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Summary 
 
Natural products constitute a vast yet largely untapped resource of molecules with therapeutic 
properties. Computational approaches based on structural similarity offer a scalable approach for 
evaluating their bioactivity potential. However, this remains challenging due to the immense structural 
diversity of natural compounds and the complexity of structure-activity relationships. We here assess the 
bioactivity potential of natural compounds using random forest models utilizing structural fingerprints, 
maximum common substructure, and molecular descriptors. The models are trained with small-molecule 
drugs for which the corresponding protein targets are known (1,410 drugs, 0.9 million pairs). Using these 
models, we evaluated circa 11k natural compounds for functional similarity with therapeutic drugs (1.7 
million pairs). The resulting natural compound-drug similarity network consists of several links with 
support from the published literature as well as links suggestive of unexplored bioactivity of natural 
compounds. As a proof of concept, we experimentally validated the model-predicted Cox-1 inhibitory 
activity of 5-methoxysalicylic acid, a compound commonly found in tea, herbs and spices. In contrast, a 
control compound, with the highest similarity score when using the most weighted fingerprint metric, did 
not inhibit Cox-1. Our results illustrate the importance of complementing structural similarity with the 
prior data on molecular interactions, and presents a resource for exploring the therapeutic potential of 
natural compounds. 
  
Introduction 
 
Approximately 65% of the small-molecule drugs in use today have originated from natural compounds or 
their derivatives (Newman and Cragg, 2020), and their therapeutic potential have been discussed 
extensively (Atanasov et al., 2015; Harvey et al., 2015; Rodrigues et al., 2016; Shen, 2015). Identification 
of bioactive natural compounds present in the diet and their effect on health has thus been an active area 
of research since long (Corbi et al., 2016; Hosseini and Ghorbani, 2015). A number of recent findings have 
reported that dietary patterns can reduce the risk of many chronic diseases (Alissa and Ferns, 2017; Gu et 
al., 2019; Hartley et al., 2013), lead to drug and food interactions (Briguglio et al., 2018; Jensen et al., 
2015; Rodriguez-Fragoso et al., 2011), and significantly alter or diversify the composition of the human 
gut microbiome (David et al., 2014; Kolodziejczyk et al., 2019; Sonnenburg and Backhed, 2016; Zmora et 
al., 2019). Although natural compounds possess rich structural diversity and often have selective biological 
actions (Clardy and Walsh, 2004; Koehn and Carter, 2005; Pye et al., 2017), they have been generally less 
accessible, especially in comparison to synthetic compounds, for systematic screening studies due to 
complex purification methods (Li et al., 2019). Recent technological advances in metabolic engineering 
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and synthetic biology, as well as those in functional assays and phenotypic screens are opening new 
opportunities for natural compound-based drug discovery (Kang et al., 2016; Li et al., 2019). Yet, 
systematic experimental exploration of bioactivities of natural compounds is likely to remain unfeasible 
due to the immense number of compounds involved, their low abundance in natural sources, and 
technical difficulties in extraction from complex matrices. 
 
An attractive approach to assess the bioactivity potential of a compound is computing its chemical and 
structural similarity with the molecules with known activity (Cereto-Massague et al., 2015; Muegge and 
Mukherjee, 2016). Novel methods integrating multiple molecular properties along with the biological 
activity information are also being deployed to study small-molecule functional similarities (Duran-Frigola 
et al., 2020). In such virtually screening approaches, machine learning models are being increasingly used 
to tackle the complex structure-activity relations (Chan et al., 2019; Lavecchia, 2015; Lima et al., 2016; Lo 
et al., 2018). These approaches have been used to predict, among other, bioactivities (Zhang et al., 2020), 
shared molecular interactions (Lim et al., 2018; Ryu et al., 2018), toxicity (Yang et al., 2018; Zhang et al., 
2018a), and drug-likeness of molecules (Yosipof et al., 2018). 
 
The chemical similarities between drug and natural compounds, esp. dietary compounds, and their 
association with drug targets have been studied previously (Jensen et al., 2015). Such similarity-based 
rankings, however, vary considerably depending upon which fingerprint encoding is used (O'Hagan and 
Kell, 2017b). Indeed, the structural similarity between two molecules is a subjective concept (Maggiora et 
al., 2014) and no single similarity measure can likely capture the complex structure-activity relationships 
(SAR). Thus, owing to the vast structural diversity of natural compounds it would be advantageous to 
include more extensive similarity measure encodings (Seo et al., 2020) to identify similar properties, 
establish pairwise relationships (Park et al., 2019), directly compare bioactivities and reduce artefacts 
(Cereto-Massague et al., 2015; Duran-Frigola et al., 2020). 
 
In this study, we systematically compared FDA-approved drugs with dietary natural compounds based on 
their structural similarities and physicochemical properties. To make the comparison meaningful in terms 
of bioactivity, we used a machine learning approach trained on drug molecules with known protein 
targets. This allowed us to uncover the therapeutic potential of hundreds of natural compounds; and to 
provide a proof-of-concept validation for 5-methoxysalicylic acid, which showed marked inhibitory activity 
against Cox-1. 
 
