their role in normal physiology and disease development. One 51 such pathway is the HIF1 α /hypoxia-dependent pathway that has been particularly well characterised 52 for the clearance of red blood cell mitochondria that occur via upregulation of the mitophagy receptor BNIP3⁶. Several small molecules have been identified to stabilise HIF1a and replicate a 53 hypoxia-induced mitophagy phenotype without the requirement for hypoxic conditions⁷, including 54 55 cobalt chloride, dimethyloxaloylglycine (DMOG) and iron chelators, with deferiprone (DFP) found to be one of the most potent ^{8,9}. 56

57 Whilst much progress has been made in our understanding of selective autophagy and the proteins 58 involved, little is known about the lipids and lipid-binding proteins involved in cargo recognition and 59 autophagosome biogenesis during selective autophagy. Formation of autophagosomes relies upon a 60 multitude of trafficking processes to manipulate and deliver lipids to the growing structure and 61 several proteins containing lipid interaction domains have been found to play important roles in modulating autophagy ¹⁰. Here we have carried out an imaging-based screen to examine whether 62 63 human proteins containing lipid-binding domains have novel roles in HIF1 α dependent mitophagy. 64 We identify a shortlist of eleven novel and previously unknown candidates that regulate mitophagy. 65 In particular, we show that the two kinases GAK and PRKCD are specifically required for 66 HIF1 α -dependent mitophagy without affecting PRKN-dependent mitophagy and that this regulation 67 is also observed in vivo upon basal mitophagy. Therefore, these kinases represent novel targets for

68 the study and regulation of basal mitophagy.

69 RESULTS

70 Induction and verification of mitophagy in U2OS cells

71 To monitor mitophagy in cultured cells, U2OS cells were stably transfected to express a tandem tag 72 mitophagy reporter containing EGFP-mCherry fused to the mitochondrial localisation sequence (MLS) 73 of the mitochondrial matrix protein NIPSNAP1 (hereafter termed inner MLS [IMLS] cells) in a doxycycline-inducible manner¹¹. U2OS cells contain low endogenous PRKN levels that are insufficient 74 75 to induce mitophagy in response to mitochondrial membrane depolarisation¹². However, while a 76 yellow mitochondrial network is seen under normal conditions, induction of mitophagy with the iron 77 chelator DFP for 24 h causes movement of mitochondria to lysosomes, where the EGFP signal is quenched due to the acidic pH, leading to the appearance of red only punctate structures (Fig. 1a,b). 78 79 Co-staining for the inner mitochondrial protein TIM23 verified that the EGFP-mCherry tag was 80 localised to the mitochondrial network (Fig. 1a). To verify that the red only structures represent 81 autolysosomes/mitolysosomes, the V-ATPase inhibitor Bafilomycin A1 (BafA1) was added for the final 2 h of DFP treatment to raise lysosomal pH and restore the EGFP signal¹³. As predicted, the 82 83 number of red only structures dropped drastically (Fig. 1b). Similarly, siRNA-mediated depletion of the key autophagy inducer ULK1 before DFP addition significantly reduced the formation of red only 84 85 structures (Fig. 1b). The localisation of the IMLS reporter was further validated by correlative light 86 and electron microscopy (CLEM) following DFP treatment. Indeed, yellow network structures observed by confocal fluorescence microscopy corresponded to mitochondrial structures by EM, 87 88 whereas red only structures demonstrated typical autolysosome morphologies (Fig. 1c). 89 DFP-induced mitophagy could be demonstrated biochemically by measuring the enzymatic activity of 90 the mitochondrial matrix protein citrate synthase ¹⁴. Treatment with DFP for 24 h reduced citrate 91 synthase activity by ~40 %, which could be prevented by addition of BafA1 for the final 16 h, 92 confirming that the reduction was due to lysosomal-mediated degradation (Fig. 1d). Finally, we were 93 able to demonstrate by proteomic analysis that the addition of DFP for 24 h decreased the

94 abundance of multiple mitochondrial proteins (classified by gene ontology [GO] analysis) compared 95 to control-treated cells (Fig. 1e). Comparison of different cellular organelles and compartments by 96 GO annotation highlighted that mitochondrial proteins resident to the inner membrane and matrix 97 were particularly reduced in response to DFP treatment (Fig. 1f, Supplementary Table 1). 98 Peroxisomal protein abundance was also slightly reduced, whilst proteins belonging to the ER, 99 lysosomes or endosomes were generally unaffected (Fig. 1f). In contrast, proteins involved in 100 processes defined as glycolytic or mitophagy regulation showed increased abundance. 101 Taken together, we show that DFP treatment induces a lysosomal-dependent loss of mitochondrial 102 proteins in U2OS cells and that mitolysosomes could be quantified by image analysis in U2OS IMLS

103 cells.

104 Screening for lipid-binding protein regulators of mitophagy

105 To uncover the mechanisms involved in selective recognition and turnover of mitochondria in DFP 106 treated cells we carried out an image-based siRNA screen monitoring the formation of red-only 107 structures in response to DFP following siRNA mediated knockdown of 197 putative lipid binding 108 proteins in U2OS IMLS cells. An initial list of proteins containing established lipid interacting protein 109 domains (FYVE, PX, PH, GRAM, C1, C2, PROPPIN, ENTH) were identified using ExPASy Prosite (see 110 Methods and Appendix 1). This preliminary target list was cross-examined with several U2OS 111 proteomic datasets and restricted to proteins validated to be expressed in U2OS cells ^{15,16}. We 112 included all FYVE or PX domain containing proteins due to the relevance of phosphatidylinositol 113 3-phosphate (PtdIns(3)P) binding proteins in autophagy initiation ¹⁷. 114 The primary screen was carried out using a pool containing three different siRNA oligonucleotides 115 sequences per target. In the absence of DFP treatment, no spontaneous induction of mitophagy was 116 observed upon gene knockdown (data not shown). In contrast, significant changes were observed 117 with siRNA treatment in the presence of DFP, which are plotted as fold change relative to 118 non-targeting (siNT) samples and grouped based upon lipid binding domains (Fig. 2a-e). As previously shown, BafA1 treatment or depletion of ULK1 strongly inhibited DFP-induced formation of red
(mitolysosome) structures (Fig. 1b, Fig. 2a-e red bars). Interestingly, significantly increased levels of
mitophagy were seen following knockdown of HS1BP3 (Fig. 2a), a negative regulator of starvation
induced autophagy that has not previously been examined in mitophagy ¹⁸. It is interesting to note
that relatively few hits from proteins containing a FYVE or PX domain were found compared to C1, C2
or GRAM domain containing proteins (Fig. 2f).

125 GAK and PRKCD identified as DFP mitophagy regulators by siRNA screening

126 To validate prospective positive and negative regulators that demonstrated significant changes in the 127 primary screen, we selected 29 candidates for a secondary deconvolution screen where the three 128 siRNA oligonucleotides used in the primary screen were examined individually in U2OS IMLS cells. 129 Their effect on DFP-induced mitophagy was analysed and quantified by high-content imaging and the 130 level of residual target mRNA was quantified by qPCR. The mitophagy phenotype of the individual 131 siRNA oligos was then correlated to their knock-down efficiencies and compared to the mitophagy 132 effect of the siRNA pool used in the primary screen (Supplementary Fig. 1a). As the knockdown 133 efficiencies for some of the targets were disappointing in the secondary screen, we carried out a 134 tertiary screen for all targets that were found to significantly affect mitophagy in the primary screen, 135 using individual siRNA oligos at a higher concentration of siRNA (Supplementary Fig. 1b). Based on 136 the results of the secondary and tertiary screen, we highlighted eleven targets where at least two of 137 the three oligos had a significant effect on DFP-induced mitophagy (Fig. 3a).

To identify candidates with the highest possible relevance for mitophagy, we searched for interacting proteins for each of these eleven candidate proteins using network analysis of protein interaction data (see Methods). Interacting proteins were subjected to GO analysis and grouped based upon compartments of interest, including mitochondria, autophagy and endolysosomal compartments. The percentage of interacting proteins in each group was compared to the average percentage for all proteins screened. Of interest, AKAP13 had a high number of interactors linked to mitochondria and autophagy. Additionally, GAK and PRKCD had higher numbers of autophagy and mitochondria linked
proteins respectively than all screened proteins (Fig. 3b and Supplementary Fig. 2a,b). As several
mitophagy receptor proteins involved in HIF1α-induced mitophagy are regulated by phosphorylation
(including BNIP3 and BNIP3L), whilst the PINK1 kinase is dispensable for PRKN-independent
mitophagy, we decided to further characterise the role of GAK and PRKCD kinases in mitophagy. In
addition, GAK has been linked as a risk factor for PD ¹⁹ and PRKCD has been noted to translocate to
mitochondria previously ²⁰.

151 All three oligonucleotides targeting PRKCD and two of three targeting GAK caused significant 152 inhibition of DFP-induced mitophagy in the U2OS IMLS cells (Fig. 3a, Supplementary Fig. 3). The level of citrate synthase activity was significantly decreased in DFP treated control cells, this was not the 153 154 case in cells depleted of PRKCD or GAK, further indicating a reduction in mitophagy upon depletion of 155 these kinases (Fig. 3c). Some loss of citrate synthase was still observed, likely due to incomplete 156 target knockdown as noted by qPCR in the secondary screen (Supplementary Fig. 1a). To understand 157 whether GAK or PRKCD localise to mitochondria upon DFP treatment, U2OS cells were treated or not 158 with DFP and then permeabilised and fractionated by differential centrifugation to enrich for 159 mitochondria. Successful fractionation was confirmed by enrichment of the mitochondrial proteins 160 TIM23 and COX-IV in the mitochondrial fraction (Fig. 3d). PRKCD was strongly enriched in mitochondrial fractions under both control and DFP inducing conditions, while GAK was absent from 161 162 the mitochondria fraction (Fig. 3d). Mitochondrial localisation of PRKCD was confirmed by 163 immunofluorescence staining of endogenous PRKCD in U2OS IMLS cells, showing a striking 164 co-localisation with the IMLS-EGFP-mCherry reporter both in the presence and absence of DFP 165 (Fig. 3e). Upon induction of mitophagy by DFP, PRKCD was seen with red only structures, indicating it 166 follows mitochondria to the lysosome. Indeed, western blotting confirmed the loss of PRKCD in a 167 DFP-dependent manner that was rescued by BafA1 treatment (Fig. 3f,g). Attempts to identify 168 endogenous GAK localisation by immunofluorescence were not successful with non-specific staining 169 observed with all antibodies tested.

170 The kinase activity of GAK and PRKCD are required for functional mitophagy

171 As GAK and PRKCD are both serine-threonine protein kinases we next sought to determine whether 172 their kinase activities are important for DFP-induced mitophagy. We first tested two recently 173 published kinase inhibitors targeting GAK, IVAP1966 and IVAP1967, with a Kd of 80nM and 190nM 174 respectively (Supplementary Fig. 4a)²¹. Concomitant dosing of IMLS cells with DFP and these GAK 175 inhibitors demonstrated dose-dependent inhibition of mitophagy with IVAP1967, while IVAP1966 176 had no effect (Supplementary Fig. 4b). Fortunately, we were able to take advantage of a more potent 177 and specific GAK inhibitor (SGC-GAK-1, termed GAKi here) with a Kd of 3.1nM and IC_{50} of 110nM, 178 which also has a negative control probe (SGC-GAK-1N, termed GAKc here, GAK $IC_{50} = >50 \mu M$) 179 (Supplementary Fig. 4a) as well as a second control that accounts for off-target effects of GAKi (HY-19764, RIPK2 inhibitor)²². Using this inhibitor set, we found that DFP-induced mitophagy was 180 significantly reduced in a dose-dependent manner with GAKi by 40% and 60% at 5 µM and 10 µM, 181 182 respectively (Fig. 4a,b). By contrast, neither GAKc nor RIPK2i had an inhibitory effect (Fig. 4a,b), 183 providing evidence that GAK kinase activity is required for functional DFP mitophagy. The effect of 184 GAKi on mitophagy was not due to reduced cell growth during DFP treatment (Supplementary Fig. 185 4c).

186 To investigate a role of the PRKCD kinase activity in mitophagy we utilised the PKC family inhibitors 187 (PKCi) Enzastaurin (ES) and Sotrastaurin (SS), neither of which is solely specific for PKC Delta due to 188 isozyme similarity within the PKC family. Both compounds strongly inhibited DFP-induced mitophagy 189 in a dose-dependent manner (Fig. 4a,b) with Enzastaurin slightly more potent than Sotrastaurin. The 190 conventional (PRKCA, PRKCB), novel (PRKCD) and atypical (PRKCZ) PKC family members were 191 included in the primary siRNA screen, with only siPRKCD showing significantly reduced DFP-induced 192 mitophagy of -57% (Fig. 2c). To further investigate the potential effects of the other PKC isozymes, all 193 PKC isoforms were depleted in the U2OS IMLS cells, which demonstrated that multiple novel PKC isoforms decreased DFP-induced mitophagy (Fig. 4c). Novel PKCs do not require calcium, but 194

diacylglycerol (DAG) for regulation of activity, suggesting this may be important for mitophagy. Use
of pan-PKC kinase inhibitors may therefore be beneficial for exploring the role of PKC family
members in DFP-induced mitophagy.

To further confirm a role for GAK and PRKCD kinase activities in mitophagy, we determined the level 198 199 of citrate synthase activity following treatment with GAKi, GAKc and PKCi. As seen in Figure 4d, GAKi 200 and PKCi both strongly blocked DFP-induced loss of citrate synthase whilst this was not seen with 201 DMSO or GAKc control samples. Moreover, addition of GAKi or PKCi both decreased the DFP-induced 202 loss of inner mitochondrial membrane proteins (MTCO2, COXIV, TIM23) and matrix proteins (PDH, 203 NIPSNAP1) as examined by western blot analysis, while loss of the outer mitochondrial proteins 204 FUNDC1 or TOM20 was generally not affected (except that GAKi blocked loss of TOM20) (Fig. 4e). 205 This is perhaps not surprising as some outer mitochondrial proteins are known to undergo 206 proteasomal degradation, such as MFN2, upon induction of DFP-induced mitophagy⁸. We further 207 confirmed the loss of mitochondrial proteins by analysis of whole-cell protein abundance by mass 208 spectrometry between DMSO and DFP treatments in the presence of GAKi and GAKc. As shown 209 earlier, DFP treatment caused a loss of mitochondrial proteins (determined by GO Analysis), which 210 was reduced for cells treated with GAKi, but not for GAKc, indicating that turnover of mitochondria is 211 hindered when GAK kinase activity is blocked (Fig. 4f).

212 GAK and PRKCD do not regulate the HIF1α pathway

To understand how depletion or inhibition of GAK or PRKCD prevents DFP-induced mitophagy, we first examined whether treatment with GAKi or PKCi affected the HIF1α pathway. HIF1α stabilization and expression of the HIF1α responsive genes BNIP3 and BNIP3L (NIX) are important for driving mitophagy triggered by iron chelation with DFP ^{8,23}. As expected, BNIP3/3L mRNA and protein levels were induced upon DFP treatment with no change in HIF1α mRNA levels (Fig. 4e and Supplementary Fig. 5a,b). The expression levels of BNIP3/3L were not significantly affected by treatment with GAKi, suggesting that GAK does not regulate mitophagy through the HIF1α response. Furthermore, the 220 PKCi Sotrastaurin had no significant effect on BNIP3/3L expression, although Enzastaurin somewhat 221 reduced the BNIP3L transcript level (Supplementary Fig. 5a), which may explain the relatively higher 222 potency of Enzastaurin blocking mitophagy (Fig. 4b). We focused on Sotrastaurin for further 223 experiments as our data indicated there was an important role for the kinase activity beyond the 224 decrease in BNIP3L seen with Enzastaurin. 225 BNIP3/3L function as autophagy receptors during HIF1 α induced mitophagy by recruiting ATG8 226 proteins through specific LC3 interacting regions (LIRs) and phosphorylation promotes their function 227 in mitophagy ^{24,25}. To check whether BNIP3/3L are targets for GAK or PRKCD mediated 228 phosphorylation, cell lysates from U2OS cells treated or not with DFP together with GAKi or PKCi 229 were analysed using phos-tag acrylamide gels that significantly retard the migration of 230 phosphorylated proteins ²⁶. Importantly, neither the protein expression of BNIP3/3L with DFP nor their migration patterns were changed in GAKi, GAKc and PKCi treated samples (Supplementary Fig. 231 232 5b), indicating that neither BNIP3 nor BNIP3L are targets for direct phosphorylation by PRKCD or

233 GAK.

234 GAK and PRKCD kinase activities do not regulate PRKN-dependent mitophagy or

235 starvation-induced autophagy

236 As both GAK and PRKCD regulate DFP-induced mitophagy without affecting the HIF1 α pathway, we 237 next sought to examine whether these kinases also regulated PRKN-dependent mitophagy. The U2OS 238 IMLS-EGFP-mCherry cell line was transduced with lentivirus to constitutively overexpress PRKN 239 (untagged), which permits strong induction of mitophagy in response to mitochondrial depolarisation such as that induced by the H⁺ ionophore CCCP ^{27,28}. Indeed, treatment with CCCP for 16 h led to 240 241 significant induction of mitophagy and near-total loss of mitochondrial network as seen by 242 accumulation of red only structures (Fig. 5a), reduced citrate synthase activity (Fig. 5b) as well as the 243 loss of the mitochondrial matrix protein PDH, along with PRKCD that also localises on mitochondria 244 (Fig. 5c,d). Importantly, we could block PRKN-dependent CCCP-induced mitophagy by co-treatment

with the ULK1/2 inhibitor MRT68921 or the lysosomal inhibitor BafA1 (Fig. 5a-d) ^{13,29}. Co-treatment

- with GAKi, GAKc or PKCi had no effect (Fig. 5a-d), suggesting that GAK and PRKCD kinase activities are
- 247 dispensable for PRKN-mediated mitophagy under these conditions. We next considered whether
- 248 GAKi or PKCi could impair starvation-induced autophagy. Cells were incubated in nutrient starvation
- 249 media (EBSS) for 2 h and the autophagic flux examined by immunostaining for endogenous LC3B in
- the absence or presence of BafA1, as analysed by fluorescence microscopy (Fig. 5e,f) or
- 251 immunoblotting (Fig. 5g). Whilst incubation in EBSS increased LC3 flux relative to the control,
- addition of GAKi or GAKc to EBSS treated cells did not significantly inhibit the autophagic flux. PKCi
- 253 caused elevated LC3-II levels in the absence of BafA1.
- 254 Taken together, we show that while GAK and PRKCD kinase activities are required for efficient
- DFP-induced mitophagy, but are dispensable for PRKN-dependent mitophagy and starvation-induced
 autophagy.

257 PRKCD inhibitors reduce ULK1 initiation complex assembly

258 To further elucidate how GAK or PRKCD kinase inhibition may block DFP-induced mitophagy, we 259 examined the recruitment of core autophagy machinery components to mitochondria. U2OS IMLS 260 cells treated with DMSO or DFP were immunostained for endogenous ATG13, LC3B, ULK1 or WIPI2 261 and examined by confocal microscopy. In many cases, the early autophagosome structures induced 262 by DFP treatment were localised at or close to mitochondria, likely representing mitophagosome 263 start sites (Fig. 6a-d). Using high-content imaging we found that formation of WIPI2, ATG13 or ULK1 264 puncta were all strongly induced (~5-fold) in response to 24h DFP treatment (Fig. 6e,f, 265 Supplementary Fig. 6a-d). Treatment with GAKi or GAKc did not affect the number of WIPI2, ATG13 or ULK1 puncta observed following 24 h of DFP treatment (Fig. 6e, f, Supplementary Fig. 6a-d). 266 267 Moreover, neither GAKi nor GAKc affected phosphorylation of ULK1 at S555 (AMPK site) or S757 268 (mTOR site) (Supplementary Fig. 6e), suggesting that GAK regulates DFP-induced mitophagy through 269 a different mechanism. Interestingly, control cells treated with GAKi only (no DFP) displayed an 270 increased number of WIPI2 puncta (Supplementary Fig. 6a,d), but the reason for this is not apparent. 271 Most importantly, co-treatment of cells with DFP and PKCi caused a dose-responsive decrease in the 272 number and size of ULK1 and ATG13 puncta (and to a lesser extent WIPI2 though this was not 273 significant) (Fig. 6e, f and Supplementary Fig. 7d). However, neither the phosphorylation of ATG13 at S318 (a known ULK1 site) ³⁰ or the phosphorylation of AMPK at T172 (an activation site) ³¹ that occur 274 275 in response to DFP treatment were impaired or altered by co-treatment with GAKi, GAKc or PKCi (Fig. 276 4e). We thus conclude that the kinase activity of PRKCD is required for successful assembly and 277 formation of the ULK1 complex during DFP-induced mitophagy, but that it does not affect ULK1 278 activity directly. As PRKCD is localised to mitochondria, a failure to generate an initiation structure 279 upon its depletion or inactivation likely explains the reduced level of mitophagy observed.

280 GAK inhibition alters mitochondrial morphology

281 As GAK inhibition did not affect HIF1α signalling, ULK1 activity or ATG13/ULK1 recruitment, we next 282 examined mitochondrial morphology. IMLS cells co-treated with DFP and siGAK (Supplementary 283 Fig. 3) or GAKi (Fig. 4a) demonstrated abnormal mitochondrial network structures compared to 284 control cells. Using live-cell microscopy, we observed a collapsed mitochondrial network with 285 clumped mitochondrial regions and reduced red structures in IMLS cells co-treated with DFP and 286 GAKi that were not seen with GAKc (Supplementary Movie 1). Confocal microscopy confirmed this 287 and by contrast, cells co-treated with DFP and PKCi retained an elongated network (Fig. 7a). Cells 288 treated with a combination of Oligomycin and Antimycin A (O+A) or CCCP, known to depolarize 289 mitochondria, caused fragmented network phenotypes (Fig. 7a). In the latter case, little mitophagy is 290 seen in response to mitochondrial depolarisation as this was carried out in IMLS cells without PRKN 291 overexpression. To quantify mitochondria morphology, images of U2OS cells depleted of the fission 292 enzyme DRP1 or the fusion enzyme OPA1 (causing tubulated or fragmented mitochondrial 293 phenotypes respectively, Supplementary Fig. 7), were applied to train a cell classifier in CellProfiler

Analyst. Applying this, we confirmed that GAKi treated cells exhibit a hyper fused mitochondria
phenotype while no morphological differences were detected in GAKc or PKCi treated samples (Fig.
7b). The observed GAKi phenotype was not caused by a general defect in the fission/fusion rate of
the mitochondrial network, as mitochondrial fragmentation could still be induced by co-treatment of
GAKi with DFP and CCCP (Fig. 7c). Importantly, GAKi still prevented the formation of red only
structures under such conditions, indicating that GAK is important for proper uptake of fragmented
mitochondria into autophagosomes.

301 We next examined GAKi treated U2OS IMLS cells by CLEM. Interestingly, this showed condensed 302 parallel layers of mitochondria that were not fused, but rather stacked closely with one another (Fig. 303 7d). Additionally, large autolysosome structures were observed, which may indicate lysosomal 304 defects following GAKi treatment (Fig. 7d). Indeed, an increase in the number of lysosomal 305 structures was detected in cells stained for the late endosome/lysosome marker LAMP1 following 306 co-treatment with DFP and GAKi (Fig. 7e,f). As GAKi did not inhibit PRKN-dependent mitophagy 307 (Fig. 5a-d) or starvation-induced autophagy (Fig. 5e-g) we reasoned that the large autolysosomes 308 seen in GAKi treated cells retain their acidity and degradative capacity. In line with this, lysotracker 309 positive structures were detected in cells treated with GAKi or GAKc in the presence or absence of 310 DFP (Fig. 7g). Thus, we believe that the mitophagy defect induced by GAKi is due to inefficient cargo 311 loading or delivery to lysosomes rather than a lysosomal defect.

312 Mass Spectrometry with GAKi

To try to identify relevant substrates for GAK kinase-dependent regulation of DFP-induced
mitophagy, we carried out phospho-proteomic analysis of cells treated with DFP in combination with
GAKi or GAKc. GAK is currently defined as an understudied kinase ³² and GAKi was developed by the
SGC consortium to reveal novel understandings of GAK cellular function ²². Analysis of both the
protein abundance and phospho-sites of interest (Fig. 8a) demonstrated that DFP treatment
increased the abundance of several proteins in a GAKi independent manner, including HIF1α, BNIP3L,

319 Hexokinase I/II, LAMP1/2 and LC3B. In contrast, SQSTM1 abundance decreased in response to DFP

320 even with GAKi, further showing that lysosomes are functional in this state. Interestingly,

321 phosphorylation of RAB7A at S72 was observed in response to DFP treatment. The same RAB7A

322 modification was recently reported to facilitate a key step in PRKN-dependent mitophagy, suggesting

323 that similarities exist during DFP mitophagy ³³. RAB14 was also phosphorylated (at S180) in response

to DFP, a change that may be interesting to examine further.

325 GAKi-dependent changes in phosphorylation were also seen, we observed a very specific loss of

326 clathrin light chain A (CLTA) phosphorylation at S105. This site lies at the interface between the

327 clathrin heavy and light chains, supporting a previously described role of GAK in clathrin-cage

328 uncoating. Increased levels of PGK1 S203, PGM1 S117 and PGM2 S165 (established phosphorylation

329 sites to induce glycolysis) were detected upon GAKi treatment without DFP, suggesting that glycolysis

may be higher at the basal state. We also see higher DRP1 S616 levels with GAKi and DFP, a

331 modification normally associated with increased fission activity that can be mediated by CDK1 ³⁴.

332 Moreover, SQSTM1 phosphorylation at S272 is increased with GAKi, also previously noted to be

333 mediated by CDK1 ³⁵, suggesting that GAKi treatment increases CDK1 activity and may indicate

increased cell numbers in mitosis ³⁶.

335 GAK and PRKCD modulate mitophagy in vivo

336 Knockout of GAK orthologues have been shown to cause embryonic lethality in mice, *C.elegans*

337 (*dnj-25*) and *D.melanogaster* (*dAux*), which is postulated to occur due to defective

338 clathrin-dependent endocytosis, as uncoating of clathrin-coated vesicles is mediated by the J-domain

of GAK ^{37–39}. Indeed, expression of the J-domain alone is able to rescue survival in both mice and

340 drosophila GAK knockout models ^{39,40}. *C.elegans* contains two orthologues of GAK, comprising the

- kinase domain (gakh-1, F46G11.3, 40% overall homology) or the J-domain (dnj-25, W07A8.3, 49%
- overall homology) (Fig. 8b), where targeting of the latter by RNAi causes lethality during larval
- 343 development ³⁸. As our data indicate a requirement of GAK kinase activity for efficient mitophagy in

mammalian cells, we examined the effect of targeting gakh-1 upon basal mitophagy in a *C.elegans*reporter line expressing mtRosella GFP-DsRed in body wall muscle cells, following the concept of the
IMLS reporter cell lines. *C.elegans* fed gakh-1 RNAi demonstrated a significant decrease in the ratio of
GFP to DsRed and more mitophagy events (DSRed only structures, Fig. 8c) compared to the RNAi
control, confirming that GAK kinase activity is important for basal mitophagy *in vivo*.

