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Abstract 
 
Rangeland production is a foundational ecosystem service and resource upon which livestock, 

wildlife, and people depend. Capitalizing on recent advancements in the use of remote sensing 

data across rangelands we provide estimates of herbaceous rangeland production from 1986-

2019 at 16-day and annual time steps and 30m resolution across the western United States. 

Herbaceous aboveground biomass at this scale and resolution provide critical information 

applicable for management and decision-making, particularly in the face of annual grass 

invasion and woody encroachment of rangeland systems. These readily available data remove 

analytical and technological barriers allowing immediate utilization for monitoring and 

management.  
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Introduction 

Rangeland production–specifically herbaceous aboveground biomass–is a foundational 

ecosystem service upon which livestock, wildlife, and people depend.  Estimates of production 

have long been available via field-based measurements, but such estimates are geographically 

and temporally limited.  Although statistical sampling techniques employed by national 

monitoring programs (Herrick et al., 2017; MacKinnon et al., 2011) provide means to monitor 

production across rangelands, such techniques and programs do not capture temporal 

variability or spatial heterogeneity at scales relevant to management and decision-making (e.g. 

within or across management units), with limited field-based plots often extrapolated to 

ecoregion scales (Karl et al., 2016).  Satellite and airborne remote sensing methods (Smith et 

al., 2019) informed by field-based data can provide spatially and temporally contiguous 

estimates of rangeland production.  Methodologies often use empirical relationships between 

remote sensing indices (e.g. Normalized Difference Vegetation Index; NDVI) or terrestrial lidar 

retrievals, and measured or estimated biomass from field plots to map production.  This 

methodology is most often applied at local or regional spatial scales (Jansen et al., 2018), but 

has also been successfully implemented at broad national scales (Reeves et al., 2020).  

Vegetation production may also be estimated using remotely sensed data in process-

based models, including a light use efficiency model (Monteith, 1972) that calculates gross or 

net primary production (GPP and NPP, respectively) based on remotely sensed estimates of 

absorbed photosynthetically active radiation, the biophysical properties of vegetation types, and 

water and temperature constraints.  These GPP and NPP models are prolific (Clark et al., 2011; 

Running et al., 2004) but the common units of carbon (i.e., g C m-2 year-1) are not relevant to 

rangeland managers or practitioners.  Moreover, GPP and NPP models are parameterized for 

each plant functional type, but past maps of rangeland vegetation were categorical (Homer et 

al., 2015) and models could not account for the within-pixel heterogeneity or variation in 

phenology and productivity (Browning et al., 2019) of rangeland plant functional types (PFT) 

(e.g., annual grasses and forbs, perennial grasses and forbs, shrubs, or trees).  Accounting for 

this variation is especially critical considering the prominence of large-scale woody 

encroachment and annual grass invasion (Jones et al., 2020).   

This technical note details the development of annual and 16-day rangeland herbaceous 

production estimates partitioned to perennial and annual grasses/forbs across western U.S. 

rangelands. We perform a factorial comparison of this new production dataset and three 

national scale datasets.  We highlight the value of using all data in a ‘multiple lines of evidence’ 
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approach when implementing production estimates, where incorporating data derived from 

different methods into a decision-making process can spur greater data acceptance and 

application, and advance conservation of this valuable rangeland resource. 

Methods 

Net primary production partitioning 

Detailed descriptions of the method used to calculate NPP by PFT are provided in 

Robinson et al., (2019); we provide an overview here.  We produced spatially contiguous 16-day 

Landsat NDVI composites (Robinson et al., 2017) using Landsat 5 TM, 7 ETM+, and 8 OLI 

surface reflectance (Vermote et al., 2016) from 1986-2019 across Western U.S. rangelands 

(Reeves and Mitchell, 2011) (Fig. 1).  Using the 16-day NDVI and a PFT cover dataset (Allred et 

al., 2020), we disaggregated pixel level NDVI using linear mixing theory to its sub-pixel PFT 

components.  In brief, the NDVI of a mixed pixel was calculated as the mean NDVI of the 

individual PFTs within the pixel, weighted by their fractional cover.  To capture and incorporate 

the geographically specific PFT NDVI phenological characteristics, we built an overdetermined 

set of linear equations to solve for each PFT NDVI value within US EPA Level IV regions 

(Omernik and Griffith, 2014).  The result is PFT NDVI estimations that capture NDVI amplitudes 

and regional PFT phenology.  We reprojected and bilinearly resampled all Landsat imagery to a 

geographic coordinate system of approximately 30m resolution prior to manipulation. 