Results 
 
 Dataset of drugs with known targets 
 
We utilized 1,410 FDA approved drugs (Table S1a) with known curated targets (Table S1b) as our machine 
learning (ML) dataset. The drugs were classified based on the ATC (Anatomical Therapeutic Chemical 
classification) system and also based on their chemical structures. A large number of these drugs target 
nervous system (264) followed by cardiovascular (180), anti-infectives (148), multiple ATC (131) and anti-
neoplastic (127) (Fig S1a). Of all the 18 structural classes, benzenoids and organoheterocyclics constitute 
the major super-classes of drugs (840) encompassing all therapeutic classes except the nutraceuticals (Fig 
S1a). 
 
For the 1,410 drugs used, there were 1,262 known curated targets (Wishart et al., 2018). The number of 
drug targets ranged from 1 to 86 (Table S1b) highlighting the fact that some drugs are well studied in 
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terms of their target space. The targets most abundantly found were the different units and subunits of 
GABA receptors and GPCRs (adrenergic, muscarinic, histamine and dopamine receptors). The abundance 
of GABA receptors is consistent with the fact that a large number of drugs (264) are targeting the nervous 
system. 
 
Natural compounds 
 
A catalogue of circa 11,000 compounds was obtained from FooDB (www.foodb.ca) (Table S1c). These 
correspond to 261 unique food sources and are categorized into 15 main food types such as vegetables, 
fruits, herbs and spices, and milk products (Fig S1b). For the simplicity in representation in Fig S1b, the 
frequency accounts only one source per compound; however, a particular compound can be present in 
multiple food sources. The food compounds were structurally classified into 21 classes using ClassyFire 
(Djoumbou Feunang et al., 2016) (Fig S1b). Highly represented were lipids and lipid-like molecules (4803), 
phenylpropanoids and polyketides (2476), organoheterocyclics (1381) and organic oxygen compounds 
(1120).  
 
Molecular features 
 
For all the drugs and natural compounds considered here, 7 types of molecular fingerprints (distance-
based measures; namely Morgan, Featmorgan, Atompair, RDKit, Torsion, Layered and MACCS, maximum 
common substructure (MCS), and molecular descriptors were computed as described in the methods. We 
then used drug molecules (all against all pairs) to create a dataset for the machine learning task. All 
pairwise drug combination fingerprint similarity was scored using Tanimoto Score (TS) measured on a 
scale of ‘0-1’; higher the score, more similar the molecules. Consistent with each molecular fingerprint 
assessing different features of the compound, the Tanimoto score distribution for the ML dataset (i.e. 
drugs vs drugs) differed across the fingerprints (Fig 1B). 
 
When observed on the scale of ‘0 (no similarity) - 1 (highly similar)’ of TS, the Morgan, FeatMorgan and 
Torsion fingerprints consistently computed a lower score for the majority of the drug pairs (TSmedian = 0.11, 
0.13, 0.08 respectively) as compared to AtomPair, RDKit, Layered, and MACCS (TSmedian = 0.23, 0.36, 0.45, 
0.32 respectively). The drug pairs showed broader distribution across the TS scale in AtomPair, RDKit, 
Layered and MACCS. A rank-based comparison of drug-pairs (Fig S2) called by each fingerprint also 
showed a low concordance amongst the different fingerprints. As none of the fingerprints alone is 
universally suited (Baldi and Nasr, 2010), we decided to retain all the 7 computed fingerprints in training 
the classifier. 
 
We next computed the MCS and molecular descriptors for all drug pairs which would provide more 
extensive information on substructure similarities and physicochemical properties. The MCS calculation 
reports a number of statistics, amongst which the MCS size (median = 8), TS (median = 0.19) and OC 
(overlapping coefficient) (median = 0.43) score are important measures to assess similarity. The TS and 
OC score distribution is shown in Fig 1C. OC, measured on a scale of 0-1, accounts for size difference 
amongst molecules and is useful for assessing similarities when there is a significant size difference 
between molecules being compared. The MCS measures are more intuitive to interpret as the 
substructure graph shared between the two molecules can be visualized and can be mapped back to the 
underlying molecules to extract which are the common and unique features, while this is not possible 
with fingerprints and descriptors (O'Hagan and Kell, 2017a). 
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Figure 1 (A) Overview of workflow deployed. (B-D) - Similarity metrics (ML dataset). (B) Molecular fingerprints - the 
7 fingerprints generate a different similarity score for the pairs of drug molecules compared. The median value of 
each is represented in the box plot (in the center) and the spread shows the density of the drug pairs around that 
score. (C) MCS - there are two types of scores reported by the MCS algorithm, one is the Tanimoto score (TS) and the 
other is the Overlap coefficient (OC). The violin plots were smoothed for density by an adjustment factor of 3.  (D) 
High ranking features - top 20 features are displayed, showing most of the distance-based features provided 
maximum information gain with ‘FeatMorgan’ performing best. (E) - Training performance of the three models 
namely Hyp1, Hyp2, Hyp3 - depicts various performance measures over five random iterations during training. Hyp1 
was very consistent over the five iterations during training but appeared less balanced in terms of measurement 
values whereas Hyp2 and Hyp3 produced more robust measurement values. (F-G) - Performance on the test set. (F) 
Precision-Recall curve - the default performed better than the hyper-tuned models but closer observation of other 
statistical measures (Table 1) revealed that the tuned models (Hyp2 and Hyp3) had more robust behavior in terms of 
balanced measures. (G) ROC curve - all the models had AUC >0.96. 
 