349 We next sought to examine the role of PRKCD in mitophagy in vivo and targeted Prkcd in our recently 350 established transgenic mitophagy reporter zebrafish line, expressing zebrafish Cox8 fused to 351 EGFP-mCherry (Abudu et al., 2019). Zebrafish contain paralogues (prkcda and prkcdb) that are ~80% 352 similar to one another and ~76% homologous to human PRKCD, with all major domains being highly 353 conserved (Fig. 9a). We examined the spatio-temporal expression pattern of prkcda and prkcdb 354 during zebrafish development up until 5 days post-fertilisation (dpf). Whilst a high level of maternal 355 prkcda mRNA was observed at 2 hours post fertilisation (hpf), possibly indicating a role in early 356 embryonic signalling events, both genes were expressed at similar levels throughout development 357 (Fig. 9b). The spatial distribution of *prkcda* and *prkcdb* were analysed by whole-mount *in situ* hybridisation (WM-ISH) at 5 dpf compared to a sense probe negative control and showed strong 358 359 staining in the corpus cerebelli region of the hindbrain for both genes (Fig. 9c, Supplementary Fig. 360 8a), this is in agreement with ISH data deposited in the ZFIN database (http://zfin.org). prkcda 361 expression was also detected in the eyes and the olfactory bulbs (Fig. 9c) whereas prkcdb was found 362 in patches of the retina, optical tectum and the spinal cord (Fig. 9c). We also analysed the spatio-363 temporal pattern of gak expression across zebrafish development and observed that even though it 364 is expressed consistently throughout development (Supplementary Fig. 8b), its spatial expression 365 pattern varies across development with staining of the caudal hindbrain and retina at 2 dpf, the 366 optical tectum, neurocranium, retina and kidney at 3dpf, the kidney and neurocranium at 4dpf and 367 the liver, olfactory bulb, optical tectum and retina at 5dpf of the wild type zebrafish larvae, with no 368 staining of the control probe (Supplementary Fig. 8c).

To investigate a possible role for Prkcd in the mitophagy reporter line, we employed CRISPR/Cas9mediated genome editing in zebrafish embryos using guide sequences targeting *prkcda* and *prkcdb* individually or together (Fig. 9d and Supplementary Fig. 8d), with the latter referred to as *prkcd_ab* double knock-out (DKO). We verified loss of Prkcd protein levels in DKO embryos by western blot (Fig. 9d) and therefore used these embryos for *in vivo* mitophagy analysis.

374 To induce mitophagy, zebrafish larvae at 2 dpf were incubated with varying concentrations of DFP 375 and DMOG for 24 hours. DFP failed to induce mitophagy at all concentrations, however, DMOG 376 induced mitophagy as shown by reduced levels of Tim23 (Supplementary Fig. 8e,f), in line with a 377 recent report ⁴¹. We used 100 μ M DMOG for further experiments, as significant lethality and 378 morphological defects were present at higher (250 μ M) concentrations (Supplementary Fig. 8g). As 379 prkcd a/b express highly in the hindbrain (Fig. 9c), we examined mitophagy in this region of DKO 380 larvae compared to control larvae, both at basal (DMSO) and DMOG-treated conditions. Sections of 381 fixed larva were imaged by confocal microscopy and the number of red puncta in the hindbrain 382 region quantified. The number of red only puncta was significantly reduced in the hindbrain of DKO 383 larvae with both basal and DMOG-induced conditions (Fig. 9e,f), showing an important role of 384 Prkcd a/b in regulating mitophagy. Interestingly, we noticed the lack of a properly formed eye-lens 385 in one of the two eyes of the *prkcd* ab DKO, with considerably reduced mitophagy levels when 386 compared to the control (Supplementary Fig. 8h). We also observed an inconsistent and varied 387 movement pattern of the DKO larvae, and therefore quantified their locomotor activity. Tracking and 388 quantification of locomotion was performed in alternating light and dark conditions with a reduced 389 swimming trend in the dark phase for both Prkcd single KO and DKO larvae compared the WT control 390 (Fig. 9g). It is likely that this may be related to the observed lens defect or a hindbrain clustered motor-neuron dependent phenotype. 391

In conclusion, we show that the activity of both GAK and PRKCD is important for regulation of basal
mitophagy *in vivo*, highlighting the evolutionary relevance of these kinases in mitophagy.

394 DISCUSSION

395 In this manuscript, we have tested a panel of putative lipid-binding proteins for their ability to 396 regulate DFP-induced mitophagy. We have identified eleven candidate proteins that demonstrate 397 significant modulation of DFP-induced mitophagy and explored two of these, GAK and PRKCD, in 398 further detail. In both cases, we show that functional kinase activity is required for their positive 399 regulation of DFP-induced mitophagy and we have identified putative mechanisms for how each 400 function in mitophagy regulation. Importantly, neither GAK nor PRKCD are required for 401 PRKN-dependent mitophagy or starvation-induced autophagy, offering novel targets for the specific 402 modulation of PRKN-independent mitophagy. Critically, we find that both of these targets identified 403 in vitro are also relevant targets in vivo for the regulation of basal mitophagy in C.elegans and D.rario, 404 demonstrating their conserved function in mitophagy. 405 The linkage of GAK to mitophagy is of particular relevance to neurodegenerative disease as SNPs in GAK have previously been identified as a risk factor for familial PD¹⁹ and expression changes in GAK 406 407 are observed in the substantia nigra of PD patients ⁴². Knockout of the drosophila homologue of GAK 408 (Auxilin) also demonstrates Parkinsonian like mobility defects and loss of dopaminergic neurons ⁴³. 409 Further work has shown that the commonly mutated PD gene, LRRK2, can phosphorylate Auxilin⁴⁴. 410 Studies of GAK have to date, however, been hindered by the limited availability of chemical tools 411 alongside the inherent difficulty of modulating embryonic lethal genes to dissect their function. 412 *C.elegans* presents a unique opportunity for the *in vivo* study of GAK kinase function due to the 413 presence of two orthologues of human GAK, with the homologous kinase domain within a separate protein (gakh-1) than that of the developmentally essential J-domain (dnj-25) ³⁸. By knockdown of 414 415 gakh-1, we were able to see >50% reduction in basal mitophagy in muscle-cell wall highlighting the

416 importance of GAK for mitophagy. Further investigation is required to mechanistically ascertain how

417 this functional effect is mediated, as Hif1 α induction and subsequent recruitment of ULK1/ATG13 to

418 mitophagosomes in response to DFP stimulation appears normal in cells with GAK kinase activity

419 inhibited. However, we observed a significant disruption of mitochondrial network morphology 420 which may modulate the ability of mitochondria to be loaded correctly into mitophagosomes. 421 Artificially inducing mitochondrial fragmentation with CCCP, however, was not sufficient to rescue 422 mitochondrial degradation. Moreover, enlarged lysosomes were observed, though these still possess 423 degradative potential to mediate starvation-induced or PRKN-dependent mitophagy. Mass spectrometry analysis indicates that several glycolytic enzymes are activated in response to GAKi 424 425 treatment, which may indicate that more fundamental metabolic changes are occurring that alter the 426 cellular degradation of mitochondria.

427 PRKCD is a member of the large PKC kinase family and belongs to the subgroup of novel PKCs (nPKCs) 428 including PRKCE, PRKCH and PRKCQ that are all activated with DAG independent of Ca²⁺. Whilst we 429 have primarily focused upon PRKCD due to its prominent mitochondrial localisation, it is interesting 430 to note that all nPKCs reduced DFP-induced mitophagy to varying extents, suggesting DAG and PKCs 431 play a prominent role in the regulation of mitophagy. Usage of a pan-PKC inhibitor consistently gave 432 a stronger and more robust inhibition of DFP-induced mitophagy, indicating that several isoforms 433 could play a role or serve redundant functions with one another. Treatment with the PKC inhibitor 434 sotrastaurin led to a significant inhibition in the recruitment of early autophagy markers, thereby 435 reducing mitophagosome formation.

436 Formation of mitochondrial DAG has previously been observed during oxidative stress induced by 437 H₂O₂, which resulted in the recruitment of Protein Kinase D1 (PKD1) to mitochondria⁴⁵. Recent data 438 in mice have also implicated PKD1 in the regulation of mitochondrial depolarisation and is itself regulated by PRKCD in the activation loop at S738/S742, it is tempting to speculate that PKD1 might 439 also be involved in DFP-induced mitophagy ⁴⁶. Another intriguing detail is that PKD1 can bind to 440 AKAP13, another identified regulator of mitophagy in our screen ⁴⁷. The formation of mitochondrial 441 442 DAG could therefore be a key step in the regulation of DFP-dependent mitophagy. DAG can be 443 formed from phosphatidic acid by phosphatidic acid phosphohydrolases, such as the Lipin family of

444 proteins. Interestingly, Lipin-1 deficiency is associated with accumulation of mitochondria combined 445 with morphological abnormalities ⁴⁸. Additionally, Lipin-1 depletion was found to reduce the level of 446 PKD1 phosphorylation with a subsequent decrease in VPS34 mediated PtdIns(3)P formation ⁴⁸. 447 Further examination of PKD1 regulation may therefore be important for studying the role of PKCs in 448 DFP-induced mitophagy. 449 Interestingly, neither GAK nor PRKCD inhibition was able to modulate PRKN-mediated mitophagy. 450 This adds further evidence that the machinery required for PRKN-dependent and independent 451 mitophagy pathways are fundamentally different. Tantalisingly, both c.elegans and d.rario models 452 indicate that basal mitophagy (along with DMOG-stimulated in zebrafish experiments) can be 453 regulated by these kinases as opposed to stress-induced mitophagy, such as that regulated by PRKN. 454 By looking at the hindbrain region of zebrafish, showing the highest expression of Prkcd, we observed 455 a significant reduction in the level of mitophagy upon depletion of prkcda and prkcdb and 456 impairment of locomotory responses. This may be due to deterioration of hindbrain locomotory 457 neurons as a consequence of impaired mitophagy or may be associated with an anxiety-like response 458 (thought to be triggered in zebrafish due to light changes) noted previously in mice to be impaired 459 with PRKCD depletion⁴⁹. 460 To conclude, this initial screen of lipid-binding proteins in DFP-induced mitophagy identified two 461 lipid-binding kinases that have been validated by functional characterisation and confirmation in 462 higher organisms. This highlights the importance of protein-lipid interactions and provides a strong

463 initial basis for further investigation into the molecular mechanisms of mitophagy.

464

465 Materials and Methods

466 Materials

- 467 Lysotracker Red DND-99 (L7528) was from ThermoFisher Scientific. Antimycin A (A8674), DFP
- 468 (379409), DMOG (D3695), SGC-GAK-1 (GAKi, SML2202), SGC-GAK-1N (GAKc, SML2203) and Q-VD-
- 469 OPh (SML0063) were from Sigma Aldrich. Bafilomycin A1 (BML-CM110), CCCP (BML-CM124) were
- 470 from Enzo Life Sciences. Enzastaurin (S1055), Oligomycin A (S1478), and Sotrastaurin (S2791) were
- 471 from Selleckchem. MRT68921 (1190379-70-4) and VPS34-IN1 (1383716-33-3) were from Cayman
- 472 Chemical. IVAP1966 (12g) and IVAP1966 (12i) were gratefully received from the lab of Prof. Piet
- 473 Herdewijn²¹. HY-19764 was gratefully received from the structural genomics consortium²². Bradford
- 474 reagent dye (#5000006) was from Bio-Rad. 1,4-dithiothreitol (DTT, #441496P) was from VWR.
- 475 Complete EDTA-free protease inhibitors (#05056489001) and phosphatase inhibitors
- 476 (#04906837001) were from Roche.

477 Cell Lines, Maintenance and Induction of Mitophagy

U2OS FIpIN TRex cells with stable dox-inducible expression of MLS-EGFP-mCherry (referred to as 478 IMLS cells)¹¹ were grown and maintained in a complete medium of Dulbecco's Modified Eagle 479 480 Medium (DMEM – Lonza 12-741F) supplemented with 10% v/v foetal bovine serum (FBS – Sigma 481 Aldrich #F7524) and 100 U/ml Penicillin + 100 µg/ml Streptomycin (ThermoFisher Scientific 482 #15140122) in a humidified incubator at 37°C with 5% CO₂. U2OS IMLS cells with stable expression of 483 PRKN were generated by cloning of PRKN into a pLenti-III-PGK viral expression vector that was 484 co-transfected into 293FT cells with psPAX2 and pCMV-VSVG to generate lentiviral particles, which 485 were transduced into U2OS IMLS cells and positive cells selected with puromycin (Sigma #P7255). Mitophagy was typically induced utilising 1 mM DFP by addition to cell culture media for 24 h. In the 486 case of PRKN overexpression, CCCP was used at 20 µM for 16 h or a combination of Oligomycin and 487

 $\label{eq:488} \mbox{Antimycin A (10 \mu M and 1 \mu M respectively) for 16 h. In the case of PRKN-dependent mitophagy$

experiments, the pan-caspase inhibitor Q-VD-OPh ⁵⁰ was included to reduce cell death and improve
 imaging quality, in accordance with previous papers studying PRKN-dependent mitophagy ⁵¹.

491 Imaging and Image Analysis

492 The initial siRNA screen, secondary siRNA screen and other experiments where indicated were 493 carried out utilising an AxioObserver widefield microscope (Zen Blue 2.3, Zeiss) with a 20x objective 494 (NA 0.5). Relevant channels were imaged using a solid-state light source (Colibri 7) and multi-495 bandpass filter (BP425/30, 524/50, 688/145) or individual filters. The tertiary siRNA screen was 496 carried out utilising an ImageXpress Micro Confocal (Molecular Devices) using a 20x objective (NA 497 0.45). Confocal images were taken with a LSM710 microscope or LSM800 (Zebrafish experiments) 498 microscope (Zen Black 2012 SP5 FP3, Zeiss) utilising a 63x oil objective (NA 1.4) combined with a laser 499 diode (405nm), Ar-Laser Multiline (458/488/514nm), DPSS (561nm) and HeNe-laser (633nm) for 500 relevant fluorophore acquisition.

501 Identification of relevant structures by image analysis was determined using CellProfiler software 502 (v2.8.0, The Broad Institute) ⁵². In the case of IMLS cell analysis for mitophagy, red only structures 503 were identified by dividing the red signal by green signal per pixel following background noise 504 reduction and weighting of the red signal to match that of the green signal in non-mitophagy 505 inducing controls. By this method a value of ~1 indicates "yellow" networked mitochondria and 506 values <1 represent mitochondria that have a stronger red signal than green signal. Values of <0.5 507 were taken to represent true red structures, regions that are therefore twice as bright for red than 508 green.

509 Zebrafish Maintenance and in situ hybridisation (ISH)

Wild-type zebrafish (AB strain) and transgenic tandem-tagged mitofish (TT-mitofish)¹¹ were housed at
the zebrafish facility at the Centre for Molecular Medicine Norway (AVD.172) using standard practices.
Embryos were incubated in egg water (0.06 g/L salt (Red Sea)) or E3 medium (5 mM NaCl, 0.17 mM
KCl, 0.33 mM CaCl2, 0.33 mM MgSO4, equilibrated to pH 7.0). Embryos were held at 28 °C in an

incubator following collection. Experimental procedures followed the recommendations of the
Norwegian Regulation on Animal Experimentation ("Forskrift om forsøk med dyr" from 15.jan.1996).
All experiments conducted on wild-type zebrafish and transgenic tandem-tagged mitofish larvae were
done at 5 dpf or earlier.

518 Whole-mount ISH for *prkcda* and *prkcdb* were performed as previously described using digoxigenin-519 labelled riboprobes⁵³. Primer sequences for sense and antisense probes are described in 520 Oligonucleotide Primers/Probes

521 Appendix 2.

522 Screening Library

- 523 Human targets for the siRNA library were identified by using the ExPASY PROSITE sequence motif
- 524 database identifier for human proteins containing true-positive identified lipid binding domains.
- 525 These included C1 domains (ID: PS50081), C2 domains (ID: PS50004), ENTH (ID: PS50942), PH Domain
- 526 (ID: PS50003), PX Domain (ID: PS50195), FYVE domain (PS50178), GRAM or PROPPIN (SVP1 family)
- 527 domains (No ID). This list was cross-checked against several previously published U2OS cell line
- 528 proteomes (determined by mass spectrometry) and proteins not observed to be expressed in U2OS
- 529 cells were removed ^{15,16}. See Appendix 1 for a full list of siRNA targets.

530 siRNA knockdown

531 The primary screen was carried out using a pooled siRNA approach with three Silencer Select siRNA

oligonucleotides targeting each gene at 2.5nM final concentration each (7.5nM final). For

- transfection, 125µl of OptiMEM (Thermofisher Scientific #31985070) containing 100 ng/ml
- 534 Doxycycline (Clontech #631311) and 0.1 µl RNAiMAX per pmol siRNA (Thermofisher Scientific
- 535 #13778150) was added to each well of an Ibidi 96-well μ-plate (Ibidi #89626). After 5 mins at room
- 536 temperature (RT), 25 μl of 75 nM siRNA (pooled) diluted in OptiMEM was added per well and
- 537 incubated a further 15 mins at RT. U2OS IMLS cells were trypsinised and resuspended in complete
- 538 media before centrifugation at 300 x g for 5 mins at RT. Media was removed and cells resuspended in

OptiMEM to $2x10^5$ cells/ml. 100 µl of cells were added per well and samples were incubated for 16 h 539 540 at 37°C. The media was then removed and changed to complete media for a further 24 h before the 541 media again was changed to complete media ± 1 mM DFP and incubated for 24h to induce 542 mitophagy. Control wells with BafA1 treatment were dosed 2h prior to fixation. At the end of the 543 experiment, samples were washed once in PBS and then fixed in 3.7% PFA, 200 mM HEPES pH 7 for 544 15mins /37°C. PFA was then quenched by washing twice and incubating a further 15mins in DMEM + 545 10mM HEPES pH 7. Wells were then washed twice with PBS and then incubated in PBS + 2 µg/ml 546 Hoechst to stain nuclei for a minimum of 1h prior to imaging. Images were obtained on a Zeiss 547 AxioObserver widefield microscope with a 20x objective acquiring a minimum of 35 fields of view per 548 treatment. Analysis of red only punctate structures was carried out utilizing CellProfiler from a 549 minimum of 1000 cells per condition per replicate.

550 Identification and plotting of protein-protein interactome (PPI) networks

551 PPI represents the physical interaction among a set of proteins. PPI was obtained from Biological

552 General Repository for interaction Datasets (BioGRID) version BIOGRID-ORGANISM-3.5.185.mitab⁵⁴

553 (compiled April 25th 2020) containing non-redundant and curated interactions. The networks were

visualized using Cytoscape (v3.8.0) ⁵⁵, we considered only the connected component of these seed

- networks for statistical and functional analysis. Functional and pathway analysis of connected
- 556 components of interaction network was performed by ShinyGO⁵⁶. We only considered GO terms for
- 557 cellular component, molecular functions and biological process with significant p-value and
- 558 enrichment values. Graphs were plotted using R package ggplots.

559 **RNA Isolation, cDNA synthesis and qPCR**

560 For quantifying knockdown in the secondary deconvolution siRNA screen, RNA was isolated and

561 cDNA generated from transfected U2OS cells using *Power* SYBR Green Cells-to-C_T kit (ThermoFisher

562 Scientific #4402955) as per manufacturer's instructions.

- 563 For other experiments, RNA was isolated from cells or zebrafish (~50 embryos per sample) using
- 564 Trizol reagent (ThermoFisher Scientific #15596026). cDNA was synthesised from RNA using
- 565 Superscript III reverse transcriptase (ThermoFisher Scientific #18080085) according to
- 566 manufacturer's instructions. Amplification was performed with KAPA SYBR FAST qPCR Kit using a
- 567 CFx96 real-time PCR system (Bio-Rad) using primers designed to amplify target genes as indicated in
- 568 Oligonucleotide Primers/Probes
- 569 Appendix 2 following normalisation of transcript levels to TATA-box-binding protein (TBP cell
- 570 samples) or β-actin (zebrafish samples) using the $2^{-\Delta\Delta Ct}$ method.

571 Western Blotting

For western blotting experiments, cells were treated as indicated in figure legends prior to moving
onto ice and washing twice with cold PBS. Cells were lysed on ice in NP-40 lysis buffer [50mM HEPES
pH 7.4, 150mM NaCl, 1mM EDTA, 10% (v/v) Glycerol, 0.5% (v/v) NP-40 + 1mM DTT, 1x Phosphatase
inhibitors and 1x Protease inhibitors fresh] and incubated 5 mins prior to collecting. For zebrafish
samples, embryos were collected at 3 dpf and lysed in RIPA buffer [50 mM Tris-HCl pH 8, 150 mM
NaCl, 5 mM EDTA, 1 % NP-40, 0.5 % Sodium deoxycholate, 0.1 % SDS, 1x protease inhibitor cocktail],
approximately 20-30 embryos were used per gel lane.

579 Samples were clarified by centrifugation at 21000 x g / 4 °C / 10 mins and supernatant retained.

580 Protein levels were quantified by Bradford assay (Bio-Rad #5000006) relative to a BSA standard.

581 Samples were normalised and added to loading sample [1x = 62.5mM Tris pH 6.8, 10% (v/v) Glycerol,

582 2% (w/v) SDS, 0.005% (w/v) Bromophenol Blue] to achieve 30µg-50µg of protein per lane. Samples

583 were ran by acrylamide gel and transferred to PVDF (350mA/50mins). Samples were blocked in TBS

- 584 Odyssey Blocking Buffer (Li-Cor #927-50000) for 30mins/RT before incubation overnight at 4°C with
- primary antibodies (TBS blocking buffer + 0.2% Tween). Membranes were washed 3x10 mins in TBST
- 586 before secondary antibody incubation (TBS blocking buffer + 0.2% Tween + 0.01% SDS) for 1h.

- 587 Membranes were washed 3x 10min with TBST before a final wash in TBS only and membrane
- 588 imaging.

589 Antibodies

- 590 Primary antibodies targeting ATG13 (#13468, Clone E1Y9V), AMPK P-T172 (#2535), β-Actin (#3700,
- 591 Clone 8H10D10), BNIP3 (#44060, Clone D7U1T), BNIP3L (#12396, Clone D4R4B), COXIV (#4850, Clone
- 592 3E11), PDH (#2784), PRKCD (#9616, D10E2), PRKCD P-S663 (#9376), LC3B (Western blotting only,
- 593 #3868, Clone D11), ULK1 (#8054), ULK1 P-S555 (#5869), ULK1 P-S757 (#6888, Clone D1H4) were from
- 594 Cell Signaling Technology. FUNDC1 (#Ab74834), GAK (#Ab115179, Clone 1C2), NIPSNAP1 (#Ab67302),
- 595 MTCO2 (#Ab110258, Clone 12C4F12) and WIPI2 (#Ab105459, Clone 2A2) were from Abcam. ATG13
- 596 P-S318 (#600-401-C49S) was from Rockland. HIF1α (MAB1536-SP, Clone 241809) was from R&D
- 597 Systems. LAMP1 (sc-20011, Clone H4A3) was from Santa Cruz Biotechnology. α-Tubulin (T5168, Clone
- 598 B-5-1-2) was from Sigma Aldrich.
- 599 Secondary antibodies for western blotting are indicated in the source data file, these included
- 600 anti-rabbit (Starbright Blue, Bio-Rad, 12004161) (DyLight 800, ThermoFisher Scientific, SA5-10044)
- 601 (DyLight 680, ThermoFisher Scientific, SA5-10042) or anti-mouse (Starbright Blue, Bio-Rad, 12004158)
- 602 (DyLight 680, ThermoFisher Scientific, SA5-10170) or anti-tubulin (hFAB Rhodamine, Bio Rad,
- 603 12004166). Secondary antibodies for immunofluorescence were anti-rabbit Alexa Fluor-594
- 604 (Invitrogen, A11058), Alexa Fluor-647 (ThermoFIsher Scientific, A21245) or anti-mouse Alexa Fluor-
- 605 647 (ThermoFisher Scientific, A21236).

606 Phos-Tag Gels

- Phos-tag acrylamide gels were prepared in line with manufacturer's instructions. Briefly, 8% resolving
 poly-acrylamide gels were prepared containing 25µM Phos-tag reagent (Wako Chemicals #AAL-107)
 and 50µM MnCl₂²⁶. Samples to be ran for analysis were diluted in loading sample containing 10 mM
- 610 MnCl₂. Acrylamide gels were ran at 40 mA until complete and washed 3x10 min/RT in 1x transfer
- 611 buffer (48mM Tris, 39mM Glycine, 0.0375% (w/v) SDS) + 10mM EDTA followed by 1x10min in 1x

transfer buffer. Samples were then transferred to PVDF at 350mA / 50min and treated as noted earlier
for western blot samples.

614 **PFA Fixation, antibody staining and imaging**

615 Cells to be imaged were seeded onto glass coverslips 16h prior to treatments as indicated in figure 616 legends. Following treatment, cells were washed once with PBS prior to addition of warmed fixation 617 buffer (3.7% (w/v) PFA, 200mM HEPES pH 7.4) or for double tag IMLS cells (3.7% (w/v) PFA, 200mM 618 HEPES pH 7) and incubated 15 mins at 37°C. Coverslips were washed twice and incubated 1x15 mins 619 with DMEM + 10mM HEPES pH7.4 (IMLS = pH 7). Cells were then washed once with PBS and then 620 permeabilised by incubation for 5 mins with permeabilisation buffer (0.2% (v/v) NP-40 in PBS). Cells 621 were washed twice and then incubated 20 mins with IF blocking buffer (PBS + 1% (w/v) BSA) to block 622 the samples. Coverslips were then incubated 1 h / 37 °C with primary antibodies diluted in IF blocking 623 buffer before washing 3x10 mins in IF blocking buffer. Coverslips were then incubated 30 mins / RT 624 with appropriate secondary antibodies. Finally, samples were washed 3x10 mins in IF blocking buffer 625 prior to mounting on to coverslides with ProLong Diamond Antifade Mountant with DAPI 626 (ThermoFisher Scientific #P36962). Slides were allowed to cure overnight before imaging with either 627 a Zeiss AxioObserver widefield microscope (20x) or Zeiss LSM 800 confocal microscope (60x).

