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Abstract 
Understanding multicomponent binding interactions in protein-ligand, protein-protein and competition 

systems is essential for fundamental biology and drug discovery. Hand deriving equations quickly 

becomes unfeasible when the number of components is increased, and direct analytical solutions only 

exist to a certain complexity. To address this problem and allow easy access to simulation, plotting and 

parameter fitting to complex systems at equilibrium, we present the Python package PyBindingCurve. 

We apply this software to explore homodimer and heterodimer formation culminating in the discovery 

that under certain conditions, homodimers are easier to break with an inhibitor than heterodimers and 

may also be more readily depleted. This is a potentially valuable and overlooked phenomenon of great 

importance to drug discovery. PyBindingCurve may be expanded to operate on any equilibrium binding 

system and allows definition of custom systems using a simple syntax. PyBindingCurve is available 

under the MIT license at: https://github.com/stevenshave/pybindingcurve as Python source code 

accompanied by examples and as an easily installable package within the Python Package Index. 

Introduction 
Simulation and fitting of experimental parameters for systems describing binding at equilibrium is a 

fundamental need in drug discovery, along with many facets of biology from fundamental to systems. 

The advantages provided in experimental planning alone justify its importance, allowing expectations 

of signal strength and species abundance to guide experimental, assay, and instrument setup. In this 

manuscript, we document the creation of PyBindingCurve and apply it to the most useful protein-ligand 

systems in biology and drug discovery, deriving equations for the resultant population abundances at 

equilibrium. Beyond the simplest systems, manual derivation of direct algebraic solutions becomes 

difficult and we therefore turn to symbolic manipulation in software to derive solutions. These systems 

are described by polynomial equations with multiple solutions, presenting the problem of not only 

choosing the correct solution, but choosing the correct solution throughout an experiment where the 

physically relevant solution may change throughout a titration. In addition, there are no general direct 

solutions to polynomials of order greater than four (Ayoub, 1980; Rosen, 1995), limiting the scope for 

deriving direct analytical solutions to highly complex systems. We therefore turn to Lagrange 

multipliers and root-finding techniques, transforming the problem into one of constrained optimization. 

We compiled these solutions with methods to simulate titrations, plot results and fit parameters for 

experimental value determination into a Python package named PyBindingCurve, allowing simple 

simulation, plotting, and fitting of systems at equilibrium. Multiple freely available and commercial 

software packages exist for plotting and simulating systems (Munson, 1983; Royer, 1993; Royer et al, 

1990a), however most are closed-source, hindering development and integration into existing 

workflows, or require real solutions to be derived or transferred from literature (Bronstein et al, 1989; 

Thrall et al, 1996), a difficult process, especially with the added problem of selecting the correct 
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polynomial root representing physically relevant solutions. Having an opensource framework to 

simulate, fit and interrogate these systems brings with it great advantages allowing automation and 

integration into existing software pipelines and analysis methods. 

All binding events may be described over time by an on-rate (with units: M-1∙s-1), describing the rate of 

association, and an off-rate describing the complex falling apart into its constituent species (units: s-1). 

The interplay between complex association and dissociation in a closed system creates a dynamic 

equilibrium containing a steady state of species abundances. We may combine these rate constants 

describing the population at equilibrium into the dissociation constant; KD (units: M), defined simply as 

the off-rate divided by the on-rate. Conveniently, when one binding site is present, such as in 1:1 

binding, this value denotes the concentration at which 50% of a species will be in complex with its 

binding partner. Lower values denote higher affinity interactions and therefore tighter binding. Often, 

we may derive direct analytical solutions to the concentration of complex formed. A full derivation of 

1:1 binding from mass balances is available as Supporting Equation 1 and can be found in literature 

(Green, 1965; Hulme & Trevethick, 2010; Inglese et al, 1989; Wang et al, 1992). Simulation of binding 

curves with this equation requires no special treatment, with only one polynomial root being physically 

relevant across all possible experimental parameter values. This provides a direct method for calculating 

complex concentration over a range of system parameters. 