Additionally, we used 5 different molecular descriptor categories (constitutional, topological, geometrical, 
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electronic and hybrid) to serve as a means to capture individual physicochemical properties of the drugs. 
Table S1d, reports the number of descriptors used in each category. Majority of the physical and chemical 
information comes from the constitutional and topological descriptors. In total 225 molecular descriptors 
(for example, molecular weight, logP, aromatic bonds, and ring blocks) were calculated for each molecule. 
Similar to the ML dataset, all molecular features (namely fingerprints, MCS and descriptors) were 
computed for the natural compounds as well. 
 
 
Data preprocessing 
 
All pairwise distance-based measures (TS of Morgan, FeatMorgan, AtomPair, RDKit, Torsion, Layered and 
MACCS), MCS features (MCS size, MCS Tanimoto, MCS overlap coefficient), and the molecular descriptors 
(constitutional, topological, geometrical, electronic and hybrid) were merged to create a matrix of 
features for the ML dataset. The unique pairwise combinations for 1,410 drugs resulted in a total of 
993,345 drug pairs with 460 molecular features for each pair. 
 
Prior to training the classifier for model building, the data was processed to remove constant feature 
columns (82 columns with all 0’s) and missing data values in rows (NA’s). This resulted in a matrix of 
961,191 rows and 378 feature columns. The final step in data processing was to randomly split the ML 
dataset into a training (80%) and an independent validation test set (20%). This split resulted in non-
overlapping 768,952 rows in training and 192,239 rows in the test set. 
 
Feature selection 
 
To decrease the overhead of training on noise and to increase the learner’s performance, we searched for 
features most informative for the prediction variable, i.e. outcome (match or no-match). Since feature 
selection is in itself time-consuming on large datasets, we performed a single run of feature selection on 
our training dataset (768,952 rows x 378 columns). The importance values of all the features are depicted 
in Fig S3. We used the mean importance value (Fig S3) as a threshold for feature selection. This resulted 
in the retention of 188, or 50% of the features. A sorted list of top 20 features is shown in Fig 1D; 
FeatMorgan was the top performer and interestingly, most of the distance-based features (highlighted) 
were high ranking performers indicating their high relevance for predicting the target outcome. Amongst 
the descriptors, topological descriptors were the best performers. 
 
Random Forest Classification 
 
The observations in the training set were 24,283 matches and 744,669 no-matches. The models were 
trained on the training set using the target outcome (i.e. match and no-match) as the class label. All learner 
experiments were done with 3-fold cross-validation and each tree is grown on a different sample of 
original data with stratification (helpful for imbalanced datasets). Prior experience with ML-based 
classifiers had suggested that Random Forest works optimally in handling high-throughput chemical 
compound data classification problems (Periwal et al., 2012; Periwal et al., 2011). Thus, we used random 
forest classifiers to train the ML models. We trained four different models, one with default parameters 
(termed ‘Default’ hereafter) and three with different hyperparameter combinations (‘Hyp1’, ‘Hyp2’ and 
‘Hyp3’) (Methods). 
 
The distribution of the performance statistics of the five iterations of all models is shown in Fig 1E. Hyp1 
produced consistent results over all the iterations but appeared less robust and balanced as compared to 
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Hyp2 and Hyp3 in terms of other performance measures (i.e. MCC (Matthews correlation coefficient), 
Kappa, TPR and FNR). The result of iterations is aggregated as the mean test value. One of the key 
considerations for selecting the optimal performance measures for chemical datasets, and in general 
where predicting the minority class is of more interest (Chen et al., 2004), is to have high prediction 
accuracy over minority class while maintaining reasonable values for the majority class. Thus, the optimal 
‘Hyp’ combinations were selected based on the best tuned MCC (it gives a balance measure of both 
classes) and the final model was trained using those parameters. 
 