The PFT specific NDVI values are then used in the MOD17 NPP model adapted for 

Landsat (Robinson et al., 2018).  Using linear interpolation we calculated daily NDVI values 

between each 16-day composite.  We then calculated daily NPP for each PFT present in the 

pixel using the daily PFT NDVI values, daily GRIDMET meteorology (Abatzoglou, 2013), and 

that PFT’s biophysical properties.  We multiplied NPP estimates by the PFT fractional cover 

estimates, resulting in total grams of carbon assimilated per PFT per pixel per day (g C m-2 day-

1). Daily values are summed to 16-day values (g C m-2 16days-1) and to annual values (g C m-2 

year-1). 

NPP conversion to herbaceous aboveground biomass 

We allocate partitioned NPP of perennial and annual grasses/forbs to aboveground 

(ANPP) pools using the equations: 

fANPP = 0.129 * MAT + 0.171    [1] 
ANPP = fANPP * NPP     [2] 
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where the fANPP is the fraction partitioned to ANPP and MAT is mean annual temperature (Hui 

and Jackson, 2006).  We convert ANPP (g C m-2 16 days-1) to biomass (kg ha-1 or lbs acre-1) 

using the pixel area and a 47.5% carbon content of vegetation estimate (Eggleston et al., 2006); 

the midpoint of a 45% to 50% carbon to dry matter estimation range (Schlesinger, 2005). 

Comparisons 

We calculated Pearson correlation coefficients between the herbaceous aboveground 

biomass (HAGB) estimates and 16,591 Natural Resources Conservation Service (NRCS) 

National Resources Inventory (NRI) plot-level estimates of herbaceous biomass collected on 

rangelands from 2004 to 2018 (NRCS, USDA, 2015).  The HAGB estimate corresponding to 

each plot was sampled from the same year as the plot measurement.   

We also compared HAGB estimates to United States Forest Service Rangeland 

Production Monitoring Service (RPMS) data, provided annually from 1984-2018 at 250m 

resolution (Reeves et al., 2020), and to the gridded Soil Survey Geographic (gSSURGO) 

Database which provides fixed estimates of unfavorable, normal, and favorable annual range 

potential production by soil survey units at 30m resolution (Soil Survey Staff, 2017).  The RPMS 

and gSSURGO data estimate total rangeland productivity (not solely herbaceous), but are used 

here as the only available gridded productivity datasets that are specific to western U.S. 

rangeland systems and cover a similar time period. To account for temporal variability we 

compared the 50th percentile of the two temporally dynamic datasets using years 2000-2018, 

and the gSSURGO ‘normal’ data.  We also calculated Pearson correlation coefficients among 

datasets using values from 5000 random rangeland locations.  For all comparisons we only 

included rangelands identified by Reeves and Mitchell (2011) inclusive of afforested, pasture, 

and barren categories.  

Results 

Herbaceous aboveground biomass 

Estimates of HAGB at 30m resolution are provided annually (Fig. 1a-c) from 1986-2019, 

and as accumulating HAGB at 16-day intervals (Fig. 1d). The HAGB is partitioned into perennial 

and annual grasses/forbs and accounts for bare ground and contributions of woody (tree and 

shrub) productivity at the pixel-scale.  The data are accessible for viewing and analysis via a 

publicly available online application, the Rangeland Analysis Platform (https://rangelands.app/). 
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Fig. 1.  Herbaceous aboveground biomass (HAGB) at 30m resolution across western U.S. 
rangelands available via the Rangeland Analysis Platform (https://rangelands.app/).  Total 
annual 2019 HAGB partitioned to (a) perennial grasses and forbs and (b) annual grasses and 
forbs. (c) Total yearly HAGB and portions attributable to perennials and annuals for a Bureau of 
Land Management grazing allotment in southwest Idaho from 1986-2019. (d) For the same 
grazing allotment, 16-day accumulating total HAGB and partitioned contributions from perennial 
and annual grasses/forbs for 1986-2019. 
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Data comparisons  

The HAGB data available via the Rangeland Analysis Platform (hereafter RAP HAGB) 

are well correlated (r = 0.63) with 16,591 NRI plot-level herbaceous biomass estimates (Fig. 2).  

 

 

Fig. 2.  Density scatterplot (bin width 50 kg ha-1) of RAP herbaceous aboveground biomass 
(HAGB) and 16,591 NRI plot-level biomass estimates, 1:1 line (black), and Pearson correlation 
coefficient (r=0.63).  NRI biomass estimates greater than 6000 kg ha-1 are not displayed. 
 