628 Citrate Synthase Assay

629 To biochemically quantify mitochondrial abundance, we assayed citrate synthase activity from cell 630 lysates. Briefly, U2OS cells were grown and subject to treatments as described in figure legends, cells 631 were then washed twice with PBS on ice before lysis [50 mM HEPES pH 7.4, 150 mM NaCl, 1 mM EDTA, 10 % Glycerol, 0.5 % NP-40, 1 mM DTT, 1x Phosphatase inhibitors, 1x Protease inhibitors]. Cell 632 633 lysates were clarified by centrifugation at 21000 x g / 10 min / 4 $^{\circ}$ C and supernatants retained. 634 Protein concentration was determined by Bradford assay. To determine citrate synthase activity 1 μ l 635 of protein lysate was added to 197 µl of CS assay buffer [100 mM Tris pH 8, 0.1 % Triton X-100, 0.1 mM Acetyl CoA, 0.2 mM DTNB [5,5'Dithiobis(2-nitrobenzoic acid)]) in a multi well plate. At the 636

assay start point, 2 μ l of 20 mM Iodoacetamide was added per well and incubated at 32 °C and reactions monitored at λ_{Abs} =420 nm for 30 min in a FLUOstar OPTIMA (v2.20R2, BMG Labtech) plate reader and compared to iodoacetamide null controls. The $\Delta \lambda_{Abs}$ was plotted and the reaction rate determined across the linear range before saturation. The reaction rate was then normalised to the protein concentration and plotted relative to the control.

642 Correlative Light Electron Microscopy (CLEM)

643 For CLEM, U2OS IMLS cells were grown on photo-etched coverslips (Electron Microscopy Sciences, 644 Hatfield, USA). The next day, cells were treated with DFP (1mM) \pm GAKi (10 μ M) for 24 h. Cells were 645 then fixed in 4 % formaldehyde, 0.1 % glutaraldehyde/0.1 M PHEM (60 mM PIPES, 25 mM HEPES, 2 646 mM MgCl₂, 10 mM EGTA, pH 6.9), for 1 h. The cells were mounted with Mowiol containing 2 μ g/ml 647 Hoechst 33342 (Sigma-Aldrich). Mounted coverslips were examined with a Zeiss LSM710 confocal 648 microscope with a Zeiss plan-Apochromat 63x/1.4 Oil DIC III objective. Cells of interest were 649 identified by fluorescence microscopy and a Z-stack was acquired. The relative positioning of the cells 650 on the photo-etched coverslips was determined by taking a DIC image. The coverslips were removed from the object glass, washed with 0.1 M PHEM buffer and fixed in 2 % glutaraldehyde/0.1 M PHEM 651 652 for 1h. Cells were post fixed in osmium tetroxide and uranyl acetate, stained with tannic acid, 653 dehydrated stepwise to 100% ethanol and flat-embedded in Epon. Serial sections (~100-200nm) 654 were cut on an Ultracut UCT ultramicrotome (Leica, Germany), collected on formvar coated slotgrids. Samples were observed in a Thermo Scientific[™] Talos[™] F200C microscope and images were 655 656 recorded with a Ceta 16M camera. For tomograms, single-tilt image series were recorded between -657 60° and 60° tilt angle with 2° increment. Single axis tomograms were computed using weighted back 658 projection and, using the IMOD software package version 4.9⁵⁷.

659 Mitochondrial Enrichment

660 Cells to be enriched for mitochondria were grown and treated as noted in figure legends. Cells were661 then moved to ice and washed twice with ice cold PBS. 1 ml of mito fractionation buffer (5 mM Tris-

HCl pH 7.5, 210 mM Mannitol, 70 mM Sucrose, 1 mM EDTA pH 7.5, 1 mM DTT, 1x protease and 662 phosphatase inhibitors) was added per 10 cm dish and scraped to collect cells. A "cell homogenizer" 663 664 (Isobiotec) was utilised with a 16 μ m clearance ball and prepared by passing through 1 ml of mito 665 fractionation buffer. Cell solution was collected in a 1 ml syringe and passed through the cell 666 homogenizer 9 times. The resulting mix was centrifuged 500 x g / 4° C / 5 mins to pellet unbroken 667 cells and nuclei. The supernatant was taken, and a small sample retained as post nuclear 668 supernatant, the remaining was centrifuged at $10000 \times g/4^{\circ}C/10$ mins to pellet mitochondria. The 669 supernatant was removed to waste, and the pellet resuspended in 500 μ l mito fractionation buffer 670 and 10000 x g/4 $^{\circ}$ C/10 mins centrifugation step repeated. The supernatant was removed once more, the pellet represents enriched mitochondria that could be added directly to protein loading sample 671 672 for downstream western blotting.

673 Mitochondrial Classifier

Cellular mitochondria were classified as tubular or fragmented by implementing an image classified
utilising CellProfiler Analyst (v2.2.1, The Broad Institute). Classifications were determined by using
siDRP1 and siOPA1 treated cells as positive controls for fragmented and hyperfused phenotypes
respectively. Classifier was trained on the EGFP fluorescent images and with a confusion matrix of
>0.90 for each phenotype.

679 Crystal Violet Staining

U2OS cells were seeded into 96-well plates in triplicate at 2x10⁴ cells per well and incubated
overnight in complete media. Cells were then treated for 24 h with indicated compounds and doses,
utilising puromycin as a positive control. Following treatment, cell media was removed and cells
washed twice with a gentle stream of water. This was then removed and 100 µl of staining solution
(0.5% (w/v) crystal violet, 20% methanol) added and incubated 20 min / RT with gentle rocking. Wells
were washed 4x with water, all liquid removed and left overnight to air dry. Then 200µl per well of
100% methanol for 20min/RT was added with gentle rocking and sample absorbance read at OD₅₇₀.

687 Sample values were adjusted by no-well control (blank) wells and viability determined by

688 normalisation to an untreated control.

689 **Quantification of mitophagy in** *C. elegans*.

- 690 The strain used to monitor mitophagy process in *C. elegans* was IR2539:
- 691 *unc-119(ed3);Ex*[pmyo-3TOMM-20::Rosella;unc-119(+)]. Standard procedures for *C. elegans* strain

692 maintenance were followed. Nematode rearing temperature was kept at 20°C. For RNAi experiments

- 693 worms were placed on NGM plates containing 2 mM IPTG and seeded with HT115(DE3) bacteria
- transformed with either the pL4440 vector or the gakh-1 RNA construct for two generations.
- 695 Synchronous animal populations were generated by hypochlorite treatment of gravid adults to
- obtain tightly synchronized embryos that were allowed to develop into adulthood under appropriate,
- 697 defined conditions. Progeny of these adults were tested on adult day 2. We performed imaging of

698 mitophagy process in *C. elegans* based on the methods we had established ^{58–60}. Briefly, worms were

- 699 immobilized with levamisole before mounting on 2% agarose pads for microscopic examination using
- 700 EVOS Imaging System. Images were acquired as Z-stacks under the same exposure. Average pixel
- 701 intensity values and frequency of GFP/DsRed puncta were calculated by sampling images of different

animals. The calculated mean pixel intensity for each animal in these images was obtained using FIJI.

703 CRISPR/Cas9 genome editing in zebrafish and microinjections

704 To generate prkcda and prkcdb knock-out embryos, we utilised CRISPR/Cas9 as described earlier (Jao 705 et al., 2013). Potential gRNA target sites were identified using the online web tool CRISPR Design 706 (http://CRISPR.mit.edu) or CHOPCHOP (http://chopchop.cbu.uib.no/index.php) (Montague et al., 707 2014). Genomic DNA sequences retrieved from Ensembl GRCz10 or z11 708 (http://uswest.ensembl.org/Danio rerio/Info/Index) were used for the target site searches. Three 709 guide RNAs were designed each for *prkcda* and *prkcdb* respectively, based on predictions from the 710 aforementioned web programs. All sgRNAs were prepared by in vitro transcription of double-stranded deoxyoligonucleotide templates as described previously ⁶¹. Cas9 nuclease (EnGen Cas9 NLS, NEB) was 711

combined with an equimolar mixture of 3x sgRNA's (or 6x for *prkcd_ab* DKO) and incubated for 5-6 minutes at room temperature. After incubation, the mixture was immediately placed back on ice, until pipetted into the capillary needle used for microinjection and then approximately 1 nl of 5 μM sgRNA:Cas9 complex was microinjected into the cytoplasm of one celled stage zebrafish embryo.

- 716 Oligonucleotides used for sgRNA synthesis are listed in Oligonucleotide Primers/Probes
- 717 Appendix 2, a universal primer was used with individual sgRNA primers
 718 (5'AAAAGCACCGACTCGGTGCCACTTTTTCAAGTTGATAACGGACTAGCCTTA
- 719 TTTTAACTTGCTATTTCTAGCTCTAAAAC'3).

720 Zebrafish Locomotor Assay

- 721 Larval motility was monitored using the ZebraBox and Viewpoint software (v3.10.0.42, Viewpoint Life
- 722 Sciences Inc) under infrared light. At 5 days post fertilization (dpf), larvae were singly placed in
- 48-well plates with 300 μl of fish water per well, followed by incubation at 28.5 °C on a normal light
- 724 cycle overnight. All experiments were completed in a quiet room at 5 dpf between 10 AM and 2 PM.
- Larvae were allowed to acclimate in the ZebraBox measurement apparatus for 2 h before recording.
- 726 Larvae were then exposed to alternating cycles of infrared light and dark, every 30 min as
- described ⁶³. Larval locomotion was tracked with the Viewpoint software. Motility was defined as
- 728 tracks moving less than 10 cm/s, but more than 0.1 cm/s.

729 Zebrafish Mitophagy cryosectioning and confocal microscopy

Zebrafish mitophagy experiments were conducted on tt-mitofish with relevant prkcd_a/b KO lines as described above. To examine mitophagy, zebrafish larvae were treated with DMOG or control for 24 h. At experimental end-points, larvae were washed once in embryo water and fixed with 3.7% PFA (in HEPES, pH 7-7.2) at 4 °C overnight. Post fixation, larvae were washed three times in PBS. The larvae were then cryopreserved in a 2 mL tube in increasing amounts of sucrose in 0.1 M PBS with 0.01 % sodium azide. Cryopreservation was done first in 15 % sucrose solution for 1 hour at RT or up until the larvae drops to the bottom of the tube and then in 30% sucrose solution at 4 °C overnight with gentle shaking. Cryopreserved larvae were oriented in a cryomold (Tissue-Tek Cryomold, Sakura, Ref: 4565)
with optimal cutting temperature compound (OCT compound) (Tissue-Tek Sakura, Ref: 4583). Larvae
were oriented with the ventral side down and additional OCT was added to fill the mold and frozen
down on dry ice. A solid block of OCT with couple of larvae oriented in the desired way, was taken out
from the mold and 12 µm coronal slices were sectioned on the cryostat (Thermo Scientific). Sections
were collected on Superfrost Plus glass slides (Thermo Scientific, Ref: J1800AMNZ) and kept at RT for
at least 2 h to firmly tether slices onto the glass slide.

744 The pH of all solutions and buffers used were 7-7.2. Slides were rehydrated three times in PBST (0.1 % 745 Tween 20 in 1X PBS) at room temperature for 3 minutes each. Area of interest was circled by a 746 hydrophobic PAP pen (Abcam, ab2601) and the slides were placed in a humidified chamber to avoid 747 drying out. 100-200 µl of 1 µg/ml Hoechst solution was gently pipetted onto the slides and incubated 748 for 30 mins at RT. Post incubation, slides were washed 3 times in PBST for 5 minutes each and mounted 749 using ProLong Diamond Antifade Mountant (Invitrogen, P3696). Coverslips were carefully placed over 750 the sections. Confocal images were obtained using an Apochromat 20x/0.8 or 63x/1.2 oil DIC objective 751 on an LSM 800 microscope (Zeiss). Red puncta were counted manually from hind-brain regions.

752 Mass Spectrometry

753 Sample Preparation

Cells were dissolved in RIPA buffer and further homogenized with a sonicator (30 sec x 3 times with 30 754 755 sec interval) and insoluble material was removed by centrifugation. Protein concentrations were 756 estimated by BCA assay (Pierce). For each replicate, 600 µg of protein samples for phosphoproteomics 757 and 30 µg for whole cell lysate proteomics were reduced and alkylated and further digested with 758 trypsin by FASP (Filter aided sample preparation) method. Digested peptides were transferred to a 759 new tube, acidified and the peptides were de-salted using Oasis cartridges for STY peptides enrichments. Phosphorylated peptides enrichment was performed based on TiO₂⁶⁴. Enriched peptides 760 761 fractions were de-salted by C₁₈ stage tips.

762 LC-MS/MS:

763 Peptide samples were dissolved in 10 μ l 0.1 % formic buffer and 3 μ l were loaded for MS analysis. The 764 Ultimate 3000 nano-UHPLC system (Dionex, Sunnyvale, CA, USA) connected to a Q Exactive mass 765 spectrometer (ThermoElectron, Bremen, Germany) equipped with a nano electrospray ion source was 766 used for analysis. For liquid chromatography separation, an Acclaim PepMap 100 column (C18, 3 µm 767 beads, 100 Å, 75 μm inner diameter) (Dionex, Sunnyvale CA, USA) capillary of 50 cm bed length was 768 used. A flow rate of 300 nL/min was employed with a solvent gradient of 3-35 % B in 220 mins, to 50 % 769 B in 20 min and then to 80 % B in 2 min. Solvent A was 0.1 % formic acid and solvent B was 0.1 % formic 770 acid/90% acetonitrile.

771 The mass spectrometer was operated in the data-dependent mode to automatically switch between 772 MS and MS/MS acquisition. Survey full scan MS spectra (from m/z 400 to 2000) were acquired with 773 the resolution R = 70,000 at m/z 200, after accumulation to a target of 1e6. The maximum allowed ion 774 accumulation times were 100 ms. The method used allowed sequential isolation of up to the ten most 775 intense ions, depending on signal intensity (intensity threshold 1.7e4), for fragmentation using higher 776 collision induced dissociation (HCD) at a target value of 10,000 charges and a resolution R = 17,500. 777 Target ions already selected for MS/MS were dynamically excluded for 30 sec. The isolation window 778 was m/z = 2 without offset. The maximum allowed ion accumulation for the MS/MS spectrum was 779 60 ms. For accurate mass measurements, the lock mass option was enabled in MS mode and the 780 polydimethylcyclosiloxane ions generated in the electrospray process from ambient air were used for 781 internal recalibration during the analysis.

782 Data Analysis:

Raw files from the LC-MS/MS analyses were submitted to MaxQuant (v1.6.1.0) software for
 peptide/protein identification⁶⁵. Parameters were set as follow: Carbamidomethyl (C) was set as a fixed
 modification; protein N-acetylation and methionine oxidation as variable modifications and PTY. A first
 search error window of 20 ppm and mains search error of 6 ppm was used. Minimal unique peptides

787 were set to one, and FDR allowed was 0.01 (1%) for peptide and protein identification. The Uniprot 788 human database was used. Generation of reversed sequences was selected to assign FDR rates. 789 MaxQuant output files (proteinGroups.txt for proteomic data and STY(sites).txt for phosphoproteomic 790 data) were loaded into the Perseus software⁶⁶. Identifications from potential contaminants and 791 reversed sequences were removed and intensities were transformed to log2. Identified 792 phosphorylation sites were filtered only for those that were confidently localized (class I, localization 793 probability \geq 0.75). Next, proteins identified in two out three replicates were considered for further 794 analysis. All zero intensity values were replaced using noise values of the normal distribution of each 795 sample. Protein or STY abundances were compared using LFQ intensity values and a two-sample 796 Student's T-test (permutation-based FDR correction (250 randomizations), FDR cut-off: 0.05, S0: 0.1).

797 The complete datasets have been uploaded to ProteomXchange.

798 Statistics and Significance

799 Experimental values were used for statistical analysis using Prism (v8.0.1) where indicated using

- analyses and post-hoc tests as indicated in figure legends. All data values come from distinct
- samples. Where shown **** = p > 0.0001, *** = p > 0.001, ** = p > 0.01, * = p > 0.05 or n.s = not
- 802 significant.

803

804 ACKNOWLEDGEMENTS

- 805 We would like to thank Coen Campersteijn for assistance with live cell imaging. We would also like to
- thank the Simonsen lab for their support and critical discussion throughout.
- 807 This work was supported by the Norwegian Cancer Society (Project: 171318) and the Research

808 Council of Norway through its Centres of Excellence funding scheme (Project: 262652) and FRIPRO

809 grant (Project: 221831).

810 AUTHOR CONTRIBUTIONS

- 811 Experimental planning, data analysis and writing of the manuscript were performed by M.J.M and A.S
- 812 with input from all authors. B.J.M carried out *D.rario* experiments, Seb.S carried out CLEM
- 813 experiments. Y.A and E.F carried out *C.elegans* experiments. Sac.S and J.W prepared and ran samples
- for MS analysis. Sak.S carried out analysis of interaction networks. A.H.L generated the IMLS cell line.
- 815 M.J.M, L.T.M, M.Y.W.N.G and L.R.dlB performed all remaining experiments.
- 816 AUTHOR DECLARATIONS
- 817 M.J.M is now an employee of AstraZeneca plc.
- 818 DATA AVAILABILITY
- All data is available upon reasonable request. Source data for quantitative figures and supplementary
- figures is provided as supplementary information. Proteomics Data has been uploaded to PRIDE.

siRNA Targets List

Appendix 1 – siRNA Targets

Gene Name	RefSeq	Lipid Binding	Sense siRNA			siRNA ID			Primary Screen	
		Domain(s)	Oligo #1	Oligo #2	Oligo #3	Oligo 1	Oligo 2	Oligo 3	Average (fold)	SEM
ABR	NM_001092	РН, С2	GCGAAGAGAUCUACAUUAAtt	CGGCUAUUUUGUCAGCAAAtt	CGGACGUGAUUGAGAUGAAtt	s876	s877	s878	-0.14	0.09
AKAP13	NM_006738	PH, C1	GCAUAUUGCUUGUAACUCAtt	GGAAGAAGCUUGUACGUGAtt	GGAUAAUAGACAGCAAGUUtt	s680	s681	s682	-0.74	0.04
ANKFY1	NM_016376	FYVE	GGACUUCAUUUGAUGAGAAtt	GAAACUAGCAAAUCGGUUUtt	GUACAGCGAUCUGAAGAUAtt	s28198	s28199	s28200	+0.15	0.10
ARAF	NM_001654	C1	CGAGAUCUCAAGUCUAACAtt	GUGUUGACAUGAGUACCAAtt	UGCACAAUUUUGUACGGAAtt	s575	s576	s577	+0.78	0.12
ARHGAP29	NM_004815	C1	GCAUAGGUGUUGUUGAUCAtt	GACCAAGGCUAAAACGAAUtt	GGUCAACUCUCUACUGAUAtt	s484	s485	s486	+0.09	0.05
Arhgap33	NM_178252	PX (atypical)	GGAAGACAUUCUUUGCUCUtt	GAGGUUCUGUUCAGCGAUAtt	GGCAUGAGUUUGAUAGUGAtt	s107439	s107440	s107441	+0.22	0.05
ARHGEF2	NM_004723	PH, C1	GGAUCUACCUGUCACUACUtt	CCAAGUACCCGUUACUCAUtt	GCUUACCUGCGGCGAAUUAtt	s17545	s17546	s17547	-0.37	0.02
Arhgef28	NM_012026	PH, C1	CGAUUUGGAUAUCAACUAUtt	CCGACUGCGUCUUAACGAAtt	GCUUCGCAGUCUUUCGUGAtt	s99834	s99835	s99836	+0.10	0.05
BRAF	NM_004333	C1	CAGAGGAUUUUAGUCUAUAtt	GCAUAAUCCACCAUCAAUAtt	CAGUUGUCUGGAUCCAUUUtt	s2080	s2081	s2082	+0.01	0.05
C2CD5	NM_014802	C2	GCUCGGAUGAAGUUACAGAtt	GGAAAUUUCCGGAAUCGUUtt	GCCUCAACCUGACUAAUCAtt	s19053	s19054	s19055	+0.11	0.08
CDC42BPA	NM_014826	PH, C1	GAUGGAAGAUGGAACGGUUtt	CCGCAAUCAUAGAUCAUGAtt	CCAUAUCUCUCGGUGUACAtt	s16098	s16096	s16097	-0.10	0.08
CDC42BPB	NM_006035	PH, C1	CGAGAACGGCAUAACGAGAtt	CACUCAACUCCAUCGAAUAtt	GGCUGAUCCUUUGCUAUGAtt	s18401	s18402	s18403	+0.41	0.14
CDC42BPG	NM_017525	PH, C1	GCAAGAUCAUGAACCACGAtt	GGAUGUGAACGGGCACAUUtt	CAAACUCCCUGAUUCCCUUtt	s30983	s30984	s30985	-0.13	0.07
CHN1	NM_001822	C1	CAUUGAAUGAUAUACGGUAtt	CAUUAUCACUGGUGCACUUtt	CUCUCUAUAUUGAAACCAAtt	s3016	s3017	s3018	-0.48	0.06
СІТ	NM_007174	PH, C1	GGAAGGUGAUGACCGUCUAtt	CGUGGAUUCUUACGGAAGAtt	GAUUCUUACGGAAGACGUAtt	s21910	s21911	s21912	+0.12	0.06
CLINT1	NM_014666	ENTH	GCUCCUAGCUUACCUCAUAtt	GCACAAUUGAUGACACCAUtt	GAAUGUUAAAAGACAACAAtt	s18644	s18645	s18646	+0.53	0.12
CPNE1	NM_152925	C2 x2	GAAUCUAUGACAUAGACAAtt	CCAUGUCAGUGAUCAUUGUtt	GCUACGCUUUGGAAUCUAUtt	s17023	s17024	s17025	+0.77	0.12
CPNE2	NM_152727	C2 x2	GGACUGAGGUGAUCAAGUAtt	UGUUCACCGUUGGAAUAGAtt	CUACUGGACCGGGAUGUUAtt	s47982	s47983	s47984	+1.32	0.15
CPNE3	NM_003909	C2 x2	CCAUUAAGGUGGAGUGUUAtt	GGAUAAUAAGGAUCUAUUUtt	GCAUUACGAUUUCAGCUGAtt	s17005	s17006	s17007	+0.30	0.08

CPNE7	NM_153636	C2 x2	GGAUUACGACUCUCGAGGAtt	AGUAUGAGGUGUCCCAUGAtt	CAGCCGAACGAGUACCUGAtt	s25879	s25880	s25881	+1.04	0.16
DAB2IP	NM_138709	РН, С2	CGAUCUUUCCGGUCUGAUAtt	GCUGUGGACUCCAAACAGAtt	GAGCAUGAGUGGACCAACAtt	s237	s238	s239	+0.97	0.11
DGKA	NM_201554	C1 x2	GGAUCGUAAAAAUAGCAAAtt	GCAUCGCAGUGCUAAACAUtt	CCGGAGAAGUUCAACAGCAtt	s3911	s3912	s3913	+0.26	0.10
DYSF	NM_003494	C2 x7	GCGUGAACCCUGUAUGGAAtt	GGACCUCCCUUCAACAUCAtt	GGGUCGACCUAUUUCCGAAtt	s15788	s15789	s15790	+0.64	0.10
EEA1	NM_003566	FYVE	GCUAAGUUGCAUUCCGAAAtt	GCUGGAUAAUACAACUGCAtt	GCAAUCUAGUCAACGGAGAtt	s15969	s15970	s15971	-0.06	0.07
ENTHD1	NM_152512	ENTH	GCACAUAGAUGAAGCUGGAtt	CGAUCGCUAGAUUACAUGAtt	GAUUCAUGGUUGGAAAUCAtt	s45419	s45420	s45421	+0.20	0.14
EPN1	NM_013333	ENTH	AAUCCUUGGUGAUGAUUUUtt	GACUUUGACCGACUCCGCAtt	CAUCGUCCACAACUACUCAtt	s26712	s26713	s26714	-0.32	0.04
EPN2	NM_148921	ENTH	CGCUGUUGGAUUUAAUGGAtt	GGAAAACACCUGAGUCCUUtt	AGAGCGAGCUUUAAAACUAtt	s22639	s230616	s230617	-0.15	0.06
EPN3	NM_017957	ENTH	GACUCUCUGAGGUAGAAAAtt	CGUGUACAAGGCUCUAACAtt	CAACUACUCCGAGGCAGAAtt	s30052	s30053	s30054	+0.26	0.05
ESYT1	NM_015292	C2 x5	GGACUUGAACAUCAGCUAUtt	CCAUGAUCAUGGACUCCAUtt	GGGAAGGUGUUACAGGCUAtt	s23605	s23606	s23607	+0.02	0.06
Esyt2	NM_028731	C2 x3	GGAAACCACUUUUAGAGAUtt	GAGUAAGAUUCGAUACAAAtt	CAAAUCCUCUUGUCCAGAUtt	s78925	s78926	s78927	-0.37	0.05
FAM148C	XM_065166	C2	GUGUCUCUGCUCAAAGGUUtt	GCAAUGUGUUGACGCCCGAtt	GGAGGUGACAAGUCUUGGAtt	s43053	s195676	s195677	-0.34	0.05
FGD1	NM_004463	FYVE, PHx2	CCUUGGUGCUGUAUAUCUAtt	CAAGAUGUAUGGUGAGUAUtt	GCAAAAGGUGUUUCACAUUtt	s5121	s5122	s5123	+0.19	0.20
FGD2	NM_173558	FYVE, PHx2	AGAAGAAGAUCGUCCAGGAtt	UCGGUGACGUGAUCCAGAAtt	GGGCCGAACUGAAAUACGAtt	s48057	s48058	s48059	+0.35	0.20
FGD3	NM_033086	FYVE, PHx2	GAACUUUGACCGAGCCGUAtt	UCAUGGGCAUAUUCUCUAAtt	AGAGCUGAGUGGUAGCUUAtt	s40147	s40148	s40149	+0.49	0.14
FGD4	NM_139241	FYVE, PHx2	GAAGGAGACUAAUGAGCAAtt	CAACCACACCUCAACAAAAtt	GAAAGGAUUUGAUAAUGCAtt	s42476	s42477	s42478	+0.18	0.09
FGD5	NM_152536	FYVE, PHx2	GGAGGACAGUGCUUCAAGAtt	CGAAAGGUUUAGAAUCAGAtt	GACUAUUUAAACAACCUUUtt	s45682	s45683	s45684	+0.08	0.11
FGD6	NM_018351	FYVE, PHx2	GUCUGUCACCGUAUCGUCAtt	GAUGAGACUUUGACUAUAAtt	GAAGUUACCUCAUCCUAUUtt	s31503	s31504	s31505	-0.18	0.08
FYCO1	NM_024513	FYVE	CCUGCAAUUUGAUCAGAAAtt	GAGGCACAGUUAGACGAUAtt	CACUGACCGUGGAAAAGGAtt	s35794	s35795	s35796	+0.16	0.12
GAK	XM_001127411	C2-tensin type	GUCCGUCGCUAAUUAUGCAtt	CACCAGAAAUCAUAGACUUtt	CGAGGAAUACAACACCAAUtt	s5527	s5528	s5529	-0.55	0.02
GRAMD1A	NM_020895	GRAM	GGAGCGGCAUUGAAGACUAtt	GAAGUGACAUGUCUGAAGAtt	GAGGAGCUAUUGACAGACAtt	s33529	s33530	s33531	+0.20	0.06
GRAMD1B	NM_020716	GRAM	GAGAGUGAAUGUUACGUGAtt	CCAGUGCUAUGGGAACGAAtt	CUCUUAGAGUCCCAACAAAtt	s33112	s33113	s33114	+0.68	0.11
GRAMD1C	NM_017577	GRAM	CUGCUCGACUCAUCCCAAAtt	GAUUACUUCUAUACCGUGAtt	CCUACACUAUAGUCCUUAAtt	s29399	s29400	s29401	+0.74	0.07
GRAMD2	NM_001012642	GRAM	GGAUGUUCCCUUGGAGGAAtt	CAAAGAAUGCUGUCUAUGAtt	CGAGAAGGGAUAACACUGAtt	s47069	s47070	s47071	-0.18	0.03
GRAMD3	NM_023927	GRAM	GGACACCCAUAAUACUGAAtt	CGACCUUCUACAUGAGAUAtt	GAAAGCUCUUUGUAUCAGAtt	s35302	s35303	s35304	-0.23	0.04
GRAMD4	NM_015124	GRAM	GAAAUUGCCUUAUUGGAAAtt	CCUCCAAAGGAAGACCUGAtt	CCCAGAACCUUUUCGGGAAtt	s23148	s23149	s23150	+0.52	0.03
HECW1	NM_015052	C2	GGACAGCUGCAAUUCCGAUtt	GCUCCGCAAUUUCUACAGAtt	GAUGAGGUCUUGUCCGAAAtt	s22968	s22969	s22970	+0.06	0.07
HGS	NM_004712	FYVE	CGUCUUUCCAGAAUUCAAAtt	UGGAAUCUGUGGUAAAGAAtt	CACGGUAUCUCAACCGGAAtt	s17480	s17481	s17482	+0.55	0.22
HIP1	NM_005338	ENTH	CCACUUAAUUGAGCGACUAtt	GCAAAUCACAGAUCGAAGAtt	GAGCCUGUCUGAGAUAGAAtt	s6542	s6543	s6544	-0.10	0.04