In addition to 1:1 binding, a common system is 1:1:1 competition, commonly used in drug discovery 

efforts to detect new chemical entities displacing a known binder. As an example, a fluorescently 

labelled ligand in complex with target protein may have its fluorescence anisotropy measured 

(Lakowicz, 2006; Weber, 1953). Displacement of the labelled ligand by another inhibitor competing for 

the same binding site will remove labelled ligand from the complex resulting in a change of anisotropy 

as a function of complex concentration. The 1:1:1 competition binding equation may be solved in the 

same manner as demonstrated in supporting material for 1:1 binding with changes made to the mass 

balances, and results in a third order, or cubic equation requiring significantly more manipulation but 

remaining feasible by hand. This results in three possible polynomial roots as solutions, one of which 

may be entirely excluded as never physically relevant, whilst the choice between the other two is 

dependent on the ligand and inhibitor KDs relative to each other. This solution is also readily available 

in literature (Teukolsky et al, 1992). Additionally, the breaking of heterodimers with an inhibitor can be 

represented by this 1:1:1 competition system, where protein monomers can be thought of as a protein 

and ligand which upon binding become a heterodimer whilst the inhibitor competes for a binding site 

on one of the protein monomers. 

Studies in biology often involve oligomers, or repeating units, the conceptually simplest of which is a 

homodimer; two identical monomer units binding to each other. Homodimers have been characterized 

as having distinct properties setting them apart from heterodimers which comprise two chemically 

different proteins. In general, the binding interfaces of homodimers are larger with more interacting 

residues, specifically enriched with hydrophobic residues (Zhanhua et al, 2005). Mathematically 

understanding this construct and its behavior is critically important for fundamental biology. It is 

therefore surprising that we were able to find only one instance in literature of derivation of a direct, 

analytical solution to homodimer formation at equilibrium (Benfield et al, 2011). Upon first considering 

homodimer formation, it appears a simpler case than 1:1 protein ligand binding as only one starting 

species is involved, two units of which transition to become a single dimer upon complexation. An 

important consideration exists when the dimer undergoes dissociation and two monomers are produced, 

increasing the concentration of free monomer at double the dissociation rate. The same is true in reverse 

for complexation; with two monomers consumed for creation of one dimer. The derivation of a direct 

analytical solution to dimer formation can be found in the supporting information accompanying this 

manuscript and is labelled Supporting Equation 2. Like the solution of the quadratic for 1:1 binding, 

one polynomial root is always physically correct. 

We were unable to find literature providing direct analytical solutions to equations describing 

homodimer breaking with an inhibitor. This is surprising as fundamental biology and drug discovery 

efforts often seek to deactivate or break apart homodimers with small molecules or peptides mimicking 

interaction surfaces. As the ligand and protein are the same species, manual derivation of direct 
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analytical solutions for amount dimer formed proves difficult. At this level of complexity, direct 

analytical solutions can be found using symbolic manipulation with programs such as Wolfram 

Mathematica (Wolfram Research, 2019). See supporting information codes 1, 2, 3, and 4 for Wolfram 

Mathematica code solving the 1:1, 1:1:1 competition, dimer formation and dimer breaking systems 

respectively. In highly complex systems, such as homodimer breaking, we may observe the physically 

correct solution “switching” from one polynomial root to another as titrations progress. We have termed 

this ‘solution switching’, requiring tracing steps to be built into PyBindingCurve allowing smooth 

transition from point to point when using the derived direct analytical solutions to complex systems. To 

simulate and perform fitting such as KD determination using experimental data using systems which for 

which no direct analytical solutions exist, we use Lagrange multipliers in an approach similar to that 

taken by Royer (Royer et al, 1990b) to solve the systems expressed as constrained optimization 

problems (See Supporting Code Listing 5 to 8). PyBindingCurve allows custom systems to be defined 

and solved using Lagrangian based techniques, simply specifying “P+P<->PP” defines homodimer 

formation, whilst “P+L<->PL, P+I<->PI” defines 1:1:1 competition (see “Simulation of custom binding 

systems” in the accompanying supporting material). Additionally, systems may be solved kinetically as 

a system of ordinary differential equations (ODEs - see Supporting Code Listings 9-12). 

PyBindingCurve automatically utilizes the fast, direct analytical solutions to systems where possible, 

otherwise the Lagrangian approach to constrained optimization is used. Kinetic solvers are not used by 

default but can be specified. Bellow, we document the result of using PyBindingCurve to explore the 

striking differences between homo- and hetero-dimer breaking and its implications. The 

PyBindingCurve software package available at https://github.com/stevenshave/pybindingcurve allows 

simulation, fitting and derivation of systems parameters for a range of predefined and custom definable 

systems. 