Table 1 Performance statistics of the four trained models on the test set 
 

Model MCC KAPPA BAC ACC TPR FPR FNR TNR 
Default (tree, node, weight=default) 0.609 0.558 0.702 0.980 0.406 0.001 0.593 0.999 
Hyp1 (tree=70, node=default, weight=8000) 0.607 0.554 0.700 0.980 0.401 0.001 0.599 0.999 
Hyp2 (tree=85, node=40, weight=default) 0.666 0.664 0.859 0.977 0.733 0.014 0.266 0.985 
Hyp3 (tree=95, node=35, weight=26000) 0.628 0.626 0.834 0.975 0.683 0.014 0.316 0.985 

MCC - Matthews correlation coefficient, BAC - Balanced accuracy, ACC - accuracy, TPR – True-positive rate, FPR – 
False-positive rate, FNR – False-negative rate, TNR – True-negative rate  
 
The behavior and performance of all trained models on unseen data were assessed using the independent 
test dataset (created by a split of 20%). Interestingly, all four trained models showed good performance 
in terms of the Precision-Recall curve (Fig 1F). Although the Default and Hyp1 models produced higher 
precision as compared to the Hyp2 and Hyp3, they had lower values for the balanced measures (MCC, 
Kappa and BAC) (Table 1). In the ROC curve (Fig 1G) as well, all models behaved equally well. The favorable 
performance of all the models suggested us to take a consensus approach for predictions in virtual 
screening of new compound library. 
 
Predicting drug-natural compound similarity 
 
The natural compound library from FooDB was virtually screened against all the four models. Pairwise 
similarities between drugs and FooDB compounds were computed using the same set of features as for 
the ML dataset. The MCS computation, which is computationally intensive, was carried out in parallel 
Drug-food pairs where the food compounds had a perfect match with the drug (i.e. TS of 1 or exact names 
as of the drug as many drugs are naturally derived) or pairs with missing values for any feature were 
removed. Thus, the total number of drug-food pairs screened using all the four models were 1,696,695. 
An overlap of ‘match’ predictions from the four models is depicted in Fig S4. Since all the models 
performed optimally in their predictions on the test, we considered the union of all positive predictions 
(i.e. 4,909 drug-food pairs) as our ‘matching’ compounds (Fig S4, Table S3a). For illustrative and discussion 
purposes we chose a subset of these predictions, which is the intersection of all the four models (i.e. 125 
unique drug-food pairs) (Fig 2 and Table S3b). We performed a thorough manual curation of these 125 
pairs and categorized them into four different subgroups (Table S3c). Out of the 18 ATC classes, 16 were 
represented in the prediction results for the 125 pairs highlighting at-least one drug from each therapeutic 
category sharing similarity with a natural compound. As stated previously, a given food compound can be 
present in multiple food sources so the drug-food similarity relationship was plotted for more than one 
food source (extended data in Table S3c (although this list is not exhaustive and sometimes carry only few 
representative food sources chosen randomly)), for which data was available for these 125 pairs (Fig 2). 
For exhaustive listing of food sources, we recommend querying FooDB using respective compound Ids. 
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Figure 2. A consensus subset of drug-food similarity network. 125 drug-food pairs predicted as ‘match’ by the 
consensus result of the four models. A given food compound can be present in more than one food source hence the 
links here represent all known food source for a food compound (from FooDB). The drugs are arranged according to 
their therapeutic class and food compounds according to their food source category. The highlighted colored links 
are the different category examples discussed in detail in the text. 
 
The 57 unique food compounds constituting the consensus similarity network with 105 unique drugs can 
be grouped into four categories (Table S3c); drug analogs, host-endogenous metabolites, compounds 
currently under experimental investigation as drugs, and novel leads for therapeutic applications. 
 
In the first group, 23 food compounds were found to be analogues or sometimes even exactly the same 
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as other known drugs but annotated with different names or synonyms. This category was informative as 
a control as well as to highlight their potential presence in various food sources. An interesting example 
here is the compound ‘papain’ (named same as the papain enzyme found in papaya and other fruits). 
Papain is a synonym for ibuprofen, the commonly used as pain, fever and inflammation reliever which is 
a drug of synthetic origin. It shared similarity with ampicillin, etoricoxib, diclofenac and nepafenac. 
Podofilox (annotated as lignans in FooDB and is reported to be present in flax and arrow root) is used to 
treat genital warts and is classified as a dermatological drug with some antineoplastic activity. In our 
virtual screen, its shared similarity with many anti-neoplastic (limaprost, daunorubicin, etoposide, and 
dactinomycin) suggesting a potentially much wider role as an anti-neoplastic agent. Indeed, the 
antineoplastic activity of podofilox and its derivatives has been indicated in various tumor cell lines and is 
an active area of research for chemotherapy (Zhang et al., 2018b; Zi et al., 2019). 
 
The second group, host-endogenous metabolites, included 7 compounds that are endogenous to human 
tissues and also reported in food sources. For example, ‘desoxycorticosterol’ was reported to be present 
in rice and is endogenously present in amniotic fluid and blood throughout human tissues. ‘Estriol’, an 
estrogen produced by the human body, is reported to be present in pomegranate and beans. 
 