HIP1R	NM_003959	ENTH	GGACCGAUGUCAACAACAUtt	GCAGGAAUGUUCUCGCACAtt	GAUUGUGAGCUGAAGCUUUtt	s17203	s17204	s17205	+0.24	0.06
HS1BP3	NM_022460	РХ	AGAUGGACAUCUUGCAGUAtt	UGAGGAGUUUUACCAGAAAtt	GGUGAUACCCAGAAAACCAtt	s34647	s34648	s34649	+0.46	0.09
ІТСН	NM_031483	C2	CGGGCGAGUUUACUAUGUAtt	GGAACUGCUGCAUUAGAUAtt	GGAAUACAUCAGAAUGGUAtt	s38163	s38164	s38165	-0.38	0.05
ITSN1	NM_003024	РН, С2	GCUCAACAUCUGUAGAUCAtt	CAAGAACUAUUCUUAUGCAtt	GAACGAAAGAUCAUAGAAUtt	s12793	s12794	s12795	-0.47	0.04
ITSN2	NM_147152	PH, C2	CAACGUAAGGAUAAGGAUAtt	GGAGUGAAGUAAAACGGGAtt	CUGGAUCUGUAUCACCUAUtt	s27052	s27053	s27054	+0.66	0.12
KIF16B	NM_024704	РХ	CAACUGCGUUUCUUCGAAUtt	GAAUUAUGGUGACGUAGAAtt	CCAAUAUGUUUCGCUUUAAtt	s31080	s31081	s31082	+0.24	0.06
LRBA	NM_006726	PH-Beach	GGCGGUAUAUCUCCAGUAAtt	GCUCGUUCUGAGUCAUAUAtt	GGUUACGUGUUAUCUACAAtt	s2735	s2736	s2737	-0.25	0.07
LYST	NM_000081	PH-Beach	CCAAAUGACUUACUCGAAAtt	GCAACGGUGUUUCAUCACAtt	GCAUUAGCACUGCGAGUUAtt	s3028	s3029	s3030	-0.40	0.02
MTM1	NM_000252	GRAM	CAUUGAAGGGUUCGAAAUAtt	GGUACUUUCUUAUUCAACUtt	CUGUGAAUCUGCUCGAGAAtt	s9041	s9042	s9043	+0.54	0.05
MTMR1	NM_003828	GRAM	GCUUAUAGCUGCUACAAUUtt	GUUACUACAGGACCAUUAAtt	GGAUCACCUUUAUAGCUGUtt	s16718	s16717	s16719	+0.00	0.07
MTMR2	NM_016156	GRAM	GGACAUCGAUUUCAACUAAtt	CUCUGACUGUCACGAAUUAtt	GAGAGAAUCAUUACGAAAAtt	s17014	s17015	s17016	-0.20	0.11
MTMR3	NM_153050	FYVE	GCUGGACCCUUAUUACCGAtt	GGAACAUUCCUGUGCAACAtt	GGAUGGGUUUUGAUAUGAAtt	s17011	s17012	s17013	+0.02	0.09
MTMR4	NM_004687	FYVE	CGUACAUCCAGUGACCCUAtt	GGAUUUUGGGCACAAGUUUtt	GCAACACCUCUGAUCCUGAtt	s17383	s17384	s17385	+0.07	0.07
MYO9A	NM_006901	C1 x2	GGAUAGUUUUUCGAAUUAAtt	GCUCUUACUUUGGAUAUCAtt	GUAAUAGAGAGUAAUCGAAtt	s9220	s9221	s9222	-0.03	0.05
MYO9B	NM_004145	C1	CGAUGUACUCUGUCCCGAAtt	GGAACUACCAGAUCGGGAAtt	GAAAAACGGUGACCGUCAAtt	s715	s716	s717	+0.32	0.06
MYOF	NM_133337	C2 x5	CGAACAACUCUGUAUCGUUtt	GGGACAUCGUUAUCGAAAUtt	GGUUGGACAUGAUUCCGGAtt	s25476	s25477	s25478	+0.02	0.03
NBEA	NM_015678	PH-Beach	GGAGACGAUUUGUUCGCAAtt	GGAUGUGAAAGCGAUAGUAtt	CGGACUACAAUGUUUCGUAtt	s25649	s25650	s25651	+0.02	0.08
NBEAL1	XM_001134432	PH-Beach	GGAUAUAACAGCUAGAGUAtt	CUAGUGCCUUGAGAGAUAAtt	CUAUGGUACUCACUAUUCAtt	s35186	s35187	s35188	+0.00	0.02
NBEAL2	XM_941211	PH-Beach	CCAUUGACAAGUUCCACUAtt	GCUACUUCCAUGUCCUUAAtt	CCAUACUGCUGUUACGUCUtt	s23313	s23314	s23315	-0.25	0.03
NCF1	NM_000265	РХ	CGAGUUCCAUAAAACCUUAtt	AGGGCACACUUACCGAGUAtt	AGACAUACUUGAUGCCCAAtt	s57647	s57648	s57649	+0.45	0.12
NCF4	NM_000631	РХ	AAGUCUACGUGGGUGUGAAtt	GGAGGAUCCAAGUACCUCAtt	CCUCAGUCGGAUCAACAAAtt	s9306	s9307	s9308	+0.49	0.18
NEDD4L	NM_015277	C2	CAGAUAACCCUGAAUGACAtt	GGACAUCGCGAGUACCUAUtt	CCUUUGAAGAUUUACGAGAtt	s23569	s23570	s23571	-0.15	0.04
NISCH	NM_007184	РХ	GCCCAUCCUCUCUAACCAAtt	GAAUCAUGUUCGUUCAGGAtt	GGAUCGAACAGAUGGAGGAtt	s22092	s22093	s22094	+0.45	0.08
NOXO1	NM_144603	РХ	CAAGAGGCUCCAAACGUUUtt	UGCGCGUGUUGGAAACGUCtt	GGAGUUGGGACGAAUUCAGtt	s195651	s195652	s195653	+0.90	0.20
NSMAF	NM_003580	PH-Beach, GRAM	CAACGGAUUUUAAAGAGUUtt	GGUGUAGACUUGAACAGCAtt	GCAAGCACACUGUUAGUUUtt	s16015	s16016	s16017	+0.47	0.08
OXR1	NM_181354	GRAM	CUAACGAACUUGUUCAAUUtt	GGAUUCUUUGAAUAGCAUAtt	CAAUUGAGGAUUCUAGUAAtt	s30111	s30112	s30113	+0.05	0.08
PCLO	XM_940805	C2 x2	CCACUAGUGAAACAACCAAtt	GGAUUACCUGUUACAAGAAtt	GGAGGACUUCAUUCGAAAAtt	s26249	s26250	s26251	-0.28	0.04
PDZD8	NM_173791	C1	GCAUAUCCAUAUACAACAAtt	CAAUACUAGUUCUCGUUUAtt	GAGUUCUAUUAAGACGGUUtt	s42265	s42266	s42267	+0.04	0.09

PICALM	NM_001008660	ENTH	GGAUAUGACAUGUCUACAUtt	GGCAAGCACUGGUCUAUCUtt	CCACCUAGCAAGUUAGUAUtt	s15799	s15800	s15801	-0.09	0.05
PIK3C2A	NM_002645	PX, C2, C2	GCCUACAACUUGAUAAGAAtt	GGAUCUUUUUAAACCUAUUtt	GGCUUUGAGUUGUCAAGCAtt	s10508	s10509	s10510	-0.04	0.11
РІКЗС2В	NM_002646	РХ, С2	GCUCUGAUCCUACCCUUAAtt	CCUACAACCUCAUUCGCAAtt	CGGAAAACCUGCAAUCCUAtt	s10511	s10512	s10513	-0.02	0.11
PIK3C2G	NM_004570	РХ, С2	CCAUCUACCAGCUAAUCAAtt	GUAGCAUUCCUCCAACAAAtt	GCUACUGGGUGGGAGUAUAtt	s10514	s10515	s10516	+0.28	0.14
PIKFYVE	NM_152671	FYVE	CACUGAGGAUGAACGCAAAtt	GGAAAUCUCCUGCUCGAAAtt	CACCGCUACUGGUUGAGAAtt	s47254	s47255	s47256	+0.23	0.11
PLA2G4A	NM_024420	C2	GGGCUUGAAUCUCAAUACAtt	GAAUUUAGUCCAUACGAAAtt	CCGUAUCCCUUGAUACUGAtt	s10592	s10593	s10594	-0.42	0.03
PLCB3	NM_000932	C2	GCAUAACACCUAUCUCACUtt	CGUCCUUUGUGGAGACCAAtt	GGCUGCUCAUCGAAAAGUAtt	s10619	s10620	s10621	-0.32	0.05
PLCD1	NM_006225	РН, С2	CAACAAGAAUAAGAAUUCAtt	GGACCAGCGCAAUACACUAtt	GGAGUUUGCGUUUGAGGUAtt	s10625	s10626	s10627	+0.60	0.12
PLCD3	NM_133373	C2	UGGUCAACGUGGACAUGAAtt	GCAGCUCAUUCAGACCUAUtt	GGUUUGUGGUGGAAGAUUAtt	s41418	s41419	s41420	+0.39	0.11
PLCG1	NM_182811	PH x2, C2	GGGUGAAAAAGAUCCGUGAtt	GAAUCGUGAGGAUCGUAUAtt	GGACUUUGAUCGCUAUCAAtt	s10631	s10632	s10633	+0.22	0.06
PLCG2	NM_002661	РН, С2	GGAUCUCCUCGUCACAUAAtt	CAAUAUGGAAAGAGAUAUAtt	GGGAUUCCAUUGACCAGAAtt	s10634	s10635	s10636	+0.11	0.12
PLCH1	NM_014996	РН, С2	GGACGAAUGAUGCAGUUAAtt	CCAGUGUAUUAGUAAGAGUtt	GCAUAGAAGGCUUCACGAAtt	s22817	s22818	s22819	-0.02	0.07
PLCL2	NM_015184	РН, С2	GCCGGAGUGUUGAAUUAGAtt	GGACUGCGGUACCUAAUUUtt	CCGUGGAUGAGGUAUUCAAtt	s23334	s23335	s23336	+1.01	0.29
PLD1	NM_002662	РХ, РН	GCACUAUAUCUAUAUCGAAtt	CACUAUAUCUAUAUCGAAAtt	GGCACUAUAUCUAUAUCGAtt	s10637	s10638	s10639	-0.15	0.07
PLD2	NM_002663	РХ, РН	CCAUGUCUUUCUAUCGCAAtt	GUGUGAUUCUUGGAGCAAAtt	GAAGAAAUACCGUCAUUUUtt	s10640	s10641	s10642	-0.01	0.09
PLEKHF1	NM_024310	FYVE, PH	CACAGGUCUUGGUAACAAAtt	CCAGCUGUCUCAUGCCUUUtt	CCUUUUUGCUGGACACUGUtt	s35643	s35644	s35645	-0.07	0.09
PLEKHF2	NM_024613	FYVE, PH	CUAAAUCUUUUGCAGUUUAtt	GUAUAAGUAUAGUGGAAAAtt	GGAGAAGGAGUAUUGACUAtt	s36049	s36050	s36051	+0.23	0.11
PLEKHM1	NM_014798	PH x2, C1	GCAGAUCGGCUUCUCCUUUtt	GCACCUCAUUGGGAGGAGAtt	GGAUCAUCCACAACUGGGAtt	s19041	s19042	s19043	+0.07	0.12
PRKCA	NM_002737	C2, C1 x2	CAACGUACCCAUUCCGGAAtt	GGCUGUACUUCGUCAUGGAtt	GCUCCACACUAAAUCCGCAtt	s11092	s11094	s11093	+0.23	0.04
PRKCB	NM_212535	C2, C1 x2	GGUCUGUUCUUCUUACAGAtt	GGAUGAAACUGACCGAUUUtt	GAAUCGGACAAAGACAGAAtt	s11095	s11096	s11097	+0.30	0.10
PRKCD	NM_212539	C2, C1 x2	GGGACACUAUAUUCCAGAAtt	GGAUUAAAGUGUGAAGACUtt	GGAGUGACCGGAAACAUCAtt	s11099	s11098	s11100	-0.57	0.04
PRKCI	NM_002740	C1	GAGACCUAAUGUUUCAUAUtt	GGAUAUGAUGGAGCAAAAAtt	GUAAUUCCAUAUAAUCCUUtt	s11110	s11111	s11112	-0.24	0.07
PRKCZ	NM_002744	C1	CGUUCGACAUCAUCACCGAtt	GGACUUUGACCUAAUCAGAtt	CGAGGAUAUUGACUGGGUAtt	s11128	s11129	s11130	+0.42	0.08
PRKD2	NM_016457	PH, C1 x2	CAGUGGGCGUGAUCAUGUAtt	GAACAACACGACCAACAGAtt	AGAUGAUCCUGUCCAGUGAtt	s24644	s24645	s24646	-0.08	0.10
PTEN	NM_000314	C2-tensin type	GCAUACGAUUUUAAGCGGAtt	CACCGCAUAUUAAAACGUAtt	GGUUUUCGAGUCCUAAUUAtt	s325	s326	s327	+0.18	0.10
РХК	NM_017771	РХ	CGGAAUAUAUUAUUCGAGUtt	GGAUCUGAUCUACAAGGCAtt	GACAUAGGUUGGAGAAUAAtt	s29710	s29711	s29712	+0.24	0.08
RAB11FIP1	NM_001002814	C2	ACGAUGAGCUGAUUCAGCUtt	CGAGCUGGAAGACUACAUUtt	AGAAGGAAACGAUAAGCAAtt	s37090	s37091	s37092	+0.89	0.09
RAB11FIP2	NM_014904	C2	GCGCAUUCAAUGUCUGAUUtt	GGUUUAGAUUAGAAUCCAAtt	CGAGCUACCUGGAUUGCUAtt	s22475	s22476	s22477	+0.56	0.02
RAB11FIP5	NM_015470	C2	GGAACGCGGCGAGAUUGAAtt	GAAGAAGUAUGAUCUGGAAtt	GGCCGCGAGAAGUACAGUAtt	s25026	s25027	s25028	+0.05	0.08

RACGAP1	NM_013277	C1	CAGUGACUGUUCCCAAUGAtt	CAACUAAGCGAGGAGCAAAtt	GCGAAAAGCUGGAACGACAtt	s26550	s26551	s26552	+0.67	0.09
RAF1	NM_002880	C1	GGAACUGUUUAUAAGGGUAtt	GGAUUUCGAUGUCAGACUUtt	CGUGUUUUCUUGCCGAACAtt	s11749	s11750	s11751	+0.91	0.06
RASA1	NM_002890	РН, С2	CAUAGAUCACUAUCGAAAAtt	GAAUCGUUGUUGUUAUGCAtt	CCACGGAUGUUCAAUAUCAtt	s11820	s11819	s11821	-0.28	0.07
RASA3	NM_007368	PH, C2 x2	CUCUUCAACUUGUACAUGAtt	GAAUUUACCUACCACAAAAtt	GCCCAUCGUGCUUAAAGAAtt	s355	s357	s356	+0.37	0.12
RASAL2	NM_170692	PH, C2 x2	GGAUCAUGCUGAGAUGCAAtt	GCAGGACAGUUCAACCUAAtt	CUAGUGAACUGAUAGACCAtt	s18125	s18126	s18127	-0.11	0.06
Rbsn	NM_030081	FYVE	GAAAGUAUAUGAGCUAAUAtt	GGAUAUGAAUCAUUCAGUUtt	GGAAGAUCGUGAUGUCAAAtt	s95445	s95446	s95447	+0.41	0.19
RIMS1	NM_014989	FYVE, C2 x2	GUGCAUCGAUUUAAGCAGAtt	GCAUUCACCAGAACGAGAAtt	GGCUAUAGGUCUAGUGCUAtt	s22808	s22809	s22810	-0.04	0.10
RIMS2	NM_014677	FYVE, C2 x2	CUACCGAAGUGAUCCGAAUtt	GCGAAUACCUGAUAGCACAtt	CCAACACGGAGGUUGCAAAtt	s18683	s18684	s18685	+0.35	0.10
ROCK1	NM_005406	PH, C1	GGUUAGAACAAGAGGUAAAtt	CGGUUAGAACAAGAGGUAAtt	GCUUGUAGGUGAUACACCUtt	s12097	s12098	s12099	-0.19	0.06
ROCK2	NM_004850	PH, C1	GGAGAUUACCUUACGGAAAtt	GAGAUUACCUUACGGAAAAtt	GGAUCGAACCCAUGGAUCAtt	s18161	s18162	s18163	+0.34	0.10
RPH3A	NM_014954	FYVE, C2 x2	GAGUUUUUCUAUGACAUCAtt	CGAAUUCAAUGAGGAGUUUtt	CCUUGAAUCCCGAAUUCAAtt	s22610	s22611	s22612	+0.01	0.10
RPH3AL	NM_006987	FYVE	GCUCGUCGGUGUUCUGCAAtt	GGACCGGAAAGGCGACAAAtt	GAUAGUGACUCGGAUCUUAtt	s18218	s18219	s18220	+0.03	0.09
RPS6KC1	NM_012424	РХ	GGAAUGGUGUUGAUACAAAtt	GGCAAACUGUGGUCAUAUAtt	CAAAUCCUAUAGUAUAACAtt	s25624	s25625	s25626	+0.19	0.06
RUFY1	NM_001040451	FYVE	CGACUAGUGUCAGAAAUCUtt	GGAAAAACCAACCAAGUUAtt	GAAUUACUGAUGUCCUUGAtt	s37102	s37103	s37104	+0.07	0.08
RUFY2	NM_017987	FYVE	GAGCUAGCAGUACAAGUUAtt	GGAUGUAGAGAAUGAGCUAtt	GAUUGAAGAGUUAGCAAUAtt	s31236	s31237	s31238	+0.27	0.12
RUFY4	NM_198483	FYVE	GCAACAAAGGAAGACUCUAtt	AGAAGAUCCCAGCCGCAUAtt	GAAAGUUCCAGGAAACAUAtt	s49837	s49838	s49839	-0.13	0.09
SBF1	NM_002972	PH, GRAM	CUAAGACUGUGGACGAGAAtt	ACACGGAGGUGUUCAGGAAtt	GCACUGCUGUUUCCUCUCAtt	s12482	s12483	s12484	+0.57	0.07
SBF2	NM_030962	PH, GRAM	GAUGAUGAAUUGUACUCUAtt	GCACUAUUAAAAUUCCCGAtt	GGACUGGGAUGAUACACCUtt	s37818	s37819	s37820	+0.36	0.08
SGK3	NM_001033578	РХ	GAGCAUUCCUUCAAAUGGAtt	GAGCAGGACUAAACGAAUUtt	CAUUAUUCCUUCCAAACAAtt	s24316	s24317	s24318	+0.03	0.05
SH3PXD2A	NM_014631	РХ	GCUGGUGGUAUAUCAGAUAtt	GAAGGCUGGUGGUAUAUCAtt	CCAUGAUCCUGGAACAGUAtt	s18542	s18543	s18544	+0.32	0.11
SH3PXD2B	NM_001017995	РХ	AGGUCGAGGUGAUCGAGAAtt	GCACAUUGGGAAAAAGAAAtt	CCAUGGAAGGAGGACAGAAtt	s49972	s49973	s49974	+0.22	0.12
Non-target			AGUACUGCUUACGAUACGGtt	UAACGACGCGACGACGUAAtt	UCGUAAGUAAGCGCAACCCtt	s229084	s813	s814	+0.04	0.05
control										
SMURF1	NM_020429	C2	CCUGCCCAGAGAUACGAAAtt	GCAUGAACUGAAACCCAAUtt	CCAUAUGAGUCCUAUGAGAtt	s32796	s32797	s32798	+0.34	0.06
SMURF2	NM_022739	C2	CACACUUGCUUCAAUCGAAtt	CACUUGCUUCAAUCGAAUAtt	CCGGAACAUUUAUCCUAUUtt	s34857	s34858	s34859	-0.38	0.07
SNAP91	NM_014841	ENTH	GGAAUUUCUGGUACCACAAtt	CAAACGAUUUCUAACUAGAtt	GUUAUUAACUUACUCGAAAtt	s19161	s19162	s19163	+0.10	0.06
SNX1	NM_003099	РХ	GGGCCGCUUUAGAAAGGUAtt	GCCUCAUAGGGAUGACAAAtt	CAACAGUGGUCCGAAAAGAtt	s13255	s13256	s13257	+0.26	0.07
SNX10	NM_013322	РХ	GGCAGAGACUCCAAAGUAAtt	GAUAUGUAUUCAUACUAAUtt	GCACUUUUGCUUUCAGAUAtt	s26643	s26644	s26645	+0.55	0.08
SNX11	NM_152244	РХ	CUCCAGUUGUUGACUCUGAtt	CCUCCAUACCAACAGCAAAtt	AGAUAUUCCUCCAUACCAAtt	s26697	s26698	s26699	-0.05	0.06