We subtracted the RPMS 50th percentile and gSSURGO ‘normal’ gridded data from the 

RAP HAGB 50th percentile (as well as the gSSURGO from RPMS) which provided the 

geospatial distribution of differences between the products.  Mapped differences (Fig. 3a-c) and 

scatterplots of 5000 randomly selected rangeland locations (Fig. 3d-f) display strong agreement 

as indicated by Pearson correlation coefficients.  At lower biomass levels (< ~1500 kg ha-1) the 

RAP HAGB 50th percentile is well aligned with the RPMS HAGB 50th percentile (Fig. 3d) and 

the gSSURGO normal (Fig. 3e).  Yet the RAP HAGB displays generally lower estimates than 

the other two data sets at higher biomass levels while RPMS and gSSURGO are more evenly 

distributed along the 1:1 line (Fig. 3f).  These distributions are expected as RPMS and 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 8, 2020. ; https://doi.org/10.1101/2020.11.06.343038doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.06.343038
http://creativecommons.org/licenses/by-nc-nd/4.0/


7 
 

gSSURGO provide total production estimates while the RAP HAGB is herbaceous production 

only. 

 

Fig. 3.   Differences (a-c) between three gridded production datasets across western U.S. 
rangelands using the 50th percentile of annual values (2000-2018) from RAP and RPMS data, 
and ‘normal’ values from gSSURGO.  Scatterplots and Pearson correlation coefficients (d-f) of 
production values sampled from each data set for 5000 randomly selected rangeland locations   
 
Discussion 

Estimates of rangeland production–specifically herbaceous aboveground biomass or 

forage–are available annually and at 16-day intervals from 1986 to 2019 at 30m resolution 

across the western U.S. and represent five advancements specifically relevant to management.   

These data are 1) provided in units recognized by and applicable to management (i.e., kg ha-1 

or lbs acre-1); 2) produced at temporal fidelities applicable to monitoring the effects of climate, 

disturbance, management, and other factors, 3) calculated at a spatial resolution (30m) that 

allows for assessment of variability both within and across management units; 4) account for 

vegetation heterogeneity and the contributions of multiple plant functional types; and 5) are 

easily accessible where monitoring, analysis, and interpretation can be achieved without the 

need for specialized technical knowledge or skills. The availability of these data and many 
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others have ushered in a new era where rangeland mapping is now a working reality (Jones et 

al., 2020).  

These data provide land managers, practitioners, and decision-makers a novel and more 

detailed view of herbaceous biomass for enhanced rangeland management.  For example, 

these biomass data can be paired with local knowledge and data to better inform management 

strategies at the scale of a grazing allotment or pasture.  At larger scales, these biomass data 

shed light on persistent ecosystem threats like invasive annual grasses that are contributing the 

continual rise of annual grass/forb biomass on western rangelands (Fusco et al., 2019; see Fig. 

1).  Differences in forage quality and phenology between annuals and perennials have important 

implications for rangeland functions including accelerated wildfire return intervals (Pilliod et al., 

2017).  This represents a couple of the myriad of scenarios where such data can provide 

greater insight and better inform management of grazing, wildlife, fuel, and fire, as well as 

assessing outcomes of management practices.   

This technical note does not present a traditional validation of these new RAP HAGB 

data due to the lack of plot-level HAGB data at the scope and scale of the data product.  While 

NRI plot-level data do include some destructive sampling (i.e., clipping, drying, and weighing), 

the methods also incorporate subjective estimations and correction factors.  We therefore 

examine ‘multiple lines of evidence’ and factorially compare the four available broad-scale data 

sets of rangeland production.  This method demonstrates a best-practices approach when using 

these data in a decision-making framework; utilize all data sources, examine their similarities 

and discrepancies, and incorporate local knowledge to best inform a data driven decision. 

Implications 

The temporally dynamic herbaceous aboveground biomass data represent a culmination 

of advancements in utilizing remote sensing data to more effectively and efficiently monitor 

rangelands.  The new geospatial datasets of rangeland production provide land managers and 

decision-makers spatially contiguous and temporally relevant data to monitor rangeland forage, 

conduct meaningful comparisons of management outcomes using common data, and examine 

within season variability of forage to better assess management actions.  The readily available 

data (RAP, https://rangelands.app/; RPMS, https://www.fuelcast.net/) remove analytical and 

technological barriers, allowing for immediate utilization. Never before has so much data been 

directly available and applicable to rangeland management. We anticipate and look forward to 

new applications, analyses, discoveries, and innovations that improve the understanding and 

management of rangelands.   
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