The third group comprised of 5 food compounds which are already under experimental investigation 
category in DrugBank (i.e. under approval to be used as drugs, accessed January 2018). 
‘diferuloylspermine’ (found in ananas) as spermine (DB00127), ‘codeine N-oxide’ (found in opium) as 
DB01568, ‘4-(b-methylaminoethyl) catechol’ (found in legumes) as deoxyepinephrine (DB13917) and ‘3-
hydroxyanthranilic acid’ (found in brassicas) as DB03644. These serve as a proof of principle that we could 
recall natural compounds with similar activity as currently used human-targeted drugs, which are being 
actively investigated pre-clinically. 
 
The fourth group comprises of 23 compounds for which, to our knowledge, little or no evidence of their 
physiological or biological activity have been hitherto reported. Thus, we refer them to as potential lead 
compounds. Of these, ‘Homoeriodictyol’ is a trihydroxyflavonone reported in coriander and is found 
active in inhibiting CYP1B1 and CYP1A1/2 targets (PubChem AID: 311072 and 502473-502475). It was 
found to be a hit with the three drugs spironolactone (also binds to CYP), dienesterol (not tested for CYP 
binding) and ethinylestradiol (also binds to CYP1A1 (PubChem AID: 678712)). All the three drugs have 
different therapeutic target class (cardiovascular, genitourinary and multiple-ATC respectively). 
Homoeriodictyol has also been reported to possess taste modifying properties i.e. it reduces bitterness 
(Ley et al., 2005). ‘(+)-setoclavine’ is an alkaloid reported in cereals (ergot found on pearl millet) and 
shared similarity with the drug lisuride which is a prescription medication for Parkinson’s disease. 
Interestingly, lisuride is also an ergot derivative and binds to dopamine and serotonin receptors. An in-
silico study also predicted binding of setoclavine to dopamine receptors with a binding affinity comparable 
to other ergot alkaloids (Paulke et al., 2013). Thus, these four groups highlighted interesting similarity 
relationships existing between drug and food compounds and their wider therapeutic potential. 
 
Drug - Food compounds - Target network 
 
Since our predictions are based on the hypothesis that molecules binding to the same target share 
common chemical and structural similarity in a high-dimensional space captured by the machine learning 
model, we looked into the known targets shared by the predicted 125 drug-food pairs. Some drugs were 
present as a single node where they have unique targets in the current target space and don’t cluster with 
the others. For instance, the drug digoxin has only one known target ‘Na+/K+ transporting ATPase subunit-
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a1’ and the food compound (‘Glycosides’) paired with it which is actually the drug Ouabain, also shares 
the same target (Fig 3). Additionally, ouabain also binds to two other subunits (a-2 and a-3) of the same 
protein suggesting that digoxin might also have a binding affinity for these two other subunits. On the 
other hand, some drugs have a large target range such as spironolactone which is a steroid and has as 
many as 29 known targets. Many drugs from the nervous, cardiovascular and respiratory category formed 
very closely clustered target hubs. 
 
An interesting case is that of triflusal, which is an antithrombotic anticoagulant and is considered very 
important for the secondary prevention of ischemic stroke. As per our predictions, it shares similarity with 
5-methoxysalicylic acid (Fig 3). 5-methoxysalicylic acid is found in tea, herbs and spices, and is indeed 
shown to have antiplatelet activity in rats (Yun-Choi et al., 1987). Triflusal has an antagonist effect on 
prostaglandin G/H synthase 1 (PTGS1) (also called Cox-1) in platelets (Anninos et al., 2009). Another 
interesting compound also categorized as novel lead is butyl salicylate which shares similarity with the 
drug salsalate, an anti-inflammatory agent. Salsalate also targets PTGS1 and additionally PTGS2. It would 
thus be interesting to investigate the inhibitory activity of both 5-methoxysalicylic acid and butyl salicylate 
on PTGS1 as novel leads. 
 
Another interesting hub in the network is that of the 5 drugs (calcitriol, ergocalciferol, calcidiol, 
doxercalciferol, and cholecalciferol) binding to the vitamin D3 receptor (Fig 3). All the drugs in this hub 
except calcitriol have only one known target. Only one food compound in this hub was categorized as 
potential lead and others were either analogues or endogenously present in humans. The compound is 
annotated as ‘22E, 24x-ergosta-4,6,8,22-tetraen-3-one’ and is reported in mushrooms and fungi. It 
appears to be an analogue of ergone which is also found in medicinal fungi and lichens, and has been 
shown to prevent chronic kidney disease (Zhao et al., 2014).  
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Figure 3 Drug-Target-Food network. Network of 125 drug-food pairs shown along with the drug targets. The drugs 
are central nodes colored by their therapeutic class. The known targets of the drugs (grey circles) are proposed to be 
the potential target space of the respective food compounds as well (light pink squares). 
 