SNX13 NM_015132 PX GGAUGAAGUUUGACUUARU GAGUAGCAGGAAAACCUAAH CGGUCAACUUGAUUGAAH S23163 s23164 s23163											
SNX14 NM_020468 PX GAAAUUUGCAGAACCUAGALL CGUUUGGUCUCACUCAUAALL GAACAUUGGUCUGUUAALL S32927 S32928 S32929 +0.01 0.1 SNX15 NM_0123366 PX CCGCCCCAGUUCAUCUCAALL AGGAAGGUUGAGCAAAAALL CGGUUCAUUGUGAACAAAAALL CGGUUCAUUUGAUAGCUAALL CACUUGAGGUUGAACAAUALL S34409 S34410 S34411 +0.34 0.1 SNX16 NM_022133 PX GGGUCCAUUUGAUAGCUAACUU GAAGAUUUGACUUAACUUHAUUUUAGUUGAGAAULL CACUUGAGGUUGAAUACUUHA CACUUGAGGUUGAAUACUUHA CACUUGAGUUGAAUCUUGAGAUL S34209 S3225 S3226 6.0.30 0.1 SNX18 NM_0252870 PX AGGUGACCGGCUUCAAUAUUUUAL CACUUCACCUUGAAUUCUUGAAUUGUUAGUUGAAUUUUUUGCUUUGUUGAAUUGAAUUUUGCUUUUUUUU	SNX12	NM_013346	PX	UGAGGAGUCUUUCAUCGAAtt	CCACCUAUGAGGUUCGCAUtt	CUACCUAUCUUCAAGCUAAtt	s26739	s26740	s26741	+0.14	0.12
SNX15 NM_013300 PX CCGCGCAGUUCAUCUCAAAIT AGGAAGGUUGAAGAAGAAIT UCGCUUCACUGUGAACAAUATT S26E8 226683 236684 +0.43 0. SNX16 NM_022133 PX GGGUCCAUUUGAUGACGACUUT GAUGACCAUCUACACCUAT CAUUGAGGUUGAUCAAGATT S34409 S34410 S34411 +0.34 0. SNX17 NM_014758 PX GCUUUUGUUGAUCAAAAT GGAAGUCAUCUACGUCCUAT CAUUGACAUCUAGUUCCAAGAT S18903 S18904 s18905 -0.03 0. SNX18 NM_052870 PX AGGUGACCGGUUUCAUAUCUUAT CAUUCAUCCUCAGAAUT GGUAGUUCUAGAAUT CAUCAUCAUCAUGUACUUAT CAUUGAAAAT S53227 S53227 -0.03 0. SNX2 NM_013758 PX CCAUUCAGGUUUGAT CAUUGGAUUCCUAAT GAUAGAGUUUCAUAUUCAUAUUCAUUUGCUUUAAAAT GGAAGGUUUUGUUUUCUUT CCCCGUUUCAUGUUUUCUUT GCCGUUUCAUAUUGGAUUUUCAUUT GGUUUUCUAAAAUUAU S4428 S40289 S40290 +0.04 0. SNX2 NM_024798 PX GAUUUUGUUUUUUUU GCCGUUUCUAGAUUUUAAAAUUUU GGAGGUUUUGGAUUUUUUUUUU GGAGGUUUUGUGAUUUUUUUUUUUUU GGAGGUUU	SNX13	NM_015132	PX	GGAUGAAGUAUUCGACUUAtt	GAGUAGCAGGAAAAACGAAtt	CGGCUCAACUUGACGAUAAtt	s23163	s23164	s23165	-0.07	0.06
SNN16 NM_022133 PX GGGUCCAUUUGAUUAGCUAHT GAUAGACCAUCUATT CACUUGAGGUUGAUCAGAT S34409 S34410 S34411 + 0.34 0 SNN17 NM_014748 PX GCUUUAUGCUCAGACGUATT GGGUCAUUUUAGCUCAGACGUATT GGUGCAUUUUUAGUUCAGAACGUATT S18903 S18904 S18905 -0.03 0 SNN18 NM_014748 PX AGGUGACCGGUUCAAAATT CAUCAUCCAGAUGUAAUCUUAGUUCAGAUT GCACUUCUUGAUUUUAGUUUCAGAUUCUAGAUCUUAAAACGATT GCAUCGAGGAGGAAAAATT CAUCAUGAAUGUAAUCUUAAACGAUT GCAUUGAGGUAGGAAAAATT GAUCGAAUGUAAUCUUAAACGAUT GGAUCGAGGAGGAAAAAGUTT AGUUGUGUGGUGUCACAAAUT GGAUCGAGGUCAAAGAUUUUAGUUUUGUUUUGATT GCAUUGAGGAUUUUAGAUUUUAGUUUUGATT GGAUGGAUUUUGAAUT S13255 S13259 S13260 +0.0.4 0 SNX20 NM_1182854 PX GCAUCGAGGAGGAAAAAGUTT AGUUUGUGGAUUUUGATT GCUUUUGAAUUUUGAAU GGUAGGAUUUUGAAUUUUGAAUT S40288 S40289 S40290 +0.0.4 0 SNX21 NM_128287 PX GAACUUUUUGUUUGUUUUGUUUUGUUUUUGUUUUUUUUUU	SNX14	NM_020468	РХ	GAAAUUUGCAGAACCUAGAtt	CGUUUGGUCUCACUCAUAAtt	GAACAUUGGUCUGUCUAUAtt	s32927	s32928	s32929	+0.01	0.06
SNX17 NM_014748 PX GCUUUAUGCUCAGACGGUAH GGGAGUUCAAGAAUH GUUAUUCUUAGUUCAGAAH S18903 S18904 S18905 -0.03 0.1 SNX18 NM_052870 PX AGGUGACCGCUUCAAAAAH CAUCAUCCAGUUAGAAAH GCAGCGUUGAGAAAH GCAGCGUUGCAGAAAH GCAGCUUUAUH GCAUCGAGAUGACUGGCAH S41342 S229521 S229522 +0.15 0. SNX19 NM_014758 PX CCACUGCAGGAUUUAUH CAUCGGACUUUCUAUH GCAUCGAGAUCUUAUH GCAUCGAGAGACAAAH S32252 S53227 -0.05 0. SNX2 NM_003100 PX CCACCGAGAGAGAAAAUUUAUH CAUCGGACUUUGUUCUCUUH GCCGUUACUCGGAUUUGAAL GCAUGGAGACCCALAACCCAL s13258 s13259 s13260 +0.04 0. SNX2 NM_014035 PX GAACGAGUUUGUUUGUCUUAGAL GCGUUCCAUGGAUUUGAAUUGGAUUUGAAL GGAAGAGUUUCAAAUUH GGAAGAGUUUCAAAUUH S3269 s32691 s38292 +0.04 0. SNX2 NM_014035 PX CGAACGAUCUUAGGAUUH GGAACAUCUUCUAAGUUUGAAUUH GGAAGAUUUACAAUUAH GGAAGAUUUAAGAUCH CUUUCAACGUUUAAAUUAGUUUUUAAUUGUUUAGUUUAG	SNX15	NM_013306	РХ	CCGCGCAGUUCAUCUCAAAtt	AGGAAGGUGUGAAGAAGAAtt	UCGCUUCACUGUGCACAUAtt	s26682	s26683	s26684	+0.43	0.14
SNX18 NM_052870 PX AGGUGACCGGCUUCAAAAAH CALCAUCCACGUUCAGAAAH GCAGCGAUGAUGAUGCUGGGAH SA1132 S229521 S23252 +0.34 D. SNX2 NM_02047758 PX GCACCAUGGAGUCUUGUUCUUH GCCGUUCGAUCUGGAAUL GCAUGGAAUCUAAGAACAAAUH S40288 S40289 S40290 +0.04 0. SNX21 NM_024798 PX GAAUUGUAUGUUUUGAH GCCCAUAUGGAAUUCUUAAACAGAUCUUAAAAUGUUAGAAUAAUCUCAAAGAAGAUUUGAAH S6132 S26313 \$26313 \$26313 \$26313 \$26313 \$26313 \$26313 \$26313 \$26313 \$26313 \$26313 \$26313 \$26313 \$26313 \$26313 \$26313 \$26313	SNX16	NM_022133	PX	GGGUCCAUUUGAUAGCCUAtt	GAUAGACCAUCUACACCUAtt	CACUUGAGGUUGAUCAAGAtt	s34409	s34410	s34411	+0.34	0.07
SNN19 NM_0121378 PX CACAUGCAAUGUAAUUUUAIT CACUGUGAAUCGUCGUAUIT GUAUUGCCUUUGUCAAGAAIT S53225 S53227 -0.05 0 SNX2 NM_003100 PX GCGACUUUUUUGGUUUGCAIT GAACAGAUAUCUAAAACGAAIT GCAUAUAGAGUAACCAACTAAIT S13258 S13259 S13260 +0.34 0 SNX20 NM_1182854 PX GCAUCGAGGAGGAAAAGUIT AGUUUCGUGUUACAAAUIT GCAUGGACCCAUAACCCAT \$42740 \$42741 \$42742 -0.19 0 SNX21 NM_1282854 PX GCAUCGAGGAGGAAAAGUUT GCUUCCUAGAUUUGAAT GCGUUGGAUUUGAAT GCAUGGACCAAAGGUUAAAT \$42740 \$42741 \$42742 -0.19 0 SNX21 NM_124798 PX GAACGAUUUUUUAAT GCCUUGGAAGUUGAAGUUCAAUUAAT UGUUAAAAAUUUAGAAT \$32890 \$36490 \$36497 -0.04 0 SNX25 NM_013353 PX GUUCUCAGCUUAGGUUAAGGAAUAAUCUUAAGAAT GCAAGUUUAGGAAUUAAGGAAU \$37695 \$37697 -0.20 0 SNX27 NM_033918 PX GAGUUUUUCAGGUUUAGGAAUUAAGGAAU \$46734	SNX17	NM_014748	РХ	GCUUUAUGCUCAGACGGUAtt	GGGAGUCUAUGGUCAAACUtt	GUCUAUUCUUAGUUCGAGAtt	s18903	s18904	s18905	-0.03	0.06
SNX2 NM_003100 PX GCGACUUUCUUGGUUUGGAtt GAACAGAUAUCUAAAACGAtt GCAUCAACAACAAtt S13258 S13259 S13260 +0.34 0. SNX20 NM_182854 PX GCAUCGAGGAGAGAAAAGUtt AGUUUGUGGUUUGAUCCAAAUtt GCAUGAGGAGCAAAAAUtt S13258 S13259 S13259 S13260 +0.34 0. SNX21 NM_152897 PX GAACGAGUCUUGUUUCUUt GCCGUUACUCGGACUUUGAU GGCAGGGUCAAAAUAUt S40288 s40289 s40290 +0.04 0. SNX22 NM_024798 PX GAAUUUGUAGUUUGUUUCUUt GCCGUUACUCAGAUUGAAUUCAAAU GGCAGGGUCAAGAAGAAGUUAAGAAAT S36495 S36496 S36497 -0.04 0. SNX24 NM_014035 PX GGACGACAAGGUUGGAUUT CUUCUAAAUUGAGAUUACAAUUAAGAUUCUAAAU GGCAGGUUAAAUUAAGAUUAAGAUUAAGAUUAAGAUUAAGAUUUCAAUUUUUAAU GGCAGGUUAAAUUAAAUUUAUUAUGGAUUUAAUUAUCGAUUUAAUUUAUGAAUUAAGGAUUAAGAUUUAAGAUUUAGAUUUGGAUUUUCAAU GGCAAAAUUUAUUGGAUUUUCAAU GGCAAAUUUGAAUUUAAGAUUUAGAUUUCAGAUUUUAAU GGCAAAUUUGAAUUUGAAUUUUAAUUUUUGAUUUUUUUU S16618 S16619 S16620 +0.14 0. SNX30 NM_003795 PX GCAGUUUGGGAUUUUUC	SNX18	NM_052870	PX	AGGUGACCGGCUUCAAAAAtt	CAUCAUCCACGUUCAGAAAtt	GCAGCGAUGAUGACUGGGAtt	s41342	s229521	s229522	+0.15	0.08
SNX20 NM_182854 PX GCAUCGAGGAGAAAAGUH AGUUUGUGGUGUACCAAAUH GCAUGGAGCCAUAACCAH \$42740 \$42741 \$42742 -0.19 0.1 SNX21 NM_152897 PX GAACGAGUCUUGUUUCUCUH GCCGUUACUCGGACUUGAAH UGGUAAUUCAUGAAAAAUAH \$40288 \$40289 \$40290 +0.04 0.1 SNX22 NM_024798 PX GAAUUUGUAUGCUUUAGAH GCUUCCAUGUGGAUCCUAH GGCAGGAGCUAAGAAGAUAAH \$36495 \$36496 \$36497 -0.04 0.1 SNX24 NM_014035 PX CGACGACAAGCUUACGAAAH GGCAGUACUGAGAUUUCGAAH GGCAGUUUCGAAUUUCGAAUUUCGAUUUGGAUUUUGAAH \$26312 \$26313 \$26314 +0.10 0.1 SNX25 NM_030918 PX GAACGUUACUACGACAAH GGAACAAGGUUUCGAAUUUCAAH GGAUUUGAAUUUAAH \$37696 \$37696 \$37697 -0.20 0.1 SNX20 XM_001131890 PX GAACGUUAUGAAH GAAUUUAUGUCGGUUUUUUUU \$46730 \$40838 \$40849 \$40841 >0.12 0.1 SNX30 XM_376902 PX GCAGCUUCGGAAAH GAAUUUAUUGUUG	SNX19	NM_014758	PX	CACAUGCAAUGUAAUCUUAtt	CACUGUGAAUCGUCGCUAUtt	GUAUUGCCUUUGUCAAGAAtt	s53225	s53226	s53227	-0.05	0.07
SNX21 NM_152897 PX GAACGAGUCUUGUUUCUCUIt GCCGUUACUCGGACUUUGAL UGGUAAUUCAUGAAAAAUAtt S40288 S40290 +0.04 04 SNX22 NM_024798 PX GAAUUUGUUGUUUUGUUU GCCGUUACUUGGAAUCCUUAL GGCAGGGUCAAGAAGAUAAUtt S40288 S40289 S40290 +0.04 04 SNX22 NM_024798 PX GAAUUUGUUUGUUUUGUUU GCCGUUACGUUGAAUUU GGCAGGAUUCAAGAAAAUAU S40288 S40289 S40290 +0.04 04 SNX24 NM_0131953 PX CGACGACAAGGUUUGGAAUA GGCAGAAAUAUUUAUAGGAUUUAAUUU CUUUCAAAUGGAAUUUAAAU S26312 s26313 s26314 +0.10 04 SNX25 NM_030918 PX GAACAGUUUUGCAGUUACAGUUAAGGAUUAAUCCUAAUUAUUUAU	SNX2	NM_003100	РХ	GCGACUUUCUUGGUUUGCAtt	GAACAGAUAUCUAAAACGAtt	GCAUAUAGAGUAACAACAAtt	s13258	s13259	s13260	+0.34	0.10
SNX22 NM_024798 PX GAAUUUGUAUGCUCUUAGAtti GCUUCCAUGUGGAUCCUAIti GGCAGGGUCAGAAGAGAUAtti S36495 S36496 S36497 -0.04 0.1 SNX24 NM_014035 PX CGACGACAAGGCUUGGAAAtti GGCAGGAUCUTi CUUCUAACAUGUUAGGAAUT S26312 s26313 s26314 +0.10 0.1 SNX25 NM_031953 PX GUUCUCAGCUUACGUAAU GGAUGAAAUAAUCUAAAU GCGAGUUUGAGAUUUACAT S38290 s38291 s38292 +0.13 0.1 SNX27 NM_030918 PX GAACAGUAUACAGACCAAT GGAACAACGUUACAGACCAAT GGAACAAUGUUUGAAU GGAACAAUGUUUGAAU s37695 s37696 s37697 -0.20 0.1 SNX29 XM_001131890 PX GACGUUCUGGAAUUUGAAT GAAUUUUAUGUCUGGAUUUUGAAT GAAUUUUAUGUCUAUUUU s46338 s40839 s40840 +0.33 0.1 SNX30 XM_376902 PX CAGCUUCGGAAUGAAUUACUGUUUAUUAUUUUUUUUUUAUUAUUUUUUUU	SNX20	NM_182854	PX	GCAUCGAGGAGAGAAAAGUtt	AGUUUGUGGUGUACCAAAUtt	GCAUGGGACCCAUAACCCAtt	s42740	s42741	s42742	-0.19	0.07
SNX24 NM_014035 PX CGACGACAAGGCUUGGAAAtt GGCAGAAAGUUGUGGAUCUIt CUUCUAAACAUGUUAGGAAtt \$26312 \$26313 \$26314 +0.10 0 SNX25 NM_031953 PX GUCUCUCAGCUUACGUUALT GGAUGAAUAAUCUAAAAL GGAGGAUUGAGAUUUACAT \$38290 \$38291 \$38292 +0.13 0 SNX27 NM_030918 PX GAACAGUACUACAGACCAAT GGAUGAAUAAUCUACAGACUAL GGAUUUGAAUGGAUUUUCAAUU \$37695 \$37696 \$37697 -0.20 0 SNX29 XM_001131890 PX GAACAGUACUACAGACCAAT GGAUUUGUCGGAUUUUGAAAT GAAUUUAUGCCGUUUT 4GACGAUGAAUUAAU \$40838 \$40839 \$40840 +0.33 0 SNX3 NM_003795 PX GCUGCGAAGUGAAUUAGAAT GAAUUUCUCUUUUUUUUUUUUU GGAACCAUUGAUUUUCUAUUUUUUUUUUUUUUUUUUUUU	SNX21	NM_152897	РХ	GAACGAGUCUUGUUUCUCUtt	GCCGUUACUCGGACUUUGAtt	UGGUAAUUCAUGAAAAAUAtt	s40288	s40289	s40290	+0.04	0.06
SNX25 NM_031953 PX GUCUCUCAGCUJAUAIti GGAUGAAAUAAUCCUAAUAIti GGCAGAUUUCAGAAUUUACAIti S38290 S38291 S38292 +0.13 0.1 SNX27 NM_030918 PX GAACAGUACUACAGACCAAIti GGAUGAAUAAUCCUAAUAI GCAGUUUCAGGAUUAUCAGAUUAI S38290 S38290 S38291 S38292 +0.13 0.1 SNX27 NM_030918 PX GAACAGUACUACAGACCAAIti GGAUCAGUAUACAGUCAI GCAUUUGAAUGGAAUUAUAI S37695 S37696 S37697 -0.20 0.1 SNX3 NM_003795 PX GAUUUGGGAAUGAAII GAAUUUAUUAUCGCCGUAUI AGACAAUCUUUCUUUUUI S16618 s16619 s16620 +0.11 0.1 SNX30 XM_376902 PX CAGCUUCGGUACAAGGAUI CCAGCCUCAUUUUUCUUUUI GGAACCUUUUUUIU S16618 s16619 s16620 +0.12 0.1 SNX31 NM_152628 PX GCAGAUUGAAGUUCCGGAAI GAAUUCACUGAUUCAACGAU GAAUUCACUGAUAACGUUUL S46737 s46738 s46739 -0.20 0.1 SNX33 NM_1522760 PX GCACCCUUUUUUCCAUGUUU	SNX22	NM_024798	PX	GAAUUUGUAUGCUCUUAGAtt	GCUUCCAUGUGGAUCCCUAtt	GGCAGGGUCAAGAAGAUAAtt	s36495	s36496	s36497	-0.04	0.08
SNX27 NM_030918 PX GAACAGUACUACAGACCAAtt GGAACAGUUACAGUCAGACCGAU GGAACAGCGUUACAGUCAU GCAUUUGAAUGGAUGAGAU S37695 S37696 S37697 -0.20 0.1 SNX29 XM_001131890 PX GAGUUUGUCGGAUUUUGAAtt GAAUAUUUUAUCGCCGGUUUU AGACGAUGAAUUAU S40839 s40840 +0.33 0.1 SNX3 NM_003795 PX GCUGCGAAGUGAAUUAGAAtt GAAUUUUGUUGAGAGAUUU GGAACCAUUGAUGUAUGAAUUU S16618 s16619 s16620 +0.41 0.1 SNX30 XM_376902 PX CAGCUUCGUGAAAUUAGAAtt GAACUUUGUUGAAUUU GGGAACCAUUGAUUUU s16618 s16619 s16620 +0.41 0.1 SNX30 XM_376902 PX CAGCUUCGUGAAAUUAGAUU CCAGCCUCUUUUU GGGAACCAUUCAUUUU s53639 s53640 s53641 -0.12 0.1 SNX31 NM_152628 PX GCAGAUUGAGGAUUU GAACUUCGUGAUU GAACUUCAUUUUU GGAACCAUUGUUCAAACUGUUUUCA s48495 s48495 s48497 -0.02 0.1 SNX32 NM_152271 PX CAACGUUUUCAUGUUUU	SNX24	NM_014035	PX	CGACGACAAGGCUUGGAAAtt	GGCAGAAAGUUGUGGAUCUtt	CUUCUAAACAUGUUAGGAAtt	s26312	s26313	s26314	+0.10	0.06
SNX29 XM_001131890 PX GAGUUUGUCGGAUUUUGAAtt GAAUAUUUAUCGCCGGUAUU AGACGAUGAAUGGAAUUUUt S40838 S40839 S40840 +0.33 0.1 SNX3 NM_003795 PX GCUGCGAAGUGAAUUAGAAtt GAAUCUACUGUUAGAAGAAU AGACGAUGAAUGGAAUUUUUt S16618 S16619 S16620 +0.41 0.1 SNX30 XM_376902 PX CAGCUUCGGUGAAAGGAUU CCAGCCUCAUCUCUCAUUUL GGGAACCAUUGAUGAAUU S53639 S53640 S53641 -0.12 0.1 SNX31 NM_152628 PX GCAGAUUGAAGUUCCGGAAU GAAUUCACUGUUGAUACUGUUL GAAUUCACUGUUCAAACAU S46737 S46738 S46739 -0.20 0.1 SNX32 NM_152760 PX GCACCCUGAUUCUCCGGAAtt AGGUGAAAUUCACUGUUCAT GAAUUCACUGUUUAAACAUU S4887 S48888 S48899 +0.17 0.1 SNX4 NM_003794 PX CAACCUUUUGGUCAAGAAU GCGAGUGAGUAAUCAUGUUUAAGAGGUUUAAAAU GGUAACUAAUGACUUUAACAUGUUUAAACAU S16615 S16616 S16617 -0.01 0.1 SNX5 NM_152227 PX GAGUUAAGGAGUAA	SNX25	NM_031953	РХ	GUCUCUCAGCUUACGUAUAtt	GGAUGAAAUAAUCCUAAUAtt	GCGAGUUUCAGAAUUUACAtt	s38290	s38291	s38292	+0.13	0.06
SNX3 NM_003795 PX GCUGCGAAGUGAAUUAGAAtt GAAUCUACUGUUAGAAGAAtt AGACAAAUCUUCCUAUUUUt S16618 S16619 S16620 + 0. 41 0 SNX30 XM_376902 PX CAGCUUCGGUGACAAGGAUtt CCAGCCUCAUCUAUUT GGGAACCAUUGAUGAUGAUAtt S53639 S53640 S53641 -0.12 0 SNX31 NM_152628 PX GCAGAUUGAAGUUCCGGAAtt GAACUCUGCUGGAUACGGAtt CAAGUUCAGUUUT S46737 S46738 S46739 -0.20 0 SNX32 NM_152760 PX GCACCCUGAUUCUCCGGAAtt AGGUGAAAUUCACUGUUCAT GAAUUCACUGUUCAAACAtt S48495 s48495 s48495 s48497 -0.02 0 SNX33 NM_153271 PX CAACCGUUUUCAUGCUUUT CAAAUUCAAGGGCAUCAAAtt GGCCGUAACCUCAACCGUUT s48887 s48888 s48889 +0.17 0 SNX4 NM_003794 PX CAAGGUUUUAGAAGAT CUGUAUCUGUGGACCUGAAT CGAUAGAUGACACAAT s25876 s25877 s25878 +0.26 0 SNX5 NM_152233 PX GGUCACUAGUGAAUGAAT <th>SNX27</th> <th>NM_030918</th> <th>РХ</th> <th>GAACAGUACUACAGACCAAtt</th> <th>GGAACAACGGUUACAGUCAtt</th> <th>GCAUUUGAAUGGGAUGAGAtt</th> <th>s37695</th> <th>s37696</th> <th>s37697</th> <th>-0.20</th> <th>0.06</th>	SNX27	NM_030918	РХ	GAACAGUACUACAGACCAAtt	GGAACAACGGUUACAGUCAtt	GCAUUUGAAUGGGAUGAGAtt	s37695	s37696	s37697	-0.20	0.06
NNA_0000 NA_00000 NA_000000 NA_000000000000000000000000000000000000	SNX29	XM_001131890) PX	GAGUUUGUCGGAUUUUGAAtt	GAAUAUUUAUCGCCGGUAUtt	AGACGAUGAAUGGAAUAUUtt	s40838	s40839	s40840	+0.33	0.08
SNX31 NM_152628 PX GCAGAUUGAAGUUCCGGAAtt GAACUCUGCUGGUUCAGGAUt CCAUGGACCCAAACGUGUUt s46737 s46738 s46739 -0.20 0.1 SNX32 NM_152760 PX GCACCCUGAUUCUCGGAAtt AGGUGAAUUCACUGUUCATt GAAAUUCACUGUUCAAACAtt s48495 s48496 s48497 -0.02 0.1 SNX33 NM_153271 PX CAACCGUUUCUCAUGCUUUt CAAAUUCAAGGGCAUCAAAtt GGCCGUAACCUCAACCGUUt s48875 s48888 s48899 +0.17 0.1 SNX34 NM_003794 PX CAAGCUUUUGGUCAAGAAtt GCGGAUUGGUUUAGGACUUAAGGAGUUGGUUUAGAAAtt GCGAUCCUUUUGGUCAAGAAtt GCGAUGGAUUGGUUUAAGUUACAUGCUUUAGUUAACAUGCUCAACAT s16615 s16616 s16617 -0.01 0.1 SNX5 NM_152227 PX GAGUUAAGGAGGUAGAUGAT CUGUAUCUGUGGACUGAATT CGAUACUACAUGCUCAACAT s25876 s25877 s25878 +0.26 0.1 SNX6 NM_152233 PX GGUCACUAGUGGAUUAUGAT CUGUAUCUGGGAGUAAUCGUUUT GGAGAAGGGUCAAUGACGAT s33937 s33938 s33939 -0.22 0.1 SNX7 NM_015976 PX CAAUGAUAAACCAAAUCAAT GAAACUUUCUAUAUUACGUAUUAT CGUCA	SNX3	NM_003795	РХ	GCUGCGAAGUGAAUUAGAAtt	GAAUCUACUGUUAGAAGAAtt	AGACAAAUCUUCCUAUUUUtt	s16618	s16619	s16620	+0.41	0.11
SNX32 NM_152760 PX GCACCCUGAUUCUCCGGAAtt AGGUGAAAUUCACUGUUCAtt GAAAUUCACUGUUCAAACAtt \$48495 \$48496 \$48497 -0.02 0.1 SNX33 NM_153271 PX CAACCGUUUCUCAUGCUUUt CAAAUUCAAGGGCAUCAAAtt GGCCGUAACCUCAACCGUUt \$48887 \$48888 \$48889 +0.17 0.1 SNX4 NM_003794 PX CAAGCUCUUUGGUCAAGAAtt GCGACGGAUUGGUUUAGAAAtt GCUACCUUUUAGUUUACUAAC \$16615 \$16616 \$16617 -0.01 0.1 SNX5 NM_152227 PX GAGUUAAGGAGGUAGAUGAtt CUGUAUCUGUGGACUUAACUGUUUt GGAGAAGGGUCAAUGACGACt \$25876 \$25877 \$25878 +0.26 0.1 SNX6 NM_152233 PX GGUCACUAGUGGAUUAUGAtt CUGUAUCUGUUAGUAAUCGUUUt GGAGAAGGGUCAAUGACGAtt \$33937 \$33938 \$33939 -0.22 0.1 SNX6 NM_015976 PX CAAUGAUAAACCAAAUCAATt GAAACUUUCAUUACUUCAGUAUAT CCGAAUUGCUGAUCAAT \$28045 \$28047 +0.54 0.3 SNX8 NM_013321 PX CAAUAGCUUUCAAAAGCUUT GAUCUUCUCAUUUCUCAUUUCGGGUT GCAGUUCUCAAAUUCCAAU \$28123 \$28124 \$28125	SNX30	XM_376902	PX	CAGCUUCGGUGACAAGGAUtt	CCAGCCCACUCAUCUCAUUtt	GGGAACCAUUGAUCGAAUAtt	s53639	s53640	s53641	-0.12	0.08
SNX33NM_153271PXCAACCGUUUCUCAUGCUUUttCAAAUUCAAGGGCAUCAAAttGGCCGUAACCUCAACCGUUtts48887s48888s48889+0.170.1SNX4NM_003794PXCAAGCUCUUUGGUCAAGAAttGCGACGGAUUGGUUUAGAAttGCUACCUUUUAGUUUACUAtts16615s16616s16617-0.010.1SNX5NM_152227PXGAGUUAAGGAGGUAGAUGAttCUGUAUCUGUGGACCUGAAttCGAUACUACAUGCUCAACAtts25876s25877s25878+0.260.1SNX6NM_152233PXGGUCACUAGUGGAUUAUGAttGCAGAUGGAGUAAUCGUUUttGGAGAAGGGUCAAUGACGAtts33937s33938s33939-0.220.1SNX7NM_015976PXCAAUGAUAAACCAAAUCAAttGAAACUUUCAUAUCGUAUAttCCGAAUUGCUGAUCAUCCAtts28045s28046s28047+0.540.1SNX8NM_013321PXCAAUAGCUUUCACAAGCUUttGAUCUUCUCAUAUUCGGGAttCGUCAACUCUCAGAUCCAAtts28123s28124s28125-0.100.1SNX9NM_016224PXCAGUCGUGCUAGUUCCUCAttGCACCGAACCCAAUACGUUttGCACGUUACCAGAAAUGAtts16846s16847s16848+0.830.1SYNGAP1NM_006772PH, C2CGAACGAAGUCACAACCCAttGCACCGAACCCAAUACGUUttGCACGUUACCAGAACAAUGAtts16846s16847s16848+0.830.1	SNX31	NM_152628	PX	GCAGAUUGAAGUUCCGGAAtt	GAACUCUGCUGGAUACGGAtt	CCAUGGACCCAAACGUGUUtt	s46737	s46738	s46739	-0.20	0.10
SNX4 NM_003794 PX CAAGCUCUUUGGUCAAGAAtt GCGACGGAUUGGUUUAGAAtt GCUACCUUUUAGUUUACUAtt \$16615 \$16616 \$16617 -0.01 0.1 SNX5 NM_152227 PX GAGUUAAGGAGGUAGAUGAtt CUGUAUUGUGGACCUGAAtt CGAUACUACAUGCUCAACAtt \$25876 \$25877 \$25878 +0.26 0.1 SNX6 NM_152233 PX GGUCACUAGUGGAUUAUGAtt GCAGAUGGAGUAAUCGUUUt GGAGAAGGGUCAAUGACGAtt \$33937 \$33938 \$33939 -0.22 0.1 SNX6 NM_015976 PX CAAUGAUAAACCAAAUCAAtt GAACUUUCAUAACGUUUt GGAGAUUGGUCAUCAAtt \$28045 \$28046 \$28047 +0.54 0.1 SNX8 NM_013321 PX CAAUAGCUUUCACAAGCUUt GAUCUUCUCAUAUUCGGGAtt CGUCAACUCUCAGAUCCAAtt \$26640 \$26641 \$26642 +0.09 0.1 SNX9 NM_016224 PX CAGUCGUGCUAGUUCCUCAtt GCACCGAACCCAAUGGUUt GCACCGUUUCCAGAAUGAtt \$16846 \$16847 \$16848 +0.83 0.1 SYNGAP1 NM_006772 PH, C2 CGAACGAAGUCACAACCCAtt GCACCGAACCCAAUACGUUt GCACCGUUACCAGACAUAGAtt \$16846 \$16847 \$16848 </th <th>SNX32</th> <th>NM_152760</th> <th>PX</th> <th>GCACCCUGAUUCUCCGGAAtt</th> <th>AGGUGAAAUUCACUGUUCAtt</th> <th>GAAAUUCACUGUUCAAACAtt</th> <th>s48495</th> <th>s48496</th> <th>s48497</th> <th>-0.02</th> <th>0.07</th>	SNX32	NM_152760	PX	GCACCCUGAUUCUCCGGAAtt	AGGUGAAAUUCACUGUUCAtt	GAAAUUCACUGUUCAAACAtt	s48495	s48496	s48497	-0.02	0.07
SNX5 NM_152227 PX GAGUUAAAGGAGGUAGAUGAtt CUGUAUCUGUGGACCUGAAtt CGAUACUACAUGCUCAACAtt \$25876 \$25877 \$25878 +0.26 0.4 SNX6 NM_152233 PX GGUCACUAGUGGAUUAUGAtt GCAGAUGGAGUAAUCGUUUtt GGAGAAGGGUCAAUGACGAtt \$33937 \$33938 \$33939 -0.22 0.4 SNX6 NM_015976 PX CAAUGAUAAACCAAAUCAAtt GAAACUUUCAUUACGUAUAtt CCGAAUUGCUGAUCAUCCAtt \$28045 \$28046 \$28047 +0.54 0.4 SNX8 NM_013321 PX CAAUGCUUUCACAAGCUUtt GAUCUUCUCAUAUUCGGGAtt CGUCAACUCUCAGAUCCAAtt \$26640 \$26641 \$26642 +0.09 0.4 SNX9 NM_016224 PX CAGUCGUGCUAGUUCCUCAtt GCACCGAACCCAAUACGUUtt GCACGUUACCAGACAAUCAAtt \$28123 \$28124 \$28125 -0.10 0.4 SYNGAP1 NM_006772 PH, C2 CGAACGAAGUCACAACCCAtt GCACCGAACCCAAUACGUUtt GCACGUUACCAGACAAUGAtt \$16846 \$16847 \$16848 +0.83 0.4	SNX33	NM_153271	РХ	CAACCGUUUCUCAUGCUUUtt	CAAAUUCAAGGGCAUCAAAtt	GGCCGUAACCUCAACCGUUtt	s48887	s48888	s48889	+0.17	0.10
SNX6 NM_152233 PX GGUCACUAGUGGAUUAUGAtt GCAGAUGGAGUAAUCGUUUtt GGAGAAGGGUCAAUGACGAtt s33937 s33938 s33939 -0.22 0.1 SNX6 NM_015976 PX CAAUGAUAAACCAAAUCAAtt GAAACUUUCAUUACGUAUAtt CCGAAUUGCUGAUCAUCCAtt s28045 s28046 s28047 +0.54 0.1 SNX8 NM_013321 PX CAAUGAUAAACCAAAUCAAtt GAACUUUCAUAUUCGGGAtt CGUCAACUCUCAGAUCCAAtt s26640 s26641 s26642 +0.54 0.1 SNX9 NM_016224 PX CAGUCGUGCUAGUUCCUCAtt GCAUCAUGUCUUACGCGUUtt GCACGUUCCUAAAUUUCCGAtt s28123 s28124 s28125 -0.10 0.1 SYNGAP1 NM_006772 PH, C2 CGAACGAAGUCACACCCAtt GCACCGAACCCAAUACGUUtt GCACGUUACCAGACAAUGAtt s16846 s16847 s16848 +0.83 0.1	SNX4	NM_003794	РХ	CAAGCUCUUUGGUCAAGAAtt	GCGACGGAUUGGUUUAGAAtt	GCUACCUUUUAGUUUACUAtt	s16615	s16616	s16617	-0.01	0.07
SNX7 NM_015976 PX CAAUGAUAAACCAAAUCAAtt GAAACUUUCAUUACGUAUAtt CCGAAUUGCUGAUCAUCCAtt s28045 s28046 s28047 +0.54 0.1 SNX8 NM_013321 PX CAAUGGUUUCACAAGCUUtt GAUCUUCUCAUAUUCGGGAtt CGUCAACUCUCAGAUCCAAtt s26640 s26641 s26642 +0.09 0.1 SNX9 NM_016224 PX CAGUCGUGCUAGUUCCUCAtt GCAUCAUGUUUACGCGUUtt GCAUCAUGUUUACGCGUUtt GCAGUUUCCGAtt s28123 s28124 s28125 -0.10 0.1 SYNGAP1 NM_006772 PH, C2 CGAACGAAGUCACAACCCAtt GCACCGAACCCAAUACGUUtt GCACGUUACCAGACAAUGAtt s16846 s16847 s16848 +0.83 0.1	SNX5	NM_152227	PX	GAGUUAAGGAGGUAGAUGAtt	CUGUAUCUGUGGACCUGAAtt	CGAUACUACAUGCUCAACAtt	s25876	s25877	s25878	+0.26	0.07
SNX8 NM_013321 PX CAAUAGCUUUCACAAGCUUtt GAUCUUCUCAUAUUCGGGAtt CGUCAACUCUCAGAUCCAAtt s26640 s26641 s26642 +0.09 0.1 SNX9 NM_016224 PX CAGUCGUGCUAGUUCCUCAtt GCAUCAUGUCUUACGCGUUtt GCAUCAUGUCUUACGCGUUtt GCAGUUCCUAAAUUUCCGAtt s28123 s28124 s28125 -0.10 0.1 SYNGAP1 NM_006772 PH, C2 CGAACGAAGUCACAACCCAtt GCACCGAACCCAAUACGUUtt GCACGUUACCAGACAAUGAtt s16846 s16847 s16848 +0.83 0.1	SNX6	NM_152233	PX	GGUCACUAGUGGAUUAUGAtt	GCAGAUGGAGUAAUCGUUUtt	GGAGAAGGGUCAAUGACGAtt	s33937	s33938	s33939	-0.22	0.07
SNX9 NM_016224 PX CAGUCGUGCUAGUUCCUCAtt GCAUCAUGUCUUACGCGUUtt GCAGUUCCUAAAUUUCCGAtt s28123 s28124 s28125 -0.10 0.1 SYNGAP1 NM_006772 PH, C2 CGAACGAAGUCACAACCCAtt GCACCGAACCCAAUACGUUtt GCACGUUACCAGACAAUGAtt s16846 s16847 s16848 +0.83 0.1	SNX7	NM_015976	РХ	CAAUGAUAAACCAAAUCAAtt	GAAACUUUCAUUACGUAUAtt	CCGAAUUGCUGAUCAUCCAtt	s28045	s28046	s28047	+0.54	0.15
SYNGAP1 NM_006772 PH, C2 CGAACGAAGUCACAACCCAtt GCACCGAACCCAAUACGUUtt GCACGUUACCAGACAAUGAtt s16846 s16847 s16848 +0.83 0.3	SNX8	NM_013321	РХ	CAAUAGCUUUCACAAGCUUtt	GAUCUUCUCAUAUUCGGGAtt	CGUCAACUCUCAGAUCCAAtt	s26640	s26641	s26642	+0.09	0.09
	SNX9	NM_016224	РХ	CAGUCGUGCUAGUUCCUCAtt	GCAUCAUGUCUUACGCGUUtt	GCAGUUCCUAAAUUUCCGAtt	s28123	s28124	s28125	-0.10	0.06
SYT7 NM 004200 C2 x2 CCAUCAUCGUGAACAUCAUtt UCCAAGUCCUGGACUAUGAtt AGAAGACGGUGACGAUGAAtt s17291 s17292 s17293 -0.05 0.1	SYNGAP1	NM_006772	PH, C2	CGAACGAAGUCACAACCCAtt	GCACCGAACCCAAUACGUUtt	GCACGUUACCAGACAAUGAtt	s16846	s16847	s16848	+0.83	0.20
	SYT7	NM_004200	C2 x2	CCAUCAUCGUGAACAUCAUtt	UCCAAGUCCUGGACUAUGAtt	AGAAGACGGUGACGAUGAAtt	s17291	s17292	s17293	-0.05	0.11