Results and discussion 
Using the PyBindingCurve package we investigated the large and surprising differences between homo- 

and hetero-dimer formation. Understanding of these differences has the potential to impact fundamental 

biology, with better use of tool compounds and an improved systems biology-based understanding of 

biological pathways. We must first consider dimer formation, best illustrated by a theoretical experiment 

where an increasing concentration of monomer is titrated. Whilst experimentally it is not easy to 

increase monomer concentration, the experiment could be performed in reverse with buffer titrated into 

a known starting amount of monomer and dimer concentration monitored. Dimer half-life would need 

to be considered, ensuring an equilibrium is achieved before each dimer measurement is recorded. 

Performing the experiment for heterodimers is the simplest conceptually, whereby a known, and equal 

starting concentration of each monomer ‘A’ and ‘B’ is diluted, giving a total number of particles in a 

constant volume of N. To directly compare homodimer complexation with this system, we must use 

twice the homodimer ‘H’ monomer concentration to achieve the same number of particles as N. 
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Fig 1 - Homo-vs-Heterodimer making and breaking 

A) Dimer formation with a KD of 100 nM as a function of monomer concentration. As a homodimer (broken line) contains two 

copies of the same monomer, total monomer concentration is twice that shown on the x-axis. Heterodimer formation (solid 

line) contains two different monomers with concentration for each monomer given by the x-axis. 

B) After monomer titration to 1 µM as shown in A, or effectively 2 µM in the homodimer case, the resultant complex has an 

inhibitor (I0) titrated against it. The inhibitor has a KD of 10 nM to one heterodimer monomer (solid line), and the same KD to 

homodimer monomers. 

Error! Reference source not found.Fig 1A, shows dimer formation as a function of monomer for 

dimers with a dissociation constant (KD) of 100 nM. It is evident that with the same number of particles 

present, more homodimer than heterodimer is formed. This is expected as homodimer monomers, can 

form a dimer with any other monomer. Heterodimers are only formed when two complimentary 

monomers come together, effectively halving the concentration of binding partners that a heterodimer 

monomer encounters. Fig 1B illustrates profound differences observed upon dimer breaking with an 

inhibitor, the understanding of which is of crucial importance for drug discovery and fundamental 

biology involving the application of drug and tool compounds for dimer breaking. We can observe a 

system where dimer complexation starting with a total of 2 µM homodimer monomer with a 

dimerization KD of 100 nM has an inhibitor titrated into it with a KD of 10 nM to homodimer monomer. 

Comparing this to a similar system containing 1 µM of both components A and B of a heterodimer 

monomer (total 2 µM monomer concentration) with a similar dimerization inhibitor with a KD of 10 nM 

to A, we observe striking differences. First as expected from the dimer formation plot in Figure 1A, the 

starting dimer concentration of homodimer is higher than that of heterodimer. Again, this can be 

explained simply by the fact that a homodimer monomer can bind any other homodimer monomer, 

whereas with a heterodimer monomer, a monomer must encounter a complimentary monomer for 

complexation to occur. As the titration continues, an interesting crossover occurs at around 4 µM 

inhibitor concentration with an equal amount of homo- and heterodimer present. As inhibitor 

concentration increases, the amount of heterodimer present is greater than that of homodimer. This 

effect can be explained by the increased abundance of inhibitor binding partner in the case of 

homodimers. As in the previous explanation, particles of homodimer are encountered at twice the rate 

of particles of appropriate heterodimer monomer by the inhibitor diffusing in solution, causing more 

homodimer monomer-inhibitor complex than heterodimer monomer-inhibitor complex. For the same 

amount of inhibitor in solution, a greater proportion complexes with monomer in the case of 

homodimers, removing free monomer capable of complexing with another monomer into a dimer. This 

is interesting, as initially, the increased dimerization of homodimer is greater than the effect of increased 
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homodimer monomer-inhibitor formation. There is however, a point in inhibitor titration where this 

balance shifts, and the effect of the increased homodimer monomer-inhibitor formation is greater than 

the increased dimerization, shifting the dynamic such that homodimers may be more easily broken apart 

by inhibitors. A final observation can be made, in that the depletion of homodimer is more complete 

than that of heterodimers at high concentrations of inhibitor. Again, this can be explained by the 

abundance of inhibitor binding partners, each monomer in the case of homodimers, versus one monomer 

in the case of heterodimers. Further exploring the switch of homo- versus hetero-dimer ease of breaking, 

we may visualize areas of affinity space where breaking one is easier than the other, as shown in Fig 2. 

 

Fig 2 Homodimer versus heterodimer breaking heatmaps showing dimer concentration as a function of changing dimer and 

inhibitor affinity. 