Experimental validation of Cyclooxygenase-1 (Cox-1) inhibition by 5-methoxysalicylic acid 
  
As a proof-of-concept experimental validation, we chose the prediction of similarity between food 
compound 5-methoxysalicylic acid and triflusal, and the Cox-1 inhibition by 5-methoxysalicylic acid 
implied therein. Triflusal is prescribed as an antithrombotic anticoagulant and new natural compound/s 
with similar activity could be highly relevant. To additionally test whether the machine learning approach 
used here is more useful in identifying true positives in comparison to using a single similarity measure 
(such as fingerprint alone), we also tested a ‘negative control’ molecule, 4-isopropylbenzoic acid, which is 
found in cumin, herbs and spices. This molecule had higher TS for FeatMorgan, which was the most 
important feature during feature selection (Fig 2D), but was predicted as no-match by all four machine 
learning models. In contrast, our test compound (5-methoxysalicylic acid) was predicted as a match by all 
machine-learning models and had a lower TS for FeatMorgan (Fig S4A). Structural representation of all 
the tested compounds and their shared MCS (maximum common substructure) is depicted in Fig 4A. 
 
We tested the Cox-1 inhibitory activity of the three compounds, triflusal (positive control), 5-
methoxysalicylic acid (test compound), and 4-isopropylbenzoic acid (negative control) using an enzymatic 
assay based on fluorometric detection of prostaglandin G2, which is an intermediate product generated 
by the Cox enzyme (Fig S4B). 
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Figure 4 Cox-1 inhibitor assay. (A) Chemical structures of all the tested compounds. MCS structures are also depicted 
which helped to intuitively assess the structural similarity between the tested compounds (B) An example relative 
fluorescent units (RFU) plot of the tested compounds at 100µM (other tested conc.: 12.5µM to 400µM serial 
dilutions). SC560 is a positive control provided by the assay kit supplier (Methods). (C) Relative inhibition of the 
positive control (drug triflusal), test compound (5-methoxy salicylic acid) and negative control (4-isopropyl benzoic 
acid) at different tested concentrations. 5-methoxy salicylic acid showed similar inhibition of Cox-1 as the drug 
triflusal whereas no such inhibition was observed for 4-isopropyl benzoic acid. 4-isopropyl benzoic acid showed strong 
color change (bright pink) reaction beyond 100µM and thus was found unsuitable for being tested at higher 
concentration with this assay.  
 
Triflusal and 5-methoxysalicylic acid exhibited highly similar inhibition profiles at different concentrations 
(Fig. 4B, Table S4). From this assay, the IC50 of triflusal could be estimated to be around 100µM. 5-
methoxysalicylic acid was able to achieve 40% inhibition at 100µM. Maximum inhibition achieved with 
SC560 – a positive control included in the assay kit – was 42%, comparable to that of 5-methoxysalicylic 
acid. In stark contrast, 4-isopropylbenzoic acid did not show inhibition at 100µM or higher concentration. 
It rather showed strong colored reaction (bright pink) which resulted in exceptionally high RFU values. 
Thus, we found it unsuitable for testing at higher concentrations with this assay and only considered its 
inhibition values up to 100µM. It only showed a small (10-17%) inhibitory effect at a lower concentration, 
possibly due to non-specific binding. Taken together, the biological activity predicted by the machine 
learning could be confirmed experimentally, while that based on a high-scoring single similarity metric 
(i.e. fingerprints) was a false-positive. 
 
Discussion  
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The data fusion approach (i.e. integrating similarity metrics based on fingerprints, maximum common 
substructures and physico-chemical descriptors) used in this study appeared to be an effective way of 
identifying closely related molecules which have the potential to bind to the same protein target. In 
particular, the use of drug-target similarity matrix for training the machine learning classifier appeared 
useful in capturing complex high-dimensional similarity that would not be accessible based on any single 
metric alone. Indeed, we could show that a molecule that deemed similar based solely on a single 
fingerprint’s Tanimoto score showed no significant activity while the one predicted by machine learning 
models trained on multiple features showed the predicted enzyme inhibitory activity. In further support 
of our approach, we could identify several drug-food compound relations including compounds that are 
currently under investigation or have been ascribed with related bioactivity in the literature. 
 
Data fusion approaches can aid in reducing the amounts of artefacts (Cereto-Massague et al., 2015).  In 
line with this,  various methods are being proposed to accelerate the performance of in-silico similarity 
searches such as inclusion of bioactivity profiles (Duran-Frigola et al., 2020; Petrone et al., 2012; Yu et al., 
2015), multiple fingerprint algorithms (Montaruli et al., 2019), and similarity ensemble approach (Wang 
et al., 2016). Our approach serves as another promising addition to these strategies. A recent study has 
also demonstrated similar strategy to identify molecules using pairwise similarity concept and target 
engagement (Park et al., 2019) which supports our strategy and showcases the utility and success rate of 
such methods in early-stage molecule discovery. 
  
In the context of natural compound search space, two closely related issues remain open before the 
proposed approach could be more broadly applied: the estimation of true-positive rate, and the 
availability of curated molecular target information for an additional, structurally more diverse, set of 
small molecules. The former could be addressed through high-throughput testing of bioactivity profile of 
natural compounds against a set of protein targets using cell-based or enzymatic assays (An and Tolliday, 
2010; Wang et al., 2012). The generated data could then be used to address the latter issue. Further, new 
structured and curated datasets such as those recently reported by Duran et al (Duran-Frigola et al., 2020) 
would be immensely valuable to this end. 
 