0.00			COLOC CUCCOA CALICULUM	CAACCACUCUUCCACCUCA		00754	00755	00756		0 00
SYTL1		C2 x2	CCUGGGUCGCAACAUCUUUtt	GAAGGACUGUUGGACCUCAtt	ACAUCUUUCUGGGCGAAGUtt	s39754		s39756	+0.77	0.09
SYTL2	NM_032379	C2 x2	GGACUCUACUUCAGAGGAAtt	GGGAUACAUUUAAGCGCAAtt	GGACUGAAGUGGACUGGAUtt	s29567	s29568	s29569	+0.95	0.08
SYTL4	NM_080737	C2 x2, FYVE- type	GCGGGACACUAUUAAUCCAtt	GAGUUACUGGAGAUAAAAAtt	GGAAAUAGAGUUGAAGAAAtt	s230068	s230069	s230070	-0.05	0.10
SYTL5	NM_138780	C2 x2, FYVE- type	GGUUUGUGCUUCAACCCAAtt	CUCUUAGAAGCAAAACGUAtt	CAACAAGCGUAAGACCAAAtt	s41275	s41276	s41277	-0.26	0.09
TBC1D8	NM_001102426	GRAM x2	GAACGAAACGGGAAUUGCUtt	CUCUACGACUUAUUCAAGAtt	CUAUUAUACAGGCUUCAUAtt	s230654	s230655	s230656	+0.34	0.05
TBC1D8B	NM_198881	GRAM x2	GGACUCUACUGCUAAAGUAtt	CUACUAAUCCUGACUAUUAtt	GGCAAUCAGUGUAGUGUAAtt	s29674	s29675	s29676	+0.02	0.06
TBC1D9	NM_015130	GRAM x2	GCGAUGAUGUGGAACCUUAtt	CUAUUACUCUUGCAGCUAUtt	GGAUUUGAACAAGAUCGAUtt	s23160	s23161	s23162	+0.23	0.06
TBC1D9B	NM_198868	GRAM x2	CGUGAUUUCUUGGUGCAGAtt	CAGAUGCGGUUUAAACAGAtt	GAGUGGACAUUGGACUCAAtt	s22941	s22942	s22943	+0.14	0.05
TNS1	NM_022648	C2-tensin type	GUUCCGCUCUCAAUCCUUUtt	CCAGGACACUUCUAAGUAUtt	CCAUCAUGCAGCAGAAUAAtt	s14299	s14300	s14301	+0.24	0.12
Tns2	_	C1, C2-tensin type	CCUGAGCUGUUGACAAGCAtt	CCCAUGUGCUUCAAUCCAAtt	GAACACCCUUUACAAGAGAtt	s102008	s102009	s102010	-0.09	0.04
TNS3	NM_022748	C2-tensin type	GCUCAUUCAUUGUUCGAGAtt	CUUACGAAGCUUAACCCAAtt	GGAUCUGCAUCGUCAUCGAtt	s34875	s34876	s34877	+0.24	0.11
TPTE	NM_199261	C2-tensin type	CGUUAUGUACGUGAUCUAAtt	GAAAAUGUUCGGUACUUGAtt	AGAAGAGAUAUGUUGCAUAtt	s14361	s14362	s14363	+0.73	0.11
ULK1	XM_001133335	None	GCAUCGGCACCAUCGUCUAtt	GCAUCGGCACCAUCGUCUAtt	GCAUCGGCACCAUCGUCUAtt	s15963	s15963	s15963	-0.93	0.02
UNC13A	NM_001080421	C2 x3, C1	GGUCCAAGCUGAUUACCCUtt	GCAUCACCUUCUUUCGGAUtt	CAAUGAGUAUGUGACGGAAtt	s22857	s22858	s22859	+0.07	0.09
UNC13B	NM_006377	C2 x3, C1	GAAGCGUACCAAGACCAUUtt	GGAUUGCGCUGAAGACUAUtt	GCACUUCUCUUAAGGACGAtt	s20574	s20575	s20576	-0.38	0.02
UNC13D	NM_199242	C2 x2	ACUGAAUGGUUCCACCUGAtt	GGGACAAGAUCUUCCACAAtt	GAGCUUUGCUACAUGAACAtt	s47356	s47357	s47358	-0.52	0.07
VAV2	NM_003371	PH, C1	CGUUUGACAAGACCACCAAtt	GCCUGCAAAAUGUUCCUCAtt	CAGCAUCGCGCAGAACAAAtt	s14753	s14754	s14755	+0.73	0.08
VPS36	NM_016075	GLUE	CAGUUACCAGAGAAACCUAtt	GCCCAUUCCAGAGUAGUAAtt	CCCAGUCAUUACAAACAAAtt	s27276	s27277	s27278	+0.41	0.08
WBP2	NM_012478	GRAM	CCGUAUUUGGUGCAAACUAtt	AGAGCAUCCUAAUGUCCUAtt	GCAUCCUAAUGUCCUAUGAtt	s24092	s24093	s24094	+0.76	0.04
WBP2NL	NM_152613	GRAM	GCCCGAGGAUUUCCACUUAtt	CUUCAUUAAGGGAACUAUUtt	UCAGCUCUAUGGGAAUUUAtt	s46539	s46540	s46541	-0.45	0.04
WDFY1	NM_020830	FYVE	GGGUGUCUGCGAUUAUCUUtt	GCUCCUCAGUGGUUGGAAAtt	AGAUGAAGAUCGGACUUCUtt	s33388	s33389	s33390	-0.02	0.08
WDFY2	NM_052950	FYVE	GCAUGUCUUUUAACCCGGAtt	GGAACUGACAAGGUUAUUAtt	GACUGUCCAUAGGUCUAGAtt	s41881	s41882	s41883	+0.03	0.04
WDFY3	NM_014991	FYVE, PH-Beac	GCUUAAAUUAUAUACCUUGtt	UGGUUAAUCUGAUAACUUCtt	GCACAUGACUCAGAAGGAAtt	s200499	s200500	s200501	+0.19	0.07
WDFY4	NM_020945	PH-Beach	GGAAGACUGAGGAUGUGAAtt	GACAAGUUAUUUUACAAGAtt	GGUUUAAAGAAGUUGAGAAtt	s229872	s229873	s229874	+0.24	0.06
WDR45	NM_007075	PROPPIN	UCCCAGAAGGGUACCCUUAtt	AGAUCGUGAUCGUGCUGAAtt	CGCUUCCAGUGAUAAGGGUtt	s21995	s21996	s21997	-0.47	0.04
WDR45B	NM_019613	PROPPIN	GCUGCAACUAUUUAGCUUUtt	CUAUAACACUGAUCCACUAtt	GGAAUAAACAGUCCAGUUUtt	s32117	s32118	s32119	-0.16	0.07
WIPI1	NM_017983	PROPPIN	GCACUAUUGCUGCCCAUGAtt	GAAACUCCCUGAAAACAGUtt	CCCUCUCAACGAUCCAGAAtt	s30081	s30082	s30083	+0.46	0.07

WIPI2	NM_016003	PROPPIN	GCAGGUCUUCGAUACCAUUtt	GUCUGGAAACGACCAAUGAtt	UGACGCAAGUGGAACUAAAtt	s25100	s25101	s25102	+0.07	0.03
WWP1	NM_007013	C2	CAGUAGUUCUUCUAAUCCAtt	GGUUCGGAACAGCAAUAUAtt	GCACGAAUGGAAUAGAUAAtt	s21788	s21789	s21790	+0.52	0.05
ZFYVE1	NM_178441	FYVE x2	GGAUGGGUCUCGCAAAAUAtt	GGAUGUAAGAAAAGCAUGAtt	CACUAGGUCUGGUAAAGGAtt	s28712	s28713	s28714	-0.08	0.11
ZFYVE16	NM_014733	FYVE	GGUGGAUCUAGUUUCGUAAtt	GCGGCUAGCUUUACGAGAAtt	CCUUCGAAAUUACCAGUAUtt	s18852	s18853	s18854	+0.41	0.13
ZFYVE19	NM_001077268	FYVE	GGAGUACGGCUGUAAGAAUtt	AGUUCACCCUCUUCAAGAAtt	CCUUUGAGCUUAAAGAGCAtt	s39700	s39701	s39702	+0.02	0.07
ZFYVE21	NM_024071	FYVE, PH-like	GGACAAGGAGUGUCGGAGAtt	CUAUGAAAUCGAAAUUGUAtt	GACUUGUCGUCUUUCCAAUtt	s35465	s35466	s35467	+0.34	0.11
ZFYVE26	NM_015346	FYVE	GAAUGGUGUUUUACUCUAUtt	CCUUGCAAGAUGACGAUUAtt	GGAUGUGGUUGAGUACCUAtt	s23943	s23944	s23945	+0.48	0.10
ZFYVE27	NM_001002262	FYVE	CAGGUGAUGGUGUUCGAUAtt	CAGCAGAGGAUGAACCCAAtt	GAGCUGCAGUAAUUGUGGAtt	s42248	s42249	s42250	+0.00	0.07
ZFYVE28	NM_020972	FYVE	CUCUGAACUUGGACCGCAAtt	GAGAAGUAUUCUUAAAACAtt	GCAUUUCCCAAGACGUGGAtt	s33699	s33700	s33701	-0.06	0.07
ZFYVE9	NM_004799	FYVE	GGACUGUAAUCUAAAUCCAtt	CGAUUACAAGUUUAACGGUtt	GGACAUUACAAAACGAUUUtt	s17931	s17932	s17933	-0.03	0.07

Oligonucleotide Primers/Probes

Appendix 2 – Oligonucleotide primers/probes

Target	Usage	Forward (5' -> 3')	Reverse (5' -> 3')			
AKAP13	qPCR	GCAGAGCCCAGAATGTGAGA	CCATGTCATCACTGGGTGAGT			
ARHGEF2	qPCR	TTCTCAGGTCCTAGTGCGGA	CGGGTCACTTTCCGGATGAA			
β-actin	ZF, qPCR	CGAACGACCAACCTAAACCTCTCG	ATGCGCCATACAGAGCAGAAGC			
BNIP3	qPCR	GGCCATCGGATTGGGGATCT	GGCCACCCCAGGATCTAACA			
BNIP3L	qPCR	TCCACCCAAGGAGTTCCACT	GTGTGCTCAGTCGCTTTCCA			
CHN1	qPCR	CTAAAGAGAGTGACCCTCCACG	GGGTGGGTCCAAAGACGATT			
CPNE2	qPCR	GTGTGCTCAGTCGCTTTCCA	AGGATGAAGTACTGCGTGGC			
CPNE7	qPCR	AGGATGAAGTACTGCGTGGC	AGGCCTCTGTGGCTGTAGTA			
GAK	qPCR	GTGGAGGAAGAGATCACGAGG	AGATATCCTGCTTCTCGCCG			
GRAMD1C	qPCR	GCAACTGCTCCAGCAGAACTA	CTTCTTCCTGGACTTCTTGGCT			
HIF1a	qPCR	CTTCTTCCTGGACTTCTTGGCT	GCAGGGTCAGCACTACTTCG			
HS1BP3	qPCR	Qiagen - QT00094899				
ITSN1	qPCR	CGGAGATGAGGCGTCGATTA	ACTGCTGATCATGCTTCGCT			
ITSN2	qPCR	GGCTCAGTTTCCCACAGCTA	ACGTGCTTGATCACCTGTTATGT			
LYST	qPCR	Qiagen - QT00094906				
PRKCD	qPCR	GCAGGGTCAGCACTACTTCG	GCAGGGTCAGCACTACTTCG			
prkcda	ZF, qPCR	TTGGCGTATCTGTGTTGGCT	ATGACGACACACTGAGCCTG			
prkcdb	ZF, qPCR	ACAAAAATGTGCCAGCGGAC	ACGCGAACTGTGGAGACAAT			
prkcda	5'UTR ISH Probe	GCTCTGCCTGAGGGGTTGCCATGGC	GAGGCCTTGTTTGACAAGACCC			
prkcda	ORF ISH Probe	CTGCTGGCAGAAGCTCTTACTCAAG	GAAGGTTGTGGCCCGATTGTCTCC			
prkcda	sgRNA #1 (Exon 2)	taatacgactcactataGGGGCCATGGCAACCCCTCgttttagagctagaa				
prkcda	sgRNA #2 (Exon 11)	taatacgactcactataGGGTGGGTGATTC	CGAGATGGgttttagagctagaa			
prkcda	sgRNA #3 (Exon 15)	taatacgactcactataGGGAGTTCCGCAG	GAAGGTTGgttttagagctagaa			
prkcdb	5'UTR ISH Probe	GAAGCTGTGATCTCTCACCATG	CCGCAGAGGTTGGCAACCTTTG			
prkcdb	ORF ISH Probe	CGGAGGGCTCTCAGTATGGG	GGACGTCCATGCGGATGGAG			
prkcdb	sgRNA #1 (Exon 2)	taatacgactcactataGGTCACCATGGCT	CCGTTCCTGgttttagagctagaa			
prkcdb	sgRNA #2 (Exon 8)	taatacgactcactataGGTAGCCTGGTAC	CGCGGTTTgttttagagctagaa			
prkcdb	sgRNA #3 (Exon 14)	taatacgactcactataGGGCCTCTTTGGT	GATCCAGgttttagagctagaa			
RAB11FIP1	qPCR	GCAGGGTCAGCACTACTTCG	GCAGGGTCAGCACTACTTCG			
SMURF1	qPCR	TACCGGATACCAGCGTTTGG	ACCACTATCTGGCCACGAAC			
SMURF2	qPCR	CATGTCTAACCCCGGAGGC	CAAATGGATCAGGAAGTCGGAAAA			
SYTL2	qPCR	CTGTCCATTTGGCATCGGGA	GTGCTGTCTTCCGCTTCAGA			
SYTL4	qPCR	ATGTGCCTGGAACTGACTGT	ACTGATCCCAGTGCCAACAC			
SYTL5	qPCR	GTGACAAAATCGCGCAGCTA	GGACAACATCAGTGCCGAGA			
SNX10	qPCR	CAGAAAGTTCATCCTCTGGGCT	CAGAAAGTTCATCCTCTGGGCT			
	+					
SNX15	qPCR	GATGACTTCCTGCGGCACTA	ACCACCACCTCTTTGACATCC			

UNC13B	qPCR	CTCTGCGTGCGCGTTAAAAG	GGAAGGCTGATCACCACGAA
UNC13D	qPCR	CTCAAGGCAGAACAGCAGGA	GAAGACAGAGCGGAACCTCC
WIPI1	qPCR	CCATAAGGCTGAACCGGCA	CATAGACCTGTTGGGTTTGCAG
WIPI2	qPCR	TGCTCGCTAGCCACAATTCA	TGCTTCATCAGGGCACACTC
WDR45B	qPCR	GCCGAAATACCCTCCCAACA	CCACAATTCTATCTCGCCGC
WDR45	qPCR	TCTGTCATTGCCATCTGCGT	CACGTCGAAAGCCTCTCTGT
zFYVE21	qPCR	GTCATGTCCTCCGAGGTGTC	CATCTCCGACACTCCTTGTCC
zFYVE26	qPCR	CCTCAGAGGGAGAAACGATCAG	TACTGGAGATACCAGGAGGAGC

REFERENCES

- Evans, C. S. & Holzbaur, E. L. F. Quality Control in Neurons: Mitophagy and Other Selective Autophagy Mechanisms. *J. Mol. Biol.* 432, 240–260 (2020).
- 2. Montava-Garriga, L. & Ganley, I. G. Outstanding Questions in Mitophagy: What We Do and Do Not Know. *J. Mol. Biol.* (2019). doi:10.1016/j.jmb.2019.06.032
- Wang, X. Le *et al.* Parkin, an E3 Ubiquitin Ligase, Plays an Essential Role in Mitochondrial Quality Control in Parkinson's Disease. *Cell. Mol. Neurobiol.* (2020). doi:10.1007/s10571-020-00914-2
- 4. McWilliams, T. G. *et al.* Basal Mitophagy Occurs Independently of PINK1 in Mouse Tissues of High Metabolic Demand. *Cell Metab.* **27**, 439-449.e5 (2018).
- 5. Lee, J. J. *et al.* Basal mitophagy is widespread in Drosophila but minimally affected by loss of Pink1 or parkin. *J. Cell Biol.* **217**, 1613–1622 (2018).
- 6. Bruick, R. K. Expression of the gene encoding the proapoptotic Nip3 protein is induced by hypoxia. *Proc. Natl. Acad. Sci. U. S. A.* **97**, 9082–7 (2000).
- Jaakkola, P. *et al.* Targeting of HIF-α to the von Hippel-Lindau ubiquitylation complex
 by O2-regulated prolyl hydroxylation. *Science (80-.).* 292, 468–472 (2001).
- 8. Allen, G. F. G., Toth, R., James, J. & Ganley, I. G. Loss of iron triggers PINK1/Parkinindependent mitophagy. *EMBO Rep.* **14**, 1127–35 (2013).
- Zhao, J.-F., Rodger, C. E., Allen, G. F. G., Weidlich, S. & Ganley, I. G. HIF1α-dependent mitophagy facilitates cardiomyoblast differentiation. 4, 99–113 (2020).
- 10. de la Ballina, L. R., Munson, M. J. & Simonsen, A. Lipids and lipid-binding proteins in

selective autophagy. J. Mol. Biol. (2019). doi:10.1016/j.jmb.2019.05.051

- Princely Abudu, Y. *et al.* NIPSNAP1 and NIPSNAP2 Act as 'Eat Me' Signals for Mitophagy. *Dev. Cell* 49, 509-525.e12 (2019).
- 12. Tang, M. Y. *et al.* Structure-guided mutagenesis reveals a hierarchical mechanism of Parkin activation. *Nat. Commun.* **8**, (2017).
- 13. Yoshimori, T., Yamamoto, A., Moriyama, Y., Futai, M. & Tashiro, Y. Bafilomycin A1, a specific inhibitor of vacuolar-type H(+)-ATPase, inhibits acidification and protein degradation in lysosomes of cultured cells. *J. Biol. Chem.* **266**, 17707–12 (1991).
- 14. Shepherd, D. & Garland, P. B. The kinetic properties of citrate synthase from rat liver mitochondria. *Biochem. J.* **114**, 597–610 (1969).
- 15. Kirkwood, K. J., Ahmad, Y., Larance, M. & Lamond, A. I. Characterization of native protein complexes and protein isoform variation using sizefractionation- based quantitative proteomics. *Mol. Cell. Proteomics* **12**, 3851–3873 (2013).
- Larance, M., Ahmad, Y., Kirkwood, K. J., Ly, T. & Lamond, A. I. Global subcellular characterization of protein degradation using quantitative proteomics. *Mol. Cell. Proteomics* 12, 638–650 (2013).
- 17. Nascimbeni, A. C., Codogno, P. & Morel, E. Phosphatidylinositol-3-phosphate in the regulation of autophagy membrane dynamics. *FEBS J.* **284**, 1267–1278 (2017).
- Holland, P. *et al.* HS1BP3 negatively regulates autophagy by modulation of phosphatidic acid levels. *Nat. Commun.* 7, (2016).
- 19. Pankratz, N. et al. Genomewide association study for susceptibility genes contributing

to familial Parkinson disease. Hum. Genet. 124, 593-605 (2009).