Fig 2 left shows concentration of homodimer formed with a starting concentration of 2 µM monomer 

and a range of inhibitor and dimerization KDs along the x- and y-axes respectively, expressed as pKDs. 

Fig 2 centre shows the same for heterodimer, with 1+1 µMs of the two monomers as a starting 

concentration and a range of inhibitor KDs. Fig 2 right shows the difference between homodimer and 

heterodimer, green indicating that the homodimer was harder to break, and magenta indicating that it 

was easier to break. 

Discussion 
In development of PyBindingCurve, we iterated through many approaches to simulating protein-ligand 

systems as their complexity increased. Starting with hand crafted direct analytical solutions, increased 

system complexity led to computer-generated code requiring tracing approaches to choose the correct 

solution. As complexity increased and solutions to high order polynomials were no longer found 

(Ayoub, 1980; Rosen, 1995), such as in 1:4 protein-ligand binding, we transitioned to first using 

iterative kinetic models describing systems as ODEs, to Lagrange multiplier minimization problems 

expressed as constrained system optimization problems. PyBindingCurve automatically chooses the 

most appropriate method to solve common binding systems. The use of Lagrange multipliers led to 

methods capable of solving user defined binding systems specified in simple text, allowing applicability 

of PyBindingCurve to practically all biological systems. Having such capabilities present in an open 

source package promotes freedom to use, integrate and improve PyBindingCurve. 

The striking difference in behavior of homodimers versus heterodimers could have a significant impact 

on drug discovery efforts. Simply dissemination of the knowledge that near complete depletion of 

homodimers is easier than with heterodimers is valuable, before making any numerical predictions or 

analysis. We believe a major strength of PyBindingCurve is direct programmatic access for exploration 

of these binding systems in Python, currently one of the most popular and fastest growing programming 

languages. This helps allow insights as demonstrated in the homo- versus hetero- dimer formation 

example which would not have been easily discovered using existing offerings of traditional curve 

fitting and simulation software. 
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We envision the continued growth and development of PyBindingCurve. A detailed user guide with 

tutorials and API documentation is available in supporting information accompanying this manuscript 

and online (https://stevenshave.github.io/pybindingcurve/). 

Materials and Methods 
We implemented PyBindingCurve in Python (version 3.6.8), developing methods capable of simulating, 

plotting and fitting parameters to experimental results for 1:1, 1:n (where n is 1-5), 1:1:1 competition, 

homodimer and heterodimer systems. In the testing and validation process for these analytically solved 

complex systems solved with direct methods, we encountered considerable numerical instability 

(Goldberg, 1991) and so, use arbitrary precision arithmetic to a high degree of accuracy using the 

mpmath (version 1.1.0) package (Johansson, 2018). Internally, PyBindingCurve uses a combination of 

direct analytical solutions for simple binding systems (computationally quick to simulate), and 

Lagrangian multiplier-based approach to solving constrained systems when dealing with more complex 

systems. To derive the Python code for simple systems with direct analytical solutions, we used 

Wolfram Mathematica to derive solutions from sets of mass balances and binding equations (See 

Supporting Code Listings 1-4). These solutions were written out and the program 

MathematicaEquationToPython used to convert the equations to Python functions (available at: 

https://github.com/stevenshave/MathematicaEquationToPython). Systems which proved unsolvable 

using symbolic manipulation in Mathematica are integrated into PyBindingCurve using Lagrangian 

multiplier-solved constrained optimisation. Supporting Code Listings 5-8 illustrates the Python code 

used to construct these Lagrangian systems and simulate 1:1, 1:1:1 competition, homodimer formation, 

and homodimer breaking. Code present within PyBindingCurve is also capable of parsing custom 

defined systems and transforming them into Lagrangian functions which are easily solvable. These 

systems are solved using the fsolve method from the SciPy optimize package. In addition to system 

simulation at a single set of starting conditions, we created helper functions to enable plotting over a 

range of species concentrations. Parameter fitting is achieved using the LMFit package (Newville et al, 

2016) enabling the calculation of parameters such as KD from experimental data. Full source code along 

with examples for every system are available in the public GitHub repository accessible at 

https://github.com/stevenshave/pybindingcurve. Additionally, the PyBindingCurve package has also 

been submitted to the Python Package Index (https://pypi.org/project/pybindingcurve/) may be installed 

via pip using the command “pip install pybindingcurve”. Online documentation along with a tutorial is 

also available at https://stevenshave.github.io/pybindingcurve/. 
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