In summary, we report a computational approach utilizing the structural, physicochemical and protein 
target information of approved drugs to uncover the therapeutic potential of natural compounds. Our 
methodology combines various distance- and similarity-scores from molecular fingerprints and common 
substructures, as well as descriptor-based features to train a random forest classifier on a drug dataset. 
The predictions not only captured compounds with literature support for their therapeutic potential, but 
also provided novel leads, one of which we experimentally validated for target binding. Taken together, 
our study supports the using target-similarity for uncovering drug-like properties of natural compounds. 
 
Materials and methods 
 
Data Source and processing 
 
All the FDA approved drugs which had target information associated with them were taken from DrugBank 
(Law et al., 2014) (accessed January 2018). The drugs and their target information were later used to 
create ML models. The natural compound library used for virtual screening was FooDB (www.foodb.ca; 
freely available and accessed June 2017, (~11k compounds). It required additional annotation, curation 
and formatting in order to be smoothly integrated into our analysis. It included compounds from both raw 
and processed foods. We used drug classification codes from ATC (https://www.whocc.no/) to 
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therapeutically classify all the drugs and ClassyFire (Djoumbou Feunang et al., 2016) to structurally classify 
the drugs and the natural compounds.  
 
Molecular features generation 
 
A number of pairwise distance measures and molecule specific descriptors were generated for drugs and 
all the natural compounds. These included distance-based fingerprint similarities, maximum common 
substructure similarities and physicochemical descriptors. These molecular features formed the basis of 
our dataset created from drugs and their known respective targets. This matrix was later used to train the 
drug structure-target relationship where each drug pair was labelled ‘match’ if they share at least one 
molecular target and a ‘no-match’ if no target was reported common between them. 
 
Fingerprint calculation, Tanimoto Score (TS) estimation and Molecular descriptor generation 
 
The INCHIs from natural compound libraries and drugs were used to generate 2D structural information 
in Structural Data Format (SDF). These SDF files were used to calculate 7 different molecular fingerprints 
(Morgan, FeatMorgan, AtomPair, RDKit, Torsion, Layered and MACCS) to gather theoretical 2D structural 
information from the molecules. The pairwise structural similarity from the fingerprints was scored using 
the widely used Tanimoto similarity metric (computed as 𝑇𝑆#$ = (𝐴 ∩ 𝐵)/(𝐴 ∪ 𝐵)). The entire workflow 
was designed using the KNIME (Berthold MR, 2007) analytics platform utilizing RDKit (Greg, 2006) plugin 
(for fingerprints) with default parameters. In addition to the distance-based features, five different types 
of molecular descriptors (constitutional, topological, geometrical, electronic and hybrid) were computed 
for all compounds using R package: RCDK (Guha, 2007).  
 
Maximum Common Substructure (MCS) based TS estimation 
 
The data features thus generated for each molecule pair were further complimented by computing 
maximum common substructure (MCS) shared between them. The MCS is a graph-based similarity search 
wherein the largest substructure shared between query and target is identified and gives out various 
parameters such as number of MCS generated, size of each molecule, size of MCS, TS, overlapping 
coefficient (computed as 𝑂𝐶#$ = (𝐴 ∩ 𝐵)/min	(𝐴, 𝐵)). It was computed using the ‘ChemmineR’ (Cao et 
al., 2008) and ‘fmcsR’ (Wang et al., 2013) packages available for R. The MCS calculation is computationally 
intensive and time-consuming but they are more sensitive, accurate and intuitive, thus we implemented 
parallel scripts in batch-mode on high-performance computing cluster for faster processing. 
 
Data preprocessing and Machine Learning 
 
All computed molecular features of drug pairs were combined into a single matrix and preprocessed to 
build the classification model using the Random Forest classifier in R (using ‘mlr’ package). The binary 
tree-based classifier was trained for two classes which are referred to as target ‘match’ and ‘no-match’. 
Each drug pair which shared at-least one target were labelled as ‘match’ and the rest were labelled as ‘no-
match’. We used feature selection and hyperparameter tuning to specify the search space of random 
forest in order to find the optimal set of parameters for our dataset. The importance of each feature was 
calculated using ‘randomForest importance’ method which is based on calculating OOB-accuracy (Out-Of-
Bag).  
 