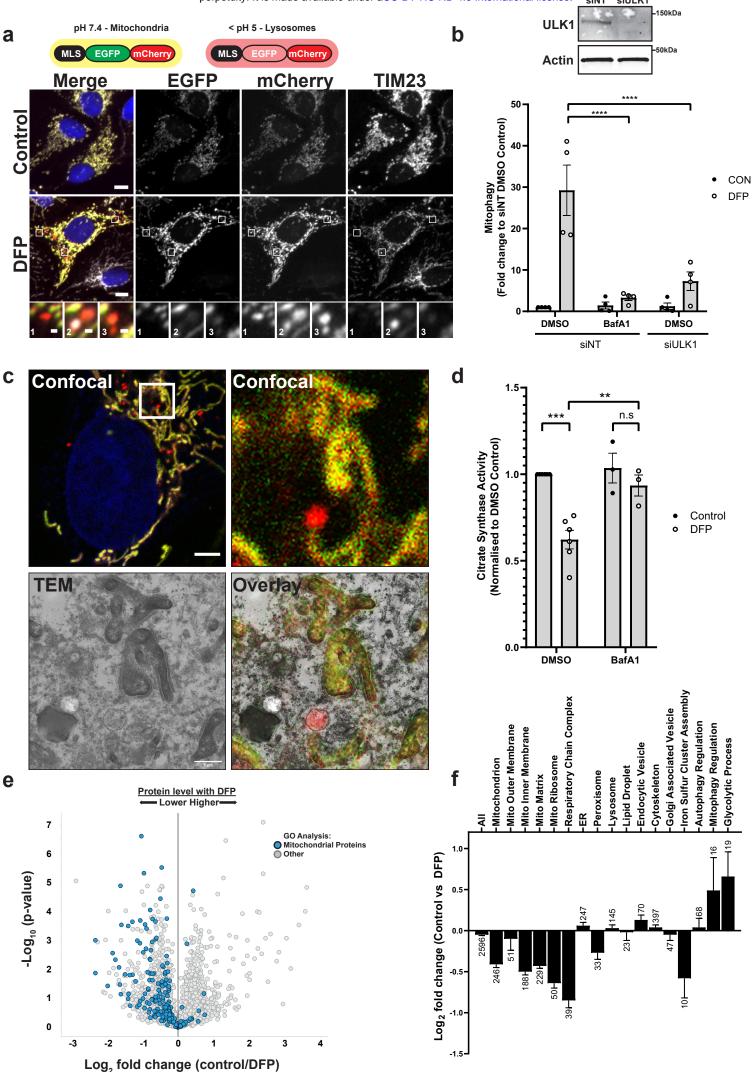
- 20. Liu, J., Chen, J., Dai, Q. & Lee, R. M. Phospholipid scramblase 3 is the mitochondrial target of protein kinase C delta-induced apoptosis. *Cancer Res.* **63**, 1153–6 (2003).
- Pu, S. Y. *et al.* Optimization of Isothiazolo[4,3- b]pyridine-Based Inhibitors of Cyclin G Associated Kinase (GAK) with Broad-Spectrum Antiviral Activity. *J. Med. Chem.* 61, 6178–6192 (2018).
- Asquith, C. R. M. *et al.* SGC-GAK-1: A Chemical Probe for Cyclin G Associated Kinase (GAK). *J. Med. Chem.* 62, 2830–2836 (2019).
- 23. Zhang, J. & Ney, P. A. Role of BNIP3 and NIX in cell death, autophagy, and mitophagy. *Cell Death Differ.* **16**, 939–46 (2009).
- 24. Johansen, T. & Lamark, T. Selective Autophagy: ATG8 Family Proteins, LIR Motifs and Cargo Receptors. *J. Mol. Biol.* **432**, 80–103 (2020).
- Marinković, M., Šprung, M. & Novak, I. Dimerization of mitophagy receptor
 BNIP3L/NIX is essential for recruitment of autophagic machinery. *Autophagy* (2020).
 doi:10.1080/15548627.2020.1755120
- 26. Kinoshita, E., Kinoshita-Kikuta, E., Takiyama, K. & Koike, T. Phosphate-binding tag, a new tool to visualize phosphorylated proteins. *Mol. Cell. Proteomics* **5**, 749–57 (2006).
- 27. Scaduto, R. C. & Grotyohann, L. W. Measurement of mitochondrial membrane potential using fluorescent rhodamine derivatives. *Biophys. J.* **76**, 469–477 (1999).
- 28. Matsuda, N. *et al.* PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy. *J. Cell Biol.* **189**,

211–221 (2010).

- Petherick, K. J. *et al.* Pharmacological inhibition of ULK1 kinase blocks mammalian target of rapamycin (mTOR)-dependent autophagy. *J. Biol. Chem.* 290, 11376–11383 (2015).
- 30. Joo, J. H. *et al.* Hsp90-Cdc37 chaperone complex regulates Ulk1- and Atg13-mediated mitophagy. *Mol. Cell* **43**, 572–85 (2011).
- Stein, S. C., Woods, A., Jones, N. A., Davison, M. D. & Carling, D. The regulation of AMP-activated protein kinase by phosphorylation. *Biochem. J.* 345 Pt 3, 437–43 (2000).
- Knapp, S. *et al.* A public-private partnership to unlock the untargeted kinome. *Nat. Chem. Biol.* 9, 3–6 (2013).
- Heo, J. M. *et al.* RAB7A phosphorylation by TBK1 promotes mitophagy via the PINK-PARKIN pathway. *Sci. Adv.* 4, 1–17 (2018).
- Kashatus, D. F. *et al.* RALA and RALBP1 regulate mitochondrial fission at mitosis. *Nat. Cell Biol.* 13, 1108–1117 (2011).
- Linares, J. F., Amanchy, R., Diaz-Meco, M. T. & Moscat, J. Phosphorylation of p62 by cdk1 Controls the Timely Transit of Cells through Mitosis and Tumor Cell Proliferation. *Mol. Cell. Biol.* **31**, 105–117 (2011).
- Gavet, O. & Pines, J. Progressive Activation of CyclinB1-Cdk1 Coordinates Entry to Mitosis. *Dev. Cell* 18, 533–543 (2010).
- 37. Lee, D.-W., Zhao, X., Yim, Y.-I., Eisenberg, E. & Greene, L. E. Essential role of cyclin-G-

associated kinase (Auxilin-2) in developing and mature mice. *Mol. Biol. Cell* **19**, 2766–76 (2008).

- 38. Greener, T. *et al.* Caenorhabditis elegans auxilin: A J-domain protein essential for clathrin-mediated endocytosis in vivo. *Nat. Cell Biol.* **3**, 215–219 (2001).
- Kandachar, V., Bai, T. & Chang, H. C. The clathrin-binding motif and the J-domain of Drosophila Auxilin are essential for facilitating Notch ligand endocytosis. *BMC Dev. Biol.* 8, 1–15 (2008).
- 40. Park, B. C. *et al.* The clathrin-binding and J-domains of GAK support the uncoating and chaperoning of clathrin by Hsc70 in the brain. *J. Cell Sci.* **128**, 3811–3821 (2015).
- Wrighton, P. Quantitative intravital imaging reveals in vivo dynamics of physiologicalstress induced mitophagy. 1–45 (2020).
 doi:https://doi.org/10.1101/2020.03.26.010405
- 42. Grünblatt, E. *et al.* Gene expression profiling of parkinsonian substantia nigra pars compacta; alterations in ubiquitin-proteasome, heat shock protein, iron and oxidative stress regulated proteins, cell adhesion/cellular matrix and vesicle trafficking genes. *J. Neural Transm.* **111**, 1543–73 (2004).
- 43. Song, L. *et al.* Auxilin Underlies Progressive Locomotor Deficits and Dopaminergic
 Neuron Loss in a Drosophila Model of Parkinson's Disease. *Cell Rep.* 18, 1132–1143
 (2017).
- 44. Nguyen, M. & Krainc, D. LRRK2 phosphorylation of auxilin mediates synaptic defects in dopaminergic neurons from patients with Parkinson's disease. *Proc. Natl. Acad. Sci. U. S. A.* 115, 5576–5581 (2018).


- 45. Cowell, C. F. *et al.* Mitochondrial diacylglycerol initiates protein-kinase D1-mediated ROS signaling. *J. Cell Sci.* **122**, 919–28 (2009).
- Zhang, T., Sell, P., Braun, U. & Leitges, M. PKD1 protein is involved in reactive oxygen species-mediated mitochondrial depolarization in cooperation with protein kinase Cδ (PKCδ). *J. Biol. Chem.* 290, 10472–85 (2015).
- 47. Caso, S., Maric, D., Arambasic, M., Cotecchia, S. & Diviani, D. AKAP-Lbc mediates protection against doxorubicin-induced cardiomyocyte toxicity. *Biochim. Biophys. Acta Mol. Cell Res.* 1864, 2336–2346 (2017).
- 48. Zhang, P., Verity, M. A. & Reue, K. Lipin-1 regulates autophagy clearance and intersects with statin drug effects in skeletal muscle. *Cell Metab.* **20**, 267–279 (2014).
- 49. Botta, P. *et al.* Regulating anxiety with extrasynaptic inhibition. *Nat. Neurosci.* **18**, 1493–1500 (2015).
- Caserta, T. M., Smith, A. N., Gultice, A. D., Reedy, M. A. & Brown, T. L. Q-VD-OPh, a broad spectrum caspase inhibitor with potent antiapoptotic properties. *Apoptosis* 8, 345–52 (2003).
- 51. Lazarou, M. *et al.* The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy. *Nature* **524**, 309–314 (2015).
- 52. Carpenter, A. E. *et al.* CellProfiler: image analysis software for identifying and quantifying cell phenotypes. *Genome Biol.* **7**, R100 (2006).
- 53. Thisse, C. & Thisse, B. High-resolution in situ hybridization to whole-mount zebrafish embryos. *Nat. Protoc.* **3**, 59–69 (2008).

- 54. Stark, C. *et al.* BioGRID: a general repository for interaction datasets. *Nucleic Acids Res.* **34**, (2006).
- 55. Cline, M. S. *et al.* Integration of biological networks and gene expression data using cytoscape. *Nat. Protoc.* **2**, 2366–2382 (2007).
- 56. Ge, S. X., Jung, D., Jung, D. & Yao, R. ShinyGO: A graphical gene-set enrichment tool for animals and plants. *Bioinformatics* **36**, 2628–2629 (2020).
- 57. Kremer, J. R., Mastronarde, D. N. & McIntosh, J. R. Computer visualization of threedimensional image data using IMOD. *J. Struct. Biol.* **116**, 71–76 (1996).
- 58. Fang, E. F. *et al.* In vitro and in vivo detection of mitophagy in human cells, C. Elegans, and mice. *J. Vis. Exp.* **2017**, 1–9 (2017).
- 59. Fang, E. F. *et al.* Mitophagy inhibits amyloid-β and tau pathology and reverses
 cognitive deficits in models of Alzheimer's disease. *Nat. Neurosci.* 22, 401–412 (2019).
- 60. Palikaras, K., Lionaki, E. & Tavernarakis, N. Coordination of mitophagy and mitochondrial biogenesis during ageing in C. elegans. *Nature* **521**, 525–528 (2015).
- Jao, L.-E., Wente, S. R. & Chen, W. Efficient multiplex biallelic zebrafish genome editing using a CRISPR nuclease system. *Proc. Natl. Acad. Sci. U. S. A.* **110**, 13904–9 (2013).
- Montague, T. G., Cruz, J. M., Gagnon, J. A., Church, G. M. & Valen, E. CHOPCHOP: A CRISPR/Cas9 and TALEN web tool for genome editing. *Nucleic Acids Res.* 42, 401–407 (2014).
- 63. Emran, F., Rihel, J. & Dowling, J. E. A behavioral assay to measure responsiveness of

Zebrafish to changes in light intensities. J. Vis. Exp. 1–6 (2008). doi:10.3791/923

- 64. Casado, P. *et al.* Kinase-substrate enrichment analysis provides insights into the heterogeneity of signaling pathway activation in leukemia cells. *Sci. Signal.* 6, 1–14 (2013).
- Cox, J. & Mann, M. MaxQuant enables high peptide identification rates, individualized
 p.p.b.-range mass accuracies and proteome-wide protein quantification. *Nat. Biotechnol.* 26, 1367–1372 (2008).
- 66. Tyanova, S. *et al.* The Perseus computational platform for comprehensive analysis of (prote)omics data. *Nat. Methods* **13**, 731–740 (2016).

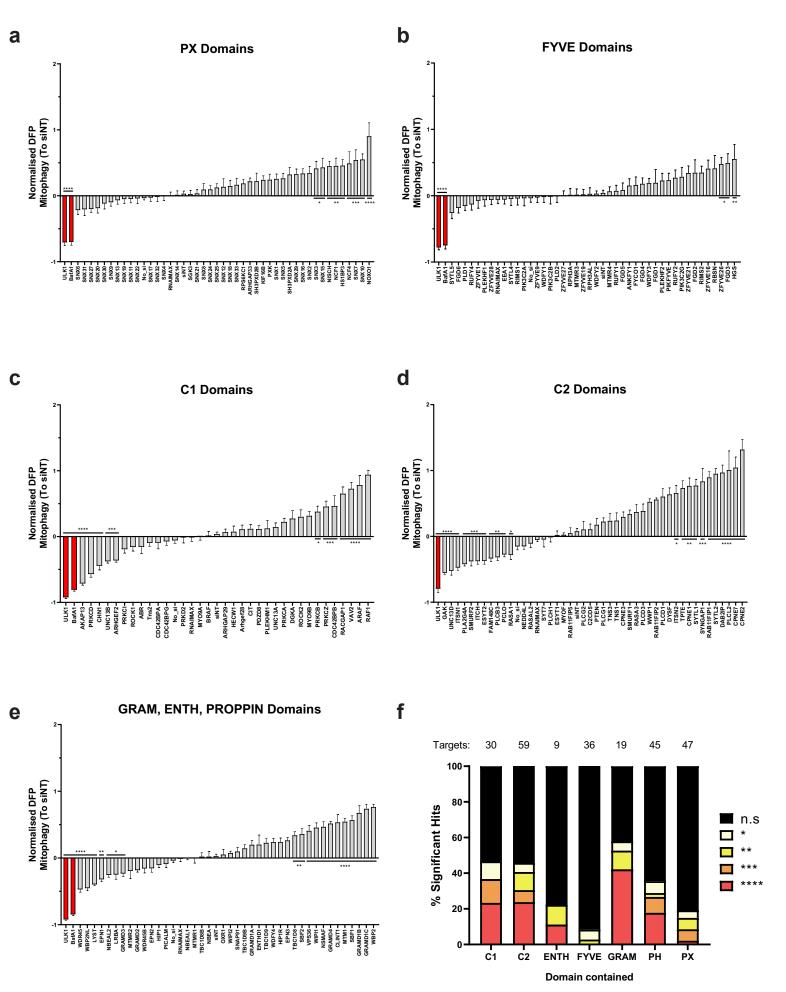
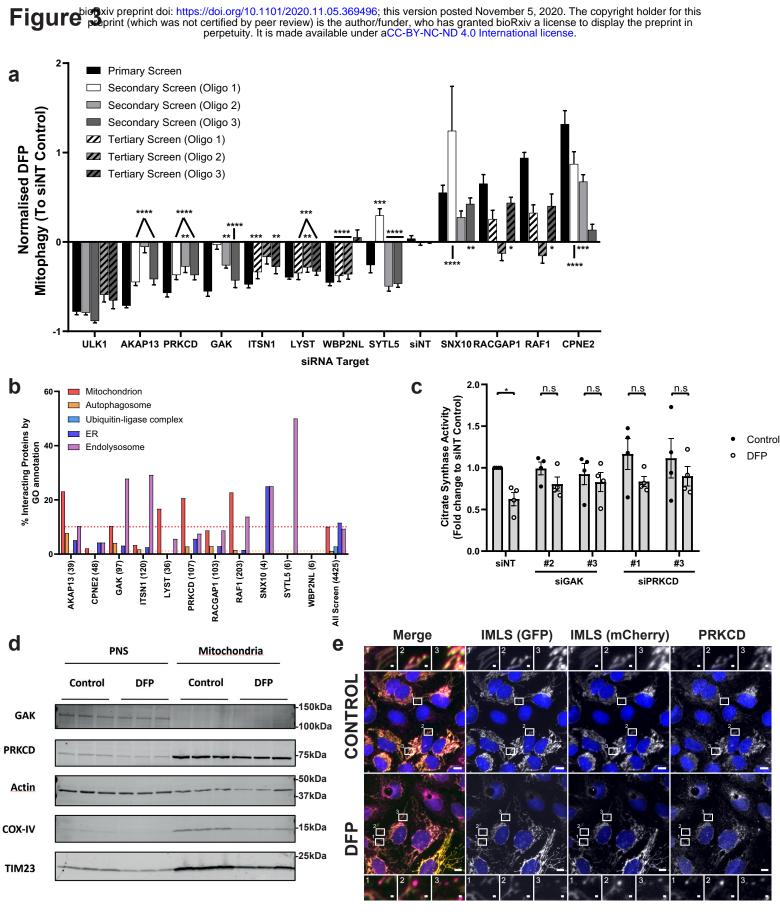

Figure bioRf iv preprint doi: https://doi.org/10.1101/2020.11.05.369496; this version posted November 5, 2020. The copyright holder for this perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. siNT_siULK1

Figure 1 - Measuring DFP-induced mitophagy in vitro


a U2OS cells stably expressing an internal MLS-EGFP-mCherry (IMLS) reporter that is pH responsive (yellow at neutral, red at acidic pH) were incubated for 24 h ± 1mM DFP followed by PFA fixation, antibody staining for TIM23 (Alexa Fluor-647) and widefield microscopy. Scale bar = 10 µm, inset = 0.5 µm. b U2OS IMLS cells were transfected with 7.5 nM siRNA non-targeting control (siNT) or siULK1 for 48 h prior to 24 h treatment ± 1 mM DFP in the presence or absence of 50 nM BafA1 for the final 2 h. Western blot from cell lysates shows representative ULK1 knockdown level. Graph represents the mean red only area per cell from fluorescence images normalised to control DMSO siNT cells ± SEM from n=4 independent experiments. Significance was determined by two-way ANOVA followed by Tukey's multiple comparison test. c U2OS IMLS cells treated with 1 mM DFP as in a and fixed for CLEM analysis. Inset of cell area in white box is shown by confocal analysis and EM section along with EM overlay. Scale bar = 5µm, inset = 1µm d Citrate synthase activity from U2OS cells treated for 24 h ± 1 mM DFP with final 16 h in the presence of 50 nM BafA1 or DMSO, values are normalised to DMSO control from n=6 (DMSO) or n=3 (+BafA1) independent experiments ± SEM. Significance was determined by two-way ANOVA followed by Sidak's multiple comparisons test. e U2OS whole cell protein abundance was determined by mass spectrometry following treatment ± 1 mM DFP 24 h. Mitochondrial proteins identified by GO analysis (Term = Mitochondrion) are highlighted in blue. f Mean T-test difference between Control and DFP samples for peptides identified in e matching GO terms related to cellular organelles. Bars represent Log, fold change (Control vs DFP) ± SEM, number on bars indicate how many protein targets are included in GO analysis. ** = p < 0.01, *** = p < 0.001, **** = p < 0.0001 and n.s = not significant in all relevant panels.

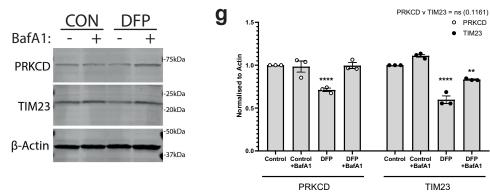
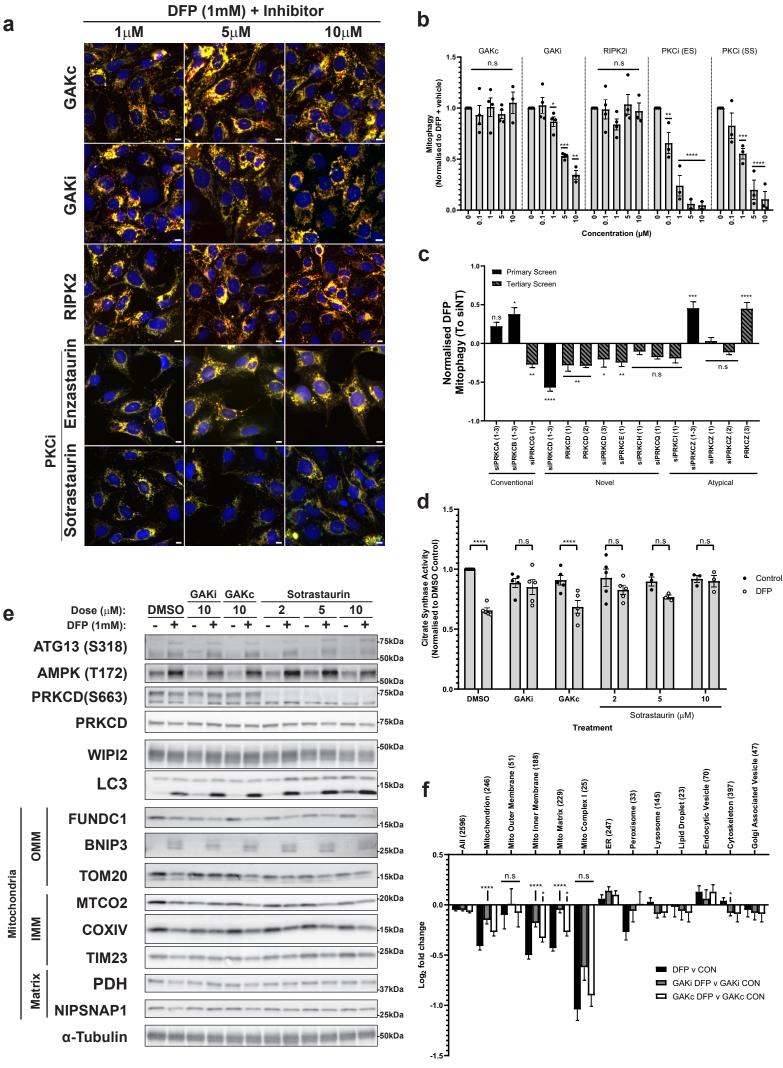

Figure ^{bi}2 Perint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.