Hyperparameters tuned to identify the optimal set of parameters for building the random forest classifier 
were the number of trees (ntree), the number of observations at terminal nodes (nodesize) and class 
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weights (weight). In our initial runs, we fine-tuned different values for the number of trees to grow 
(𝑛𝑡𝑟𝑒𝑒 = 50	𝑡𝑜	1001). It was observed from our preliminary runs (Table S2) that setting higher ntree 
values didn’t result in any significant difference in performance rather only increased the computational 
overhead. The number of variables to split at each node (mtry) was kept at default (i.e. 𝑚𝑡𝑟𝑦 = 	>𝑝 where 
p is the number of features in the input data). In our ML dataset, the default mtry was (√188) 13 features. 
The default value for the parameter nodesize is 1, but with low values of tree depth, the tree can fail to 
recognize useful signals from the data. We searched for nodesize value in the range 10-300. Lower 
nodesize can result in lower detection signals of the true positives and a high false-negative rate. In our 
tuning experiments, we found setting nodesize to a higher number resulted in increased learner 
robustness without compromising on overall prediction performance. The systematic hyperparameter 
search was performed in a cluster environment with parallel backend. 
 
All the ‘Hyp’ models were optimized for 5 random iterations with 3-fold cross-validation each using 
stratification. The search space of the ‘Hyp’ models was: Hyp1 (𝑛𝑡𝑟𝑒𝑒 = 50 − 151, 𝑛𝑜𝑑𝑒𝑠𝑖𝑧𝑒 =
𝑑𝑒𝑓𝑎𝑢𝑙𝑡	(1)	𝑎𝑛𝑑	𝑤𝑒𝑖𝑔ℎ𝑡 = 1000 − 20000	(𝑠𝑡𝑒𝑝	𝑜𝑓	1000), Hyp2 (𝑛𝑡𝑟𝑒𝑒 = 50 − 151, 𝑛𝑜𝑑𝑒𝑠𝑖𝑧𝑒 =
30 − 150	𝑎𝑛𝑑	𝑤𝑒𝑖𝑔ℎ𝑡 = 𝑑𝑒𝑓𝑎𝑢𝑙𝑡	(1,1)) and Hyp3 (𝑛𝑡𝑟𝑒𝑒 = 50 − 101, 𝑛𝑜𝑑𝑒𝑠𝑖𝑧𝑒 = 30 −
150,𝑤𝑒𝑖𝑔ℎ𝑡 = 1000 − 30000	(𝑠𝑡𝑒𝑝	𝑜𝑓	5000). 
 
We used the standard performance measures (mean test values for MCC (Matthews correlation 
coefficient), Balanced accuracy (BAC), Kappa, MMCE (mean classification error), ACC (accuracy), TPR (true 
positive rate/Recall/Sensitivity), FPR (false positive rate), TNR (true negative rate), (false negative rate), 
PPV (Precision/Positive predictive value)) to evaluate the learner’s performance in each iteration and 
model assessment. 
 
Compound preparation and Assay protocol 
 
Briefly, all tested compounds were dissolved in their respective solvents. Triflusal and 5-methoxysalicylic 
acid were dissolved in DMSO and 4-isoproplybenzoic acid was dissolved in ethanol. Compounds supplied 
with the assay kit were prepared as per the manufacturer’s protocol and the assay was also performed 
according to the instructions present in the kit from Abcam (CAT#ab204698). The kit included the Cox-1 
enzyme (source: ovine) and had a positive control Cox-1 inhibitor (SC560). 
 
Literature evidence showed that triflusal binds to purified Cox-2 at 240-320 µM (Fernandez de Arriba et 
al., 1999). Thus, we assayed all compounds at different concentrations starting at 400µM and going down 
to 12.5µM with serial dilutions and in triplicates. Relative Fluorescence Units (RFU) were measured 
immediately after starting the reaction by using microplate reader (Tecan infinite M1000Pro) at Ex/Em = 
535/587 nm in a kinetic mode for 40 minutes at 25° C. All fluorescence readings for triplicates under a 
given concentration were averaged and initial time point RFU reading was used to shift the measurements 
to start from 0 (Fig 4B). We took the first 10 time-points of RFU readings to assess the inhibitory effect of 
the tested compounds. Slopes for all samples (triflusal (positive control), 5-methoxysalicylic acid (test 
compound) and 4-isopropylbenzoic acid (negative control)), enzyme control, and kit supplied positive 
control (SC560) were calculated by fitting linear equations, respectively. Percent relative inhibition for 
samples was calculated as 
 

%	𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒	𝐼𝑛ℎ𝑖𝑏𝑖𝑡𝑖𝑜𝑛 =
𝑠𝑙𝑜𝑝𝑒	𝑜𝑓	𝑒𝑛𝑧𝑦𝑚𝑒	𝑐𝑜𝑛𝑡𝑟𝑜𝑙 − 𝑠𝑙𝑜𝑝𝑒	𝑜𝑓	𝑠𝑎𝑚𝑝𝑙𝑒

𝑠𝑙𝑜𝑝𝑒	𝑜𝑓	𝑒𝑛𝑧𝑦𝑚𝑒	𝑐𝑜𝑛𝑡𝑟𝑜𝑙
∗ 100 
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Data and Code availability 
 
The data files and codes used for generating all main and supplementary figures are available at 
https://github.com/periwal45/periwaletal2020. 
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