Figure 2 – siRNA screen for lipid binding proteins involved in DFP-induced mitophagy.

a-e Primary siRNA screen data. U2OS cells were transfected with a pool of 3 sequence variable siRNA oligonucleotides per gene target (2.5 nM per oligo) for 48 h before addition of 1 mM DFP for 24 h. Cells were PFA fixed and imaged using a 20x objective (35 fields of view per well). The red area per cell was normalised to the average of siNT controls and adjusted so that the DFP siNT control was 0 from n= 14 plates (**a**,**b**) or n=6 plates (**c-e**) \pm SEM. siULK1 and BafA1 (red bars) are negative controls. siRNA targets containing similar lipid binding domains were assayed and plotted together as shown for **a** PX domains, **b** FYVE domains **c** C1 domains **d** C2 domains **e** GRAM, ENTH, PROPPIN domains. **f** Summary of significance of different lipid binding domains relative to the total tested from a e, proteins containing more than one type of domain are represented in each category. Significance was determined by one-way ANOVA followed by Dunnett's multiple comparison test to the siNT control where * = p < 0.05, ** = p < 0.01, **** = p < 0.001, **** = p < 0.001 and n.s = not significant in all relevant panels.

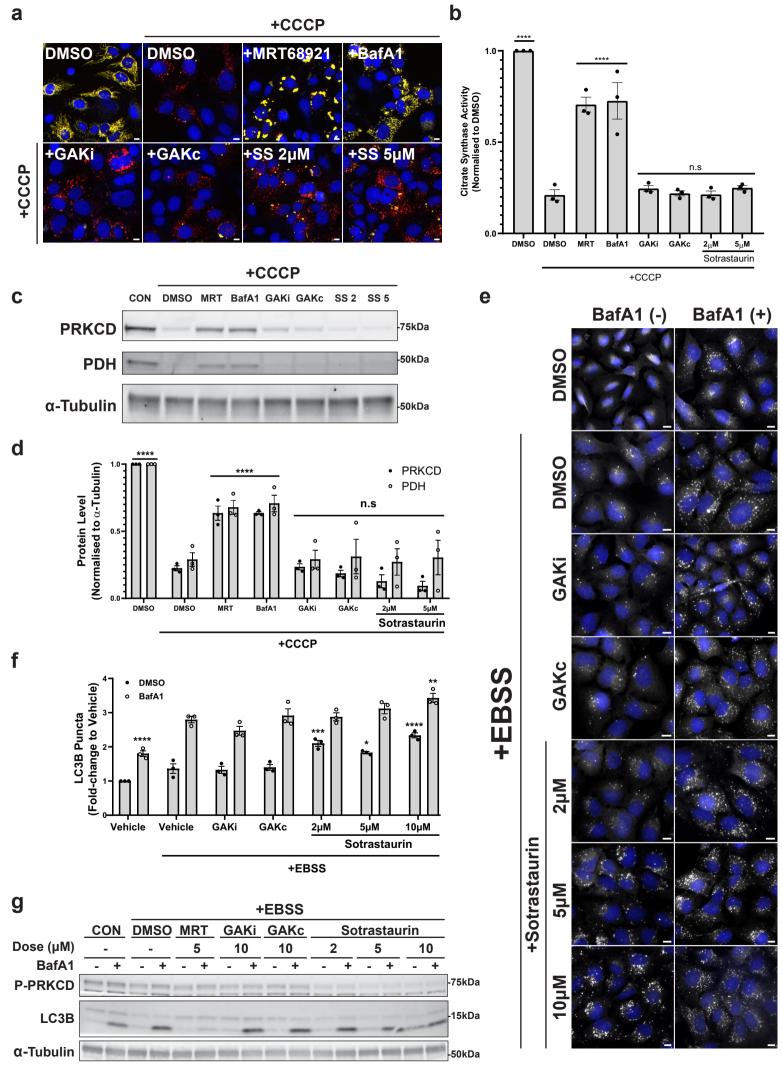


f

Figure 3 - GAK and PRKCD are regulators of DFP mediated mitophagy.

a Summary of significant targets identified across primary, secondary (7.5 nM individual siRNA oligos) and tertiary screen (15 nM each oligo) siRNA screens. Cells were transfected for 48 h prior to 24 h of 1 mM DFP treatment. Bars represent mean fold change in mitophagy relative to the siNT controls ± SEM. Significance was determined by one-way ANOVA followed by Dunnett's multiple comparison test to the siNT control. b Protein-protein interaction networks for candidate proteins (see methods) were plotted by % of interacting proteins belonging to each highlighted compartment, value in brackets represents total number of interacting proteins. c siRNA treatment with indicated oligos for 48 h prior to 24 h treatment ± 1 mM DFP and subsequent analysis of citrate synthase activity levels. Values were normalised to the siNT control and plotted ± SEM for n=4 independent experiments. Significance was determined by two-way ANOVA followed by Sidak's multiple comparison test. d U2OS cells treated ± 1 mM DFP for 24 h were enriched from a post-nuclear supernatant (PNS) for mitochondria followed by western blotting for the indicated proteins. e U2OS IMLS cells treated ± 1 mM DFP for 24 h followed by PFA fixation and staining for endogenous PRKCD (Alexa Fluor-647). Images were obtained by 20x objective using a Zeiss AxioObserver. Scale bar = 10 µm, insets = 1 µm, f U2OS cells treated ± 1 mM DFP for 24 h ± 50 nM BafA1 for the final 16 h and blotted for the indicated proteins. g Quantitation of PRKCD and TIM23 levels to β -actin in f from n=3 independent experiments ± SEM. Significance was determined by two-way ANOVA followed by Dunnett's multiple comparison test to the control. * = p < 0.05, ** = p < 0.01, *** = p < 0.001, **** = p < 0.0001 and n.s = not significant in all relevant panels.

Figure bioRdiv preprint doi: https://doi.org/10.1101/2020.11.05.369496; this version posted November 5, 2020. The copyright holder for this perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.



а

Figure 4 – GAK and PRKCD kinase activity regulates DFP-induced mitophagy

a Fluorescence images of U2OS IMLS cells treated with 1 mM DFP for 24 h in the presence of indicated inhibitors at stated concentrations (1-10 µM). Scale bar = 10 µm b Quantitation of cells red only structures normalised to DMSO + DFP control treatment. Significance was determined by two-way ANOVA followed by Dunnett's multiple comparison test to the DMSO + DFP control from a minimum of n=3 independent experiments. c U2OS IMLS cells treated with siRNA against indicated PKC isoforms (Primary screen = 7.5 nM, Tertiary = 15 nM) for 48 h prior to induction of mitophagy with 1 mM DFP for 24 h. Value in brackets represents oligonucleotide # used. Values represent mean fold change in mitophagy relative to the siNT control ± SEM from n=3 independent experiments. Significance was determined by one-way ANOVA to the relevant siNT control. d Citrate synthase activity of U2OS cells treated 24 h ± 1 mM DFP in combination with 10 µM GAKi, GAKc or 2-10 µM Sotrastaurin. Values represent mean citrate synthase activity normalised to DMSO control and plotted ± SEM from n=3 (Sotrastaurin 5/10µm) or n=5 independent experiments. Significance was determined by two-way ANOVA followed by Sidak's multiple comparison test. e U2OS cells were treated ± 1 mM DFP 24 h with GAKi or GAKc (10 µM), Sotrastaurin (2-10 µM) or DMSO control and western blotted for indicated proteins, including outer mitochondrial membrane (OMM), inner mitochondrial membrane (IMM) or Matrix proteins. f Cellular protein abundance was determined by mass spectrometry. U2OS cells were treated ± 1 mM DFP for 24 h in addition to DMSO, GAKi or GAKc (both 10 µM) and analysed by mass spectrometry. Comparison of mean abundance of GO annotated proteins between control and DFP treated samples for each GAKi, GAKc and DMSO control are shown ± SEM, value in brackets represent number of proteins classified in group by GO analysis. Significance was determined by two-way ANOVA followed by Dunnett's post-test to the DFP v CON sample. Significance is denoted in figure where: * = p < 0.05, ** = p < 0.01, *** = p < 0.001, **** = p < 0.001and n.s = not significant in all relevant panels.

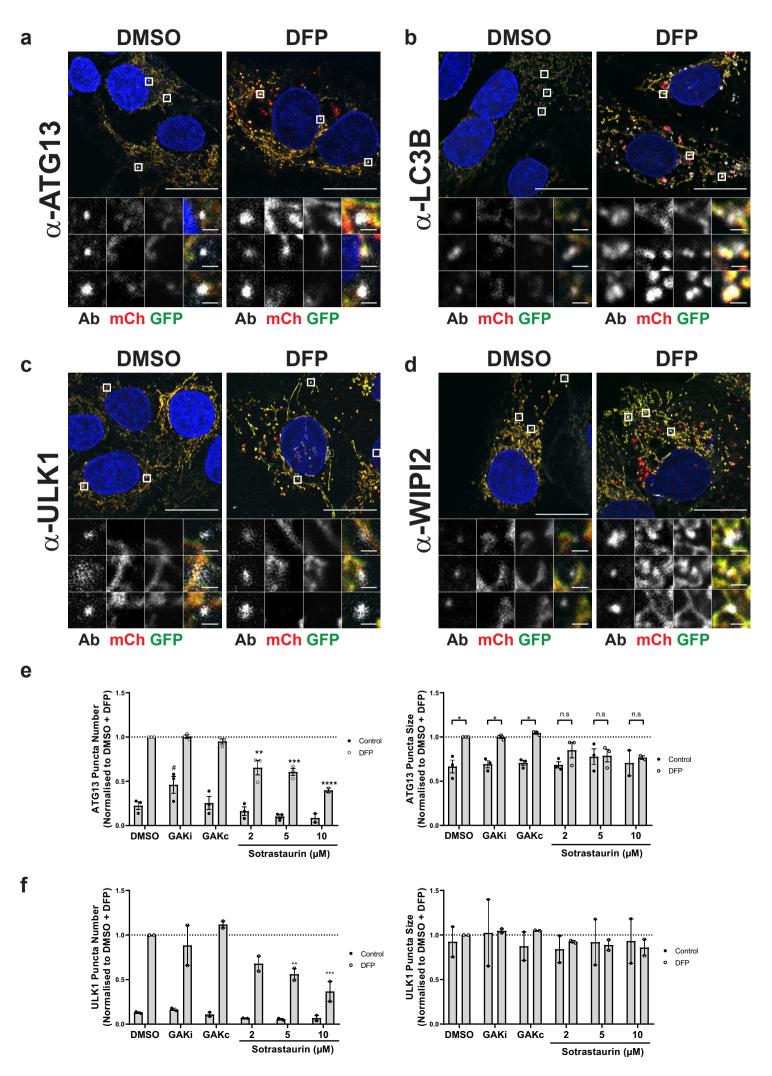
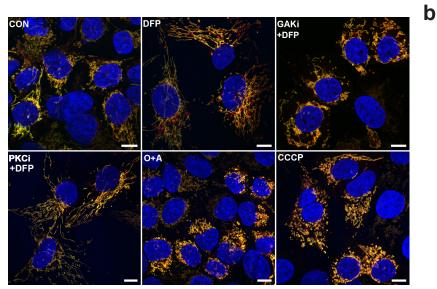
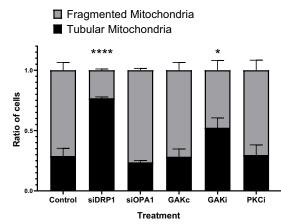
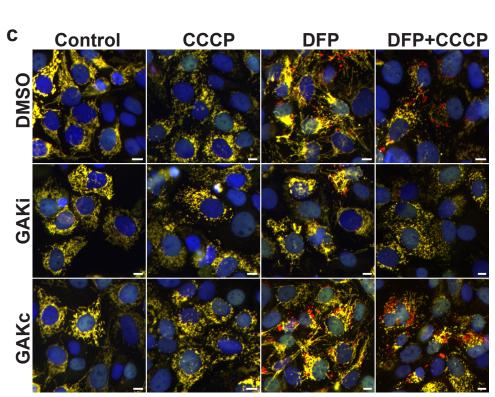

Figure properties to the second secon

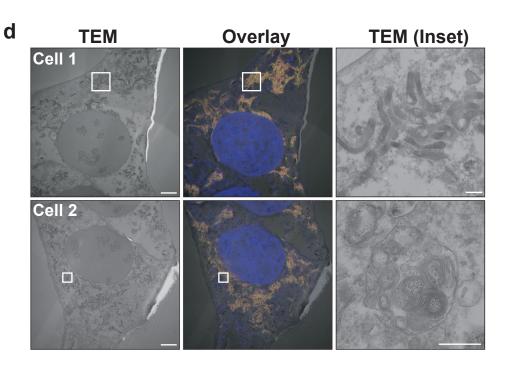
Figure 5 – GAK and PRKCD kinase activity are dispensable for PRKN-dependent mitophagy

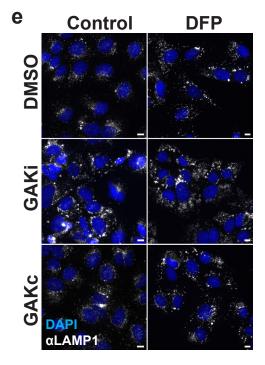
a Representative fluorescence images of U2OS IMLS-PRKN cells treated for 16 h ± 20 µM CCCP and including 10 µM QVD-OPh to promote cell survival in addition to either MRT68921 (5 μM), BafA1 (50 nM), GAKi (10 μM), GAKc (10 μM) or Sotrastaurin (2-5 µM). Scale bar = 10µm b Cells treated as in a and assayed for citrate synthase activity and normalised to DMSO control. Mean value plotted ± SEM from n=3 independent experiments and significance determined by one-way ANOVA followed by Dunnett's multiple comparison to the CCCP+DMSO control. c Representative example of western blots from cells treated as in a and blotted for indicated proteins. d Quantitation of PRKCD and PDH levels from western blots in c from n=3 independent experiments \pm SEM. Values represent protein level normalised first to α -Tubulin and subsequently normalised to the DMSO control. Significance was determined by two-way ANOVA followed by Dunnett's multiple comparison test to the DMSO control. e Representative 20x immunofluorescence images of U2OS cells stained for endogenous LC3B and nuclei (DAPI, blue). Cells were grown in complete media or EBSS (starvation) media for 2 h with addition of GAKi (10 µM), GAKc (10 µM) or Sotrastaurin (2-10µM) ± 50 nM BafA1, scale bar = 10 µm. f Quantitation of LC3B puncta from e. The average LC3 puncta per cell was normalised to that of the complete media control and represents the mean ± SEM from n=3 independent experiments . Significance was determined by two-way ANOVA followed by Dunnett's multiple comparison test to the EBSS vehicle treated sample. g Representative western blot of cells treated as in e and blotted for indicated proteins. * = p < 0.05, ** = p < 0.01, *** = p < 0.001 and **** = p < 0.0001 and n.s = not significant in all relevant panels.

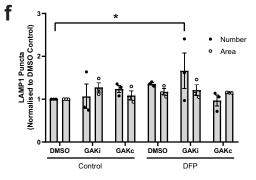

Figure bio Brint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.

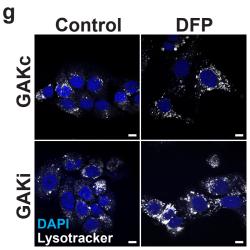


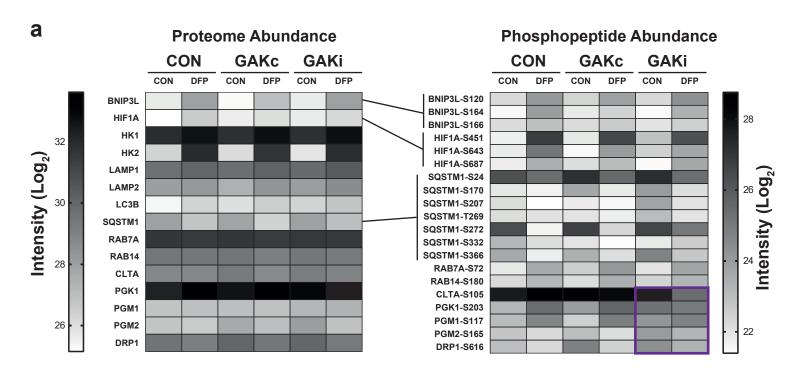

Figure 6 – Early autophagy protein recruitment is defective upon PKCi

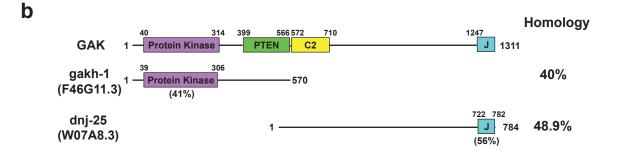

a-d U2OS IMLS cells were treated \pm 1 mM DFP for 24 h, fixed and stained for nuclei (DAPI) and the indicated endogenous autophagy markers; **a** ATG13, **b** LC3B, **c** ULK1 or **d** WIPI2. Representative 63x images of cells taken by Zeiss LSM 710 are shown, scale bar = 10 µm. **e-f** U2OS cells were treated \pm 1 mM DFP for 24 h together with GAKi (10 µM), GAKc (10 µM) or Sotrastaurin (2-10 µM), then fixed in PFA before staining for nuclei (DAPI) and the indicated endogenous early autophagy markers; **e** ATG13, **f** ULK1. The number and size of puncta formed for each marker was analysed and values obtained were normalised to the DMSO + DFP control. Mean values were plotted from n=3 independent experiments \pm SEM. Significance was determined by two-way ANOVA and Dunnett's multiple comparisons test to the DMSO+DFP control sample where * = p < 0.05, ** = p < 0.01, *** = p < 0.001, **** = p < 0.0001, n.s = not significant and # = p < 0.05 (to the DMSO Control).

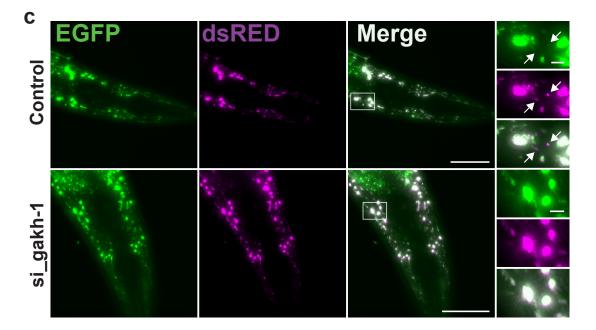

Figure Figure provide the set of the set o

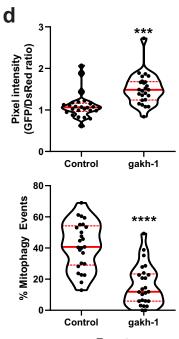




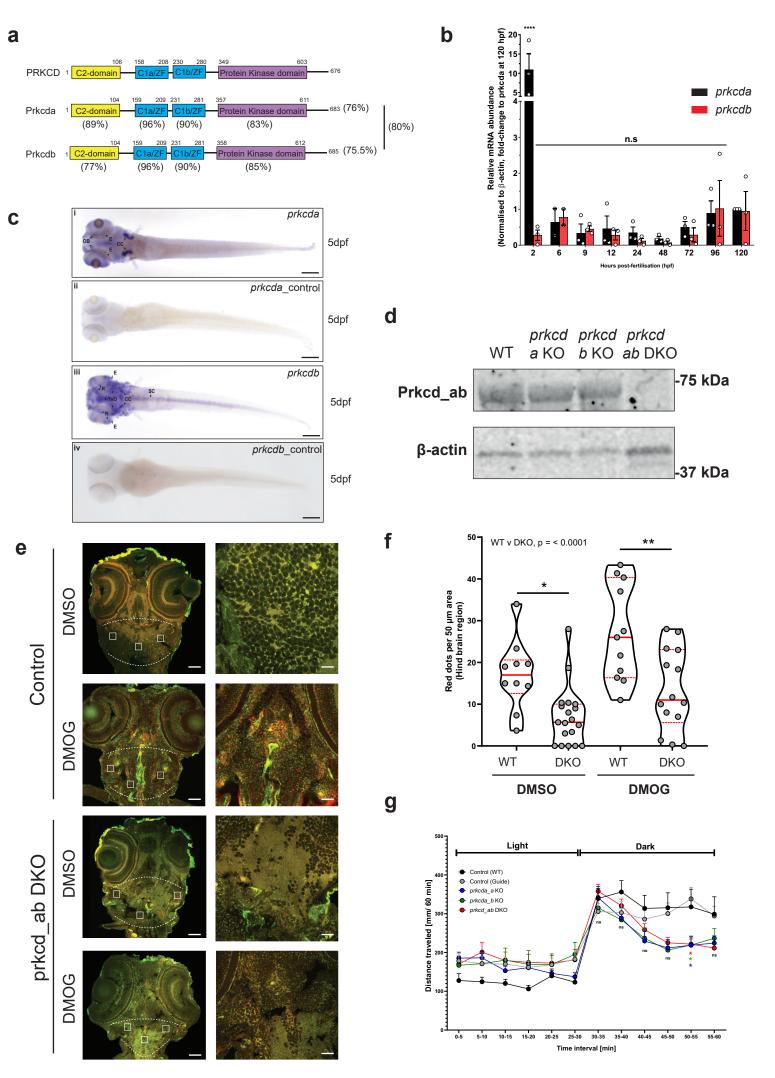





Figure 7 – GAKi induces abnormal mitochondrial and lysosomal morphology


a Representative 63x images of U2OS IMLS cells taken by Zeiss LSM 710 confocal microscopy. Cells were treated ± 1 mM DFP 24 h in addition to GAKi (10 µM), Sotrastaurin (PKCi – 2 µM), Oligomycin and Antimycin A (O+A – 10 µM and 1 µM respectively) or CCCP (20 µM), scale bar = 10 µm. b Machine learning classification of U2OS IMLS cell mitochondrial network as fragmented or tubular (utilising EGFP images, see methods) after 24 h treatment with GAKi (10 µM), GAKc (10 µM) or Sotrastaurin (PKCi – 2µM) compared to 72 h knockdown of non-targeting control, siDRP1 or siOPA1. Significance was determined by two-way ANOVA followed by Dunnett's post-test to the control treatment. c U2OS IMLS cells were treated as indicated with DMSO, GAKi or GAKc (10 µM each) for 24 h in addition to either DFP (24h, 1 mM), CCCP (20 µM, 12 h) or in combination. Images obtained by 20x objective, scale bar = 10µm. d U2OS IMLS cells were treated with 1 mM DFP + 10 µM GAKi for 24h prior to fixation for CLEM analysis. EM images demonstrate mitochondrial clustering (Cell 1) and an increase in autolysosome structures (Cell 2) induced by GAKi treatment, scale bar = 10 µm, inset = 1 µM. e U2OS cells treated ± 1 mM DFP 24 h in addition to DMSO, GAKi (10µM) or GAKc (10µM) were PFA fixed and subsequently stained for endogenous LAMP1. Images acquired by widefield microscopy on a Zeiss AxioObserver microscope, scale bar=10 µm. f Quantitation of LAMP1 structures identified in e for size and number from n=3 independent experiments and plotted as mean ± SEM. Significance was determined by two-way ANOVA followed by Dunnett's multiple comparisons test to the DMSO control. g U2OS cells were treated for 24 h ± 1 mM DFP with either GAKc (10 µM) or GAKi (10 µM) and then stained for lysosomes using lysotracker red DND-99 at 50 nM. Representative images taken by Zeiss LSM710, scale bar = 10 μm. Significance was denoted where * = p < 0.05, **** = p < 0.0001 and n.s = not significant.

Figures of the preprint doi: https://doi.org/10.1101/2020.11.05.369496; this version posted November 5, 2020. The copyright holder for this perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.



Target

Figure 8 – gakh-1 regulates mitophagy in vivo

a Mass spectrometry of DFP and GAKi regulated proteins/phospho-peptides. U2OS cells were treated \pm 1 mM DFP for 24 h in combination with DMSO vehicle, GAKi or GAKc (both 10 µM). Cell pellets were collected and split between proteome and phospho-peptide analysis (see methods). Data represents average intensity from n=2 independent experiments. **b** Schematic representation of GAK domain structure and orthologues gakh-1 and dnj-25 present in C.elegans. Homology values were obtained by protein blast alignment. **c** In vivo detection of mitophagy in C. elegans. Transgenic nematodes expressing mtRosella in bodywall muscle cells were treated with gakh-1 RNAi or pL4440 control vector. dsRED only structures represent mitochondria in acidic compartments (arrowheads). Scale bar = 50 µm, inset = 5 µm. **d** Mitophagy stimulation signified by the ratio between pH-sensitive GFP to pH insensitive dsREd (n= 25, upper panel). Quantification of the frequency of mitochondria undergoing mitophagy (dsREd puncta lacking EGFP co-localisation) are expressed as percentage of total mitochondria detected (n= 25, lower panel). The data is presented as violin plots of individual values with median (red, solid line) and quartiles (red, dashed line) shown. Significance was determined by unpaired two tailed t-test from n=2 independent experiments, where *** = p < 0.001 or **** = p < 0.0001.

Figure bio print (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.

Figure 9 – prkcda and prkcdb regulate mitophagy in vivo

a Overview and schematic diagram of human PRKCD, zebrafish prkcda and prkcdb proteins. Percentage identity of respective domains on comparison with human counterpart shown below the zebrafish domains. Also shown is the percentage identity of the protein amongst each other. b Temporal expression pattern of prkcda and prkcdb. The graph shows the mean relative transcript abundance in whole zebrafish embryos from 2 hpf to 5 dpf from n=2 (6 hpf) or n=3 (all others) independent experiments c Spatial expression pattern of prkcda and prkcdb at 5 dpf as demonstrated by whole mount in situ hybridisation at the indicated stage using a 5'UTR probe. Both the larvae are in dorsal view. Scale bar = 200 µ m. d Representative immunoblots of Prkcd and β-actin on whole embryo lysates from wild-type and single or double prkcda/prkcdb KO (DKO) animals. e Representative confocal images of cryosections taken from control (guide only) and prkcd ab DKO transgenic tandem-tagged mitofish larvae treated with DMSO only or with DMOG at 3 dpf. Images are from the hind brain region of the respective larvae as marked. Scale bars = 50 µm (left), 20 µm (right). f The graph shows the average number of red puncta from three 50 µm hind brain region (as marked in e) from each of 10-19 larvae for control and prkcd ab DKO tandem-tagged mitofish larvae. Significance was determined by two-way ANOVA followed by Tukey's post-test to compare all groups. g Motility analysis of zebrafish embryos at 5 dpf using the "Zebrabox" automated videotracker (Viewpoint). Assay was carried out during daytime, and consisted of one cycle of 30 min exposure to light followed by 30 min of darkness. Data represents mean distance moved ± SEM. Each group consisted of 43-124 larvae from n= 9 independent experiments. Significance was determined by two-way ANOVA followed by Dunnett's post-test to the Control (WT). Significance are denoted where p < 0.05, p < 0.01, p < 0.001, p < 0.001, p < 0.0001, n.s = not